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Abstract
Glycosaminoglycans (GAGs) affect human physiology and pathology by modulating more

than 500 proteins. GAG-protein interactions are generally assumed to be ionic and nonspe-

cific, but specific interactions do exist. Here, we present a simple method to identify the

GAG-binding site (GBS) on proteins that in turn helps predict high specific GAG–protein

systems. Contrary to contemporary thinking, we found that the electrostatic potential at

basic arginine and lysine residues neither identifies the GBS consistently, nor its specificity.

GBSs are better identified by considering the potential at neutral hydrogen bond donors

such as asparagine or glutamine sidechains. Our studies also reveal that an unusual con-

stellation of ionic and non-ionic residues in the binding site leads to specificity. Nature engi-

neers the local environment of Asn45 of antithrombin, Gln255 of 3-O-sulfotransferase 3,

Gln163 and Asn167 of 3-O-sulfotransferase 1 and Asn27 of basic fibroblast growth factor in

the respective GBSs to induce specificity. Such residues are distinct from other uncharged

residues on the same protein structure in possessing a significantly higher electrostatic

potential, resultant from the local topology. In contrast, uncharged residues on nonspecific

GBSs such as thrombin and serum albumin possess a diffuse spread of electrostatic poten-

tial. Our findings also contradict the paradigm that GAG-binding sites are simply a collection

of contiguous Arg/Lys residues. Our work demonstrates the basis for discovering specifi-

cally interacting and druggable GAG-protein systems based on the structure of protein

alone, without requiring access to any structure-function relationship data.

Introduction
Sulfated glycosaminoglycans (GAGs), such as heparan sulfate (HS), are nature’s most enig-
matic biopolymers. Although made from a linear combination of simple saccharide rings, they
display a staggering range of primary sequence diversity that surpasses the range possible for
equivalent chains of other biopolymers. The occurrence of HS in planaria [1], the 2nd most
primitive species of the animal kingdom, in a variably sulfated form closely matching that in
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humans suggests these biopolymers play critical roles in multiple fundamental biological pro-
cesses. It is now recognized that GAGs bind to hundreds of human proteins with implications
in physiological as well as pathological processes such as hemostasis and thrombosis, wound
repair and inflammation, neuronal growth and amyloidogenesis, angiogenesis and cancer,
defense against microbes and infection [2,3]. Yet, precious little is understood about how these
unique, linear polysaccharides recognize and modulate their targets.

Considerable effort has been expended in understanding GAG–protein interactions at an
atomic level. The earliest attempt to rationally deduce GAG binding sites (GBSs) on proteins
was that of Cardin andWeintraub, who identified ‘XBBXBX’ and ‘XBBBXXBX’ as GAG-recog-
nition domains, where B and X represent basic and hydropathic residues [4]. Later, these lin-
ear, α-helical or β-strand-like segments were extended to include other secondary structural
elements [5,6]. However, such linear elements imply divergent evolution of GBSs, whereas the
large structural diversity of GAG-binding proteins (GBPs) suggests exactly the opposite. In
fact, most GBPs do not follow the simplistic Cardin andWeintraub rules. Sophisticated
computational tools are being developed GBS identification [7–19]. While these approaches
are successful within their set limits, a key question that remains unaddressed to date is the
specificity of GAG-protein interactions [3,20,21], even though efforts have been made recently
to do so [22,23]. For example, why are certain GAG–protein systems, e.g., heparin–antithrom-
bin, highly specific [24,25], while others, e.g., heparin–thrombin [24,26,27], essentially nonspe-
cific? More importantly, can ‘specific’ GAG–protein systems be more reliably predicted to help
advance chemical biology and drug discovery?

Predicting the specificity of GAG–protein interactions is extremely challenging because of
their reliance on long-range and non-directional Coulombic forces of attraction. Since multiple
Arg/Lys and sulfates are involved in these interactions, many of which are redundant, most
GAG–protein systems are traditionally forsaken as nonspecific. Yet, growing evidence suggests
that GAGs display considerable non-ionic binding energy (10–40%) in recognizing their tar-
gets [24,28,29], which may arise from short-range and directional forces, such as hydrogen-
bond(s), that induce ‘specific’ recognition. However, the exact origin of specificity among the
multitude of interaction loci has been difficult to pinpoint.

The scientific community has historically focused on site directed mutagenesis of residues
such as arginine, lysine and histidine, often present within the GBS (Table 1) and which will
likely possess a positive charge under physiological conditions. However, GBSs also possess

Table 1. Polar residues present in various GBSs. These residues form direct interactions with GAGs, as
evidenced by analysis of crystal structures.

