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Abstract: Late-arriving patients have become a prominent concern in several ambulatory care clinics
across the globe. Accommodating them could lead to detrimental ramifications such as schedule
disruption and increased waiting time for forthcoming patients, which, in turn, could lead to patient
dissatisfaction, reduced care quality, and physician burnout. However, rescheduling late arrivals
could delay access to care. This paper aims to predict the patient-specific risk of late arrival using
machine learning (ML) models. Data from two different ambulatory care facilities are extracted,
and a comprehensive list of predictor variables is identified or derived from the electronic medical
records. A comparative analysis of four ML algorithms (logistic regression, random forests, gradient
boosting machine, and artificial neural networks) that differ in their training mechanism is conducted.
The results indicate that ML algorithms can accurately predict patient lateness, but a single model
cannot perform best with respect to predictive performance, training time, and interpretability. Prior
history of late arrivals, age, and afternoon appointments are identified as critical predictors by all
the models. The ML-based approach presented in this research can serve as a decision support
tool and could be integrated into the appointment system for effectively managing and mitigating
tardy arrivals.

Keywords: machine learning; late-arriving patients; clinical decision support; ambulatory care center;
predicting tardy arrivals

1. Introduction

Late patient arrival is widespread and a prominent concern in several ambulatory clinics across
the globe [1–3]. The reported rates of prevalence varied substantially among specialties, such as 10%
in pediatrics [4], 22% in urology [2], and 38% in cardiology [5]. Clinics serving tardy arrivals
may experience detrimental ramifications such as schedule disruption, ineffective doctor utilization,
and increased waiting time for forthcoming patients who may have arrived on-time [6]. This would,
in turn, lead to severe repercussions such as an imbalanced physician workload, higher health care
costs, and compromised service quality [3]. On the other hand, refusing treatments for late arrivals
could pose severe health and malpractice risks.

Realizing the adverse consequences, many studies have focused on mitigating late arrivals using
operational strategies such as prioritizing on-time arrivals [7], instituting rescheduling policies [8],
and sending automated text message reminders [9]. While these measures can be beneficial, the clinic
may still experience substantial tardy arrivals. To effectively manage unpunctual patients and surmount
the adverse effects, a medical center must adopt targeted intervention strategies and develop smart
scheduling policies that integrate a patient’s late arrival risk. This is only possible if the clinic
can identify the patients who are likely to be tardy for their appointment in advance. Given the
significance of early detection, numerous efforts have been taken to predict the patient-specific risk
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of late arrivals [4,10–