Protein [PDB code] Arg/Lys in GBS Other polar residues in
GBS

Antithrombin [1tb6, [30]] Arg 46, 47, 129, 132, 136; Lys 114,
125, 133, 275

Asn 45

Thrombin [1tb6, [30]] Arg 93, 101, 126, 165, 233; Lys 236,
240

Asn 184; Gln 256; His 87

Basic fibroblast growth factor
(FGF2) [1fq9]

Arg 120Lys 26, 119, 125, 129, 135 Asn 27

3-O-sulfotransferase 3A1
(HS3ST3A1) [1t8u]

Arg 166, 190, 260, 370Lys 161, 162,
215, 259

Gln 255

3-O-sulfotransferase 1 (HS3ST1)
[3uan]

Arg 67, 72, 197, 268, 276Lys 68, 123,
171, 173, 274

Asn 89, 167; Gln 163; His
92

2-O-sulfotransferase 1 (HS2ST1)
[4ndz]

Arg 80, 184, 189, 190, 288Lys 111,
284, 289

Asn91, 108, 112; His 106,
140, 142

doi:10.1371/journal.pone.0141127.t001
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polar residues such as asparagine and glutamine [29]. Histidine is a special case because it may
or may not be charged under physiological conditions (pKa ~ 6.9) and its protonation state
during GAG-binding isn’t always clear, but Asn and Gln are certainly never positively charged.
Therefore, the reason for presence of Asn and Gln in GAG-binding sites remains unclear, even
though it is firmly established that they interact with GAGs in many systems (Table 1). We
asked a fundamental question: can these uncharged, polar residues have something to do with
specificity?

We have uncovered that uncharged residues, such as Asn or Gln, help identify the GBS and
also segregate specific GAG-protein systems from nonspecific ones. Our computational results
in conjunction with structural and biochemical results show that an unusual constellation of
ionic and non-ionic residues constituting the GAG-binding site is necessary for high specificity
interaction. These principles can help parse proteins, including those that follow the Cardin–
Weintraub rule [4] as well as those that do not, based on their specificity of interaction with
GAGs. Based on our findings, we propose that Asn/Gln reduce desolvation penalties during
the mostly electrostatic GAG-protein interactions, in addition to hydrogen bonding to sulfates
and carboxylates on the GAG. Our results challenge the traditional paradigm that GAG-bind-
ing sites on proteins are located in contiguous segments, such as helices and/or turns and that
specificity arises from Arg and Lys residues. Our work is expected to fundamentally change the
landscape of discovery of ‘highly specific’ GAG-binding sites on proteins, which should greatly
assist with identification of druggable GAG-protein systems for designing novel GAGs and
GAGmimetics as drugs.

Results

Electrostatic potential alone at electropositive residues does not always
identify a GAG binding site
Traditionally, a cluster of electropositive residues has been assumed to form a GBS, suggesting
that the electrostatic potential (GES) at Arg/Lys residues should unequivocally identify GBSs.
To quantitatively assess whether this expectation is correct, we calculated GES on Arg/Lys resi-
dues of representative heparin-binding proteins including antithrombin, thrombin, FGF2,
HS2ST1, HS3ST1 and HS3ST3A1. The GES are represented on 2DSE plots, which we devised as
new tools for easy quantitative visualization of energy at any locus, e.g., nitrogen donor atom of
an Arg or Lys, on the protein surface in two-dimensions (seeMethods and Supplementary
Methods). Briefly, the position of a locus (such as an atom) on a protein surface is projected
from 3D space onto a 2D plane to obtain a scatterplot. The area of each data point in this scat-
terplot is scaled in size to reflect the GES manifested at the atom by the rest of the structure.
Therefore, the larger spots represent locations most conducive to binding negatively charged
entities such as GAGs. Our expectation, as explained above, was that Arg/Lys of the GBS
would demonstrate the highest (most negative) GES.

Converse to our expectations, Fig 1 reveals that not all GBS Arg/Lys (Table 1) carry a high
GES. This is in direct contrast to common empirical assumptions. For example, GES for Arg46,
Lys114 and Arg129 of antithrombin were significantly higher than other basic residues present
in the heparin-binding site such as Arg47, Lys125, Arg132, Lys133, Arg136 and Lys275 (Fig
1A). In fact, Lys114 and Arg129 are known to be crucial for heparin binding [25,31,32], but
Arg46 is not. Likewise, Arg93 stands out as the only residue with high GES for thrombin, sur-
passing two residues (Arg97 and Arg101) known to play key role in heparin binding, (Fig 1B)
[26,33]. Arg120 of FGF2 is only one of several, similarly contributing residues of the GBS
[34,35] but demonstrates significantly higher GES (Fig 1C). Similar results were obtained in cal-
culations for HS3ST3A1, HS3ST1 and HS2ST1, three enzymes of the heparan sulfate
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Fig 1. GES at arginines and/or lysines does not identify the GBS on a protein.GES for Arg/Lys residues are mapped using 2DSE plots for multiple GAG-
binding proteins including (a) antithrombin, (b) thrombin, (c) FGF2, (d) HS3ST3A1, (e)HS3ST1 and (f) HS2ST1. The maps reveal that GAG-binding site Arg/
Lys residues may not always possess highGES and not all Arg/Lys with highGES on a protein are part of the GAG-binding site.

doi:10.1371/journal.pone.0141127.g001
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biosynthesis pathway. Although Arg166, Arg274 and Arg325 of HS3ST3A1 display high GES

(Fig 1D), the latter two are not known to be part of the GBS [36]. Likewise, Arg223 of HS3ST1
shows strong GES (Fig 1E) but is not known to be part of the GBS [37]. Finally, Arg184 of
HS2ST1 demonstrates high GES as well (Fig 1F) but is not known to be important for binding
GAGs [35,38]. This implies that not all Arg/Lys residues on a GAG-binding protein’s surface
carry high electrostatic potential. More importantly, not all Arg/Lys possessing high electro-
static potential contribute to GAG binding. In fact, for some proteins, multiple loci of high GES

are observed in disparate locations, e.g., HS3ST3A1 (Fig 1D) and HS3ST1 (Fig 1E), and not all
are part of the GBS [36,37]. Thus, GES at electropositive Arg and Lys residues alone does not
always define GAG binding and specificity.

Desolvation is an important factor in GAG–protein binding
Considering that GES alone cannot define binding specificity, we set to identify other parame-
ters that may contribute to specificity of GAG interactions. We hypothesized that to a first
approximation the overall binding energy (ΔG) of a GAG–protein system is a composite of
electrostatic (ΔGES) and desolvation (ΔGDS) free energy components. Additional terms, such as
vibrational entropy and van der Waal’s energy [39,40], are likely to contribute but were not
considered in this first approximation because it was our goal to identify GAG-binding sites
from the structure of protein alone. Changes in vibrational entropy and van der Waal’s energy
during binding will vary with nature of the cognate GAG binding partner, which precludes
inclusion of these terms at this time. To test our hypothesis that ΔGES and ΔGDS are the major
factors determining GAG-protein interactions, we studied the antithrombin–heparin pentasac-
charide and thrombin–heparin systems, for which a large body of solution experimental data is
available [41–45]. For both systems, ΔGES varies linearly (R

2~0.6–0.7) with change in free
energy of GAG binding (ΔΔGOBS) suggesting an important role for electrostatic forces to the
interaction (Fig 2A and 2B; see Tables 2 and 3). Yet, while statistically significant (p<0.05),
the correlation is moderate at best, which quantitatively confirms that electrostatics alone does
not sufficiently address binding. To assess whether the release of solvent molecules is an impor-
tant contributor in GAG-protein interactions, desolvation energy (ΔGDS) was calculated using
the Poisson-Boltzmann Surface Area (PBSA) method [46] (seeMethods). For both proteins,
ΔGDS demonstrated an inverse correlation (Fig 2C and 2D) with ΔΔGOBS (R

2~0.6–0.7). Inter-
estingly, electrostatic forces (ΔΔGES) and desolvation forces (ΔΔGDS) were found to be directly
opposed to each other (R2 = 0.99, p<0.05) (Fig 2E and 2F). More importantly, the magnitude
of desolvation effects was substantial, which implies that desolvation energy cannot be dis-
carded and is an important driver of GAG-protein association.

Since desolvation opposes electrostatic interactions, we hypothesized that residues capable
of (a) producing non-ionic interactions such as hydrogen bonds (which also possess a partial
covalent character to compensate for less favorable ionic interactions) with GAGs, and (b) low-
ering desolvation costs during such interactions, would play an important role in such interac-
tions. Considering that GAGs possess several hydrogen bond acceptors, e.g., hydroxyls,
carboxylates and sulfates, it is likely that asparagine and glutamine residues may serve as
hydrogen bond donors.

GAG-protein sites are consistently identified byGES at uncharged polar
residues
It has been long known that GBSs do possess uncharged polar residues [29]. Table 1 provides
some typical examples. Their importance has mostly been construed from their presence in co-
crystal structures and yet they have not been evaluated routinely by site-directed mutagenesis.
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However, whenever they have been, significant reduction in binding and activity are observed.
For example, the Gln255Ala mutant of HS3ST3A1, a key enzyme that introduces a rare 3-sul-
fate group of the herpes simplex virus 1 recognition motif, demonstrates a>99% loss in activity
[36]. Similarly, the Gln163Ala and Asn167Ala mutants of HS3ST1, the enzyme responsible for
introduction of the 3-sulfate in unit F of DEFGH, show a ~60% drop in activity [37,47]. Like-
wise, Asn27, Gln123 and Gln134 of FGF2 have also been implicated in heparin binding, of
which Asn27 makes a significant enthalpic contribution [34]. However, the reason for such

Fig 2. Desolvation energy is critical for quantitative analysis of GAG–protein interaction. Neither ΔGES

(a and b) nor ΔGDS (c and d) alone explain the change in ΔGOBS for antithrombin (a and c) and thrombin (b
and d) mutants studied to date. Any enthalpic gain due to electrostatics is opposed by desolvation (R2 = 0.99)
in antithrombin (e) as well as in thrombin (f), suggesting that desolvation is critical for quantitative analysis of
GAG-protein interactions. In all cases, the correlation was found to be significant at α = 0.05.

doi:10.1371/journal.pone.0141127.g002
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observations has typically not been clear. Given the predominant roles played by Arg/Lys in
GAG-protein binding, it seems unlikely that Asn/Gln alone would form motifs capable of
binding GAGs. We predicted that a combined effect manifested by both, electropositive and
uncharged residues, may provide us with clues about the roles of such residues in GAG-protein
interactions.

Electrostatic interactions are effective at long range and therefore Arg/Lys may also affect
the environment of other residues in a protein structure. For example, GES at Asn and Gln resi-
dues may be significantly altered. Fig 3 demonstrates GES at Asn and Gln residues (and other
neutral hydrogen bonding donors) in the form of 2DSE plots. While GES calculated at basic
Arg and Lys residues failed to reliably identify the GBS (Fig 1), the same calculated for neutral
hydrogen bond donors identified the GBS consistently (Fig 3). The highest GES for any given
protein structure is always present at the GBS, as observed for antithrombin, thrombin, FGF2,
HS3ST3A1, HS3ST1, HS2ST1 and serum albumin (Fig 3 and S1 Fig). The identification of the
GBS was independent of specific or nonspecific nature of the protein. Quite clearly, the critical
positioning of basic residues near uncharged hydrogen bond donors creates a unique

Table 2. Electrostatic interactions and desolvation energies for AT-heparin pentasaccharide complexes reported in the literature.

Mutant ΔGES (kcal/mol) ΔΔGES (kcal/mol) ΔGDS (kcal/mol) ΔΔGDS (kcal/mol) Kd
b (nM) ΔΔGOBS (kcal/mol)

Wt -199.8 0 184.6 0 6 0

K125Q -125.1 74.7 116.6 -68.0 12 0.4

K136T -200.0 -0.25 185.0 0.4 6 0

N135A -198.9 0.8 183.7 -0.9 2 -0.6

N135A/R129Qa -150.7 48.2 139.2 -45.4 1800 3.4

N135A/R129Ha -151.7 47.2 139.8 -43.9 820 2.9

N135A/K114Aa -85.4 113.5 80.2 -103.5 1800000c 7.6

R132M -156.7 43.0 145.2 -39.4 89 1.6

K133M -159.4 40.4 147.0 -37.6 171 2.0

a Calculated from a comparison with the N135A mutant.
b Kd values were obtained from references [41–44]. ΔΔGOBS values were calculated using the formula ΔG = RTloge(Kd

1/Kd
2) where Kd

1 is for mutant and

Kd
2 is for wt.

c Calculated from data available in reference [43].

doi:10.1371/journal.pone.0141127.t002

Table 3. Effect of electrostatic interactions on binding of various thrombinmutants with heparin.

Mutant ΔGES (kcal/mol) ΔΔGES (kcal/mol) ΔGDS (kcal/mol) ΔΔGDS (kcal/mol) Kd
b (nM) ΔΔGOBS (kcal/mol)

Wt -503.1 0 461.9 0 90 0

K169E -275.9 73.8 392.4 -69.4 150 0.31

R175E -401.6 101.5 366.8 -95.1 570 1.11

R233E -337.3 165.8 311.5 -150.4 720 1.25

K236E -275.9 227.2 255.5 -206.4 4800 2.38

K240E -282.6 220.5 262.5 -199.4 1000 1.44

R233E-K240Ea -117.1 220.2 111.8 -199.7 16000 3.11

a Calculated from comparison with the R233E mutant.
b These values were reported in reference [45] as equilibrium constant for thrombin dissociating from the ternary antithrombin-thrombin-heparin complex.

Since the mutations are at exosite II, where heparin binds (and not antithrombin), these quantify thrombin-heparin interactions. ΔΔG values were

calculated using the formula ΔG = RTloge(Kd
1/Kd

2) where Kd
1 is for mutant and Kd

2 is for wt.

doi:10.1371/journal.pone.0141127.t003
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environment which is preferentially bound by GAGs. Thus, GES at neutral hydrogen bond
donors can be called GGAG-binding. As will be demonstrated below, GGAG-binding can segregate
specific GBSs from nonspecific ones.

Uncharged polar residues of specific GBSs possess significantly higher
GGAG-binding than the rest of the protein
Antithrombin, FGF2 and sulfotransferases possess specific GBSs while thrombin and serum
albumin are known to be nonspecific in nature [25,27,30–32,36,37,35,38,47–49]. All these pro-
teins possess basic and uncharged polar residues in their binding site. We can correctly identify
their GBSs by calculating GGAG-binding at uncharged hydrogen bond donors (vide supra), but
can we segregate specific proteins from nonspecific ones? By first principles, a specific GBS will
be an area on the protein surface that possesses significantly higher GGAG-binding compared to
the rest of the protein. GAGs will therefore preferentially bind to that location rather than any-
where else.

For antithrombin, the location of Asn45 possesses a much larger GGAG-binding (Fig 3A) than
any other area on its surface, indicating that GAGs will preferentially bind to it. Replacement
of Asn45 with Ala, Arg or Lys completely alters the unique electrostatic environment observed
in the wt structure (S2 Fig) suggesting Asn45 is a “hot spot” for binding the heparin pentasac-
charide. In contrast, thrombin did not demonstrate any such unique neutral hydrogen-bond
donor (Fig 3B) despite the presence of many basic residues in its GBS. Likewise, bovine serum
albumin demonstrated no outstanding neutral donor loci (S1 Fig). It is also known to interact
with heparin nonspecifically [49].

An analysis of other GAG-interactors also confirmed our ability to identify such loci; the
2DSE plots for neutral hydrogen-bond donors of FGF2, HS3ST3A1 and HS3ST1 show focused
GGAG-binding at highly localized regions (Fig 3C, 3D and 3E) similar to AT (Fig 3A). The same
observations are made at various dielectric constants and by employing the CHARMM charge
model [50,51], (S3 and S4 Figs). Note that using the more accurate CHARMM charge model
gave us a better representation of HS2ST1’s specificity (S3 Fig). Thus, GAGs prefer to engage
loci containing a strategically positioned neutral hydrogen bond donors near positively charged
residues. If the GES at a few neutral hydrogen bond donors (GGAG-binding) is significantly high in
comparison with other regions of the protein surface, then it is a specific GBS. 2DSE plots are a
convenient way of identifying the GBS and visualizing its specificity.

Further, a simple statistical distribution of GGAG-binding across any given protein can also be
used to segregate specific GBSs from nonspecific ones, as we have done in Fig 4. Here, GGAG-

binding was visualized using violin plots. The specific proteins, antithrombin, FGF2, HS3ST1
and HS3ST3A1 possess at least one location where GGAG-binding is significantly higher (more
negative) than the average over the entire surface, as delineated by the long tails in the plots.
Conversely, the nonspecific proteins thrombin and serum albumin do not possess similar tails,
which suggests GGAG-binding is rather uniform across most of their surfaces and GAGs will not
prefer binding at one location more than any other. This explains why they are nonspecific.

Fig 3. 2DSE plots forGES at neutral hydrogen bond donors.GAGs bind neutral hydrogen bond donors on the protein that possess significantly high GES.
(a) Asn45 of antithrombin GAG-binding site possesses the highest GES within the structure. (b) In contrast, the nonspecific thrombin GAG-binding site
demonstrates a diffused GES. Similarly, significantly highGES are observed at (c) Asn27 of the FGF2 GBS; Asn27Ala mutation affects GAG-binding
(ΔΔG~1.1 kcal/mol) almost as much as K125A (ΔΔG~1.7 kcal/mol), which had the largest effect, (d) Asn255 of the HS3ST3A1 GAG-binding site; the N255A
mutant is inactive, and (e)Gln163 of HS3ST1; Gln163Ala mutant loses ~65% activity. (f) Diffused GES of HS2ST1may represent its ability to bind low-
sulfated GAGs. However, Asn91 and 112 of the HS2ST1 GAG-binding site possess a potential higher than His106, mutation of which is already known to
affect GAG-binding.

doi:10.1371/journal.pone.0141127.g003
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Pharmacophoric basis for targeting specific GBSs
What causes a biased GGAG-binding to exist in specific GAG-binding proteins? Close visualiza-
tion of the antithrombin/FGF2-heparin interactions explains the origins of the unique environ-
ment surrounding Asn45 of antithrombin and Asn27 of FGF2 (Fig 5A and 5B). Both proteins
possess positively charged basic residues very close to their respective neutral hydrogen bond
donors, causing a large GGAG-binding at these locations. This is the unique feature responsible
for GAG-binding specificity elicited in them. Similar structural features are also observed in
the sulfotransferase enzymes (Fig 5C–5E). Such features are a hallmark of specific GBSs.

GAG sequences that target specific proteins can be identified by considering which mono-
or disaccharides will bind these pharmacophoric features. The identification of GAG sequences
that may bind with specificity to a given protein is an additional challenge in GAG-protein
interactions. The structural diversity of GAGs requires docking of large GAG libraries onto
protein surfaces, but can be used to reasonably represent GAG-protein interactions
[8,10,13,15,16,18,40,52–54]. A single residue can be crucial for interactions in GAG-protein
systems, e.g. antithrombin binds only heparin containing GlcNS3S [55] and FGF2 binds only
IdoA2S-containing heparin [56]. Molecular modeling studies are also most successful at identi-
fying binding partners for such systems where evidence of specific binding exists [18,52,54].
The Combinatorial Virtual Library Screening (CVLS) approach employs an “affinity filter” and
a “specificity filter” to successfully identify GAG sequences that bind proteins [15,16,52]. Simi-
lar approaches can be refined to a great extent by focused searches targeting the pharmacopho-
ric features identified by our method. First, our method can be used to identify hot spots,
followed by docking only mono- or disaccharide libraries to identify preferred motifs that bind

Fig 4. Specific proteins demonstrate unique, non-uniform distributions of electrostatic potential
across neutral hydrogen-bond donors. Specific proteins such as antithrombin, FGF2, HS3ST1 and
HS3ST3A1 demonstrate at least one location of electrostatic potential that deviates significantly from the
mean. Nonspecific GAG-binding sites on proteins such as thrombin and serum albumin demonstrate a
uniform, Gaussian distribution of the same, so no location is preferred significantly over another.

doi:10.1371/journal.pone.0141127.g004
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them. The CVLS algorithm can then be used to dock focused GAG oligosaccharide libraries
enriched in those preferred mono- or disaccharides. Such a comprehensive approach would
pave the path for design of chemical probes and drugs.

Discussion
Our computational results in conjunction with structural and biochemical studies indicate that
(i) not all Arg/Lys carry equal and high electrostatic potential; (ii) not all Arg/Lys possessing
high electrostatic potential are located in the GAG-binding site; and (iii) not all GAG-binding
sites contain a neutral hydrogen-bond donor with significant electrostatic potential. On the
contrary, high electrostatic potential is induced at neutral residues by nearby basic residues to
generate GAG-binding sites with high specificity of recognition. In fact, we have found that
considering the electrostatic potential that exists at neutral hydrogen bond donors not only
depicts the correct GBS, but also reveals its specificity. Nature appears to engineer a few strate-
gic neutral hydrogen-bond donors within the highly positively charged domain to induce spec-
ificity. At a fundamental level, this represents a major advance over the current paradigm of
GAG–protein interactions, which are thought to originate only from Arg/Lys residues.

At a fundamental level, specificity of GAG–protein interaction can be of two types–‘biologi-
cal’ specificity, which refers to how unique is the geometry of GAG-binding on the protein,
and ‘chemical’ specificity, which refers to how unique is the sequence of a GAG that is recog-
nized by the protein. Although most researchers assume that both biological and chemical
specificities are identical for GAG-protein interaction, it is not so. For example, thrombin

Fig 5. The structural basis for existence of hot spots in GBSs.Nature has designed specific GBSs by placing neutral hydrogen bond donors such as the
ND2 and NE2 atoms of Asn and Gln respectively in close proximity to charged Arg or Lys residues, as seen in (a) antithrombin, (b) FGF2, (c) HS3ST3A1, (d)
HS3ST1 and (e) HS2ST1. This close proximity maximizes the GES at these residues, thereby generating a specific GBS. Not all atoms are displayed, for the
sake of visual clarity.

doi:10.1371/journal.pone.0141127.g005
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recognizes multiple GAG sequences, which can bind in different orientations on the protein
[26] indicating that thrombin–GAG system is neither biologically specific nor chemically spe-
cific. In contrast, antithrombin recognizes a unique GAG sequence, which binds in a unique
binding geometry indicating that antithrombin–GAG system is both biologically and chemi-
cally specific [24,25,28]. By the same token, proteins exhibiting intermediate forms of specific-
ity, e.g., chemically nonspecific but biologically specific, and vice versa, may also exist. While
concrete evidence of such systems is lacking, we predict that we will find such systems with
increase in our ability to assess specificity of GBSs. The method we present here will certainly
add to such abilities.

Operationally, this knowledge implies that high specificity GAG-binding sites on apo-pro-
tein structures will contain neutral hydrogen-bond donors with high (i.e., more negative) elec-
trostatic potential compared to the rest of the protein. The advanced understanding can be
used to develop a simple two-step algorithm for identification of proteins that can bind GAGs
with reasonably high level of specificity (Fig 6).

The first step would involve calculation of electrostatic potential at every neutral hydrogen
bond donor locus followed by statistical analysis of GES gradients to identify ‘hot spots’ i.e., neu-
tral loci among multiple Arg/Lys residues that presents high electrostatic potential. Hot spots
can be identified easily using 2DSE plots. Such hot spots likely engineer high GAG-binding
energy through ease of desolvation penalties and hydrogen bond formation, inducing unique
GAG-binding orientation and specificity of interaction. Further biophysical investigation is
required to confirm the importance of desolvation energy in eliciting specificity of binding, but
our ability to elucidate specific and nonspecific GBSs is already a critical advancement because
it allows identification of specific GAG-binding proteins. The presence of a specific GBS on a
protein likely signifies a role for GAGs in regulating that protein. Mapping specific GBSs onto
biological pathways will identify novel biological roles for GAGs. Furthermore, we now have
the ability to rationally target biological pathways to design GAG-based chemical probes and
drugs.

Our work is expected to fundamentally change the study of GAG-protein interactions
because it minimizes reliance on approximations such as linear secondary structure sequences
[4] or molecular modeling/docking on regions of high positive charge density [7–19]. Because
the approach can work on most high resolution structures (1.5–3.0 Å) being reported today, it
is likely to ease the discovery of ‘druggable’ GAG-binding proteins, which has been a major
stumbling block. In fact, our method will be of major use in rationally guiding high-throughput
docking of GAG sequences [15,16,52] for identifying novel therapeutically relevant GAGs and
mimetics that can specifically bind to target protein(s) and also in computational analysis of
the proteome to identify the GAG interactome.

Methods

2D-Surface Energy (2DSE) Plots
To the best of our knowledge, 2DSE plots have not been described in the literature. 2DSE plots
enable quantitative visualization of 3D energy distribution on a protein surface in two dimen-
sions. Here, the position of a locus on a protein surface is projected from 3D space onto a 2D
plane to obtain a scatterplot, in which the area of the dot is scaled to reflect the GES. The foun-
dation of this novel graphical display is as follows. If ‘i’ is the ith atom at point (x,y,z) in 3D
space and N the total number of atoms in the binding site, then total energy G is the sum of
energies at each ith atom located at (x,y,z)i coordinate. PDB files are a typical example where
the atomic (x,y,z) coordinates are provided for proteins. Each atom can therefore be mapped
onto the abscissa–ordinate plane by plotting (x2+y2)1/2 against z. In this projection, the
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expression (x2+y2)1/2 is the distance of an atom/residue from the origin on the x-y plane. Fur-
ther, the size of each point in the plot can be scaled relative to each other to compare their con-
tributions towards binding. Thus, the scatter plot helps visualize the energetics (e.g., GES) in 2D
arising from loci in the 3D. Finally, each scatter point can be scaled using an exponential

Fig 6. The two-step algorithm for identification of GBSs on proteins and elucidating their specificity.
The process involves preparation of protein; identification of neutral hydrogen bond donors in the structure;
calculation of 2DSE plots for the protein; and evaluation of ‘hot spots’ for deduction of specificity of GAG–

protein interaction.

doi:10.1371/journal.pone.0141127.g006
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function to represent the change in energetics at individual loci in comparison to the standard,
as defined by the well-established Eq 2.

DG2 � DG1 ¼ RTlnðKD;2Þ � RTlnðKD;1Þ ð1Þ

KD;2

KD;1

¼ e
DDG
RTð Þ ð2Þ

Here, KD represents affinity (ΔG = RT ln KD) and can be substituted by a factor that can be
correlated with affinity. GES is one such factor known to influence GAG-protein interactions.
Therefore, a direct comparison of affinities afforded by GES at two different points becomes
possible using Eq 2. Typical code for generating 2DSE plots is provided in Supplementary
Methods.

GAG-Protein Interaction Energy and Desolvation Energy Calculation
using Poisson-Boltzmann Surface Area (PBSA) Method
Electrostatic interaction energy (ΔGES) and desolvation energy (ΔGDS) involved in antithrom-
bin-heparin or thrombin-heparin interactions were calculated using the Poisson-Boltzmann
Surface Area (PBSA) method implemented in Openeye’s ZAP toolkit [46,57]. Bondi van der
Waal’s radii [58], MMFF94 [59] charges and atom-centered Gaussians [46] were used for these
calculations for which we assumed an inner dielectric constant of 2 [60] and an outer dielectric
constant of 80. The pdb code 1tb6 [30] provided structural information for the calculations.
ΔGES was calculated using the formula ΔGES = ΔGES,complex−(ΔGES,protein + ΔGES,GAG). Simi-
larly, ΔGDS was calculated using ΔGDS = ΔGDS,complex−(ΔGDS,protein + ΔGDS,GAG).

Statistical Analysis
Statistical analysis was performed using SigmaPlot (sigmaplot.com), or R statistical environ-
ment (r-project.org), and the ggplot2 module (ggplot2.org). Statistical significance was calcu-
lated using a two-tailed ANOVA on data found to be normal using a Shapiro-Wilk test and
demonstrating constant variance. In case of unequal variances, the non-parametric Spearman
rank order correlation test was used.

Calculation of GES at Individual Residues
Multi-body GES calculations were performed using the formula in Fig 6 implemented in the
form of a Python script (Supplementary Methods). These calculations were performed at mul-
tiple dielectric constants, and also using the CHARMM charge model [50,51] to ensure that
the results were similar.

Supporting Information
S1 Fig. 2DSE plots for serum albumin. (a) the GES at Arg/Lys residues reflects the relatively
hydrophobic nature of albumin (it is known to bind several hydrophobic ligands to reduce
their bioavailability) and (b) the GES at neutral hydrogen bond donors on serum albumin
resembling the same map for thrombin (Fig 1B).
(TIF)

S2 Fig. Mutation of Asn45 to Ala, Arg or Lys alters the electrostatic environment of the
protein.When compared to Fig 1A, these 2DSE plots clearly demonstrate that the “hot spot”
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at Asn45 cannot exist even on mutation to Arg/Lys.
(TIF)

S3 Fig. The effect of various dielectric constants on potentials. GES on neutral H-bond
donors were recalculated using dielectric constants (a) 2, (b) 3, (C) 4 and (d) 10. Clearly, the
trend remains exactly the same.
(TIF)

S4 Fig. Effect of using CHARMM charges on potentials. CHARMM charges were used to
calculate GES on neutral hydrogen bond donors for all the cases. Clearly, while the GES value
may change, there is still a clear distinction between specific and non-specific proteins. How-
ever, HS2ST1 now seems far more specific than with MMFF94 charges, in line with expecta-
tions that the enzyme will possess a specific GBS.
(TIF)

S1 File. An R script that creates 2DSE plots
(R)

S2 File. The GAG-Binding Site Predictor written in python. NOTE: This will require file 3
installed properly to function.
(PY)

S3 File. A short molecule input/output module written in python.
(PY)
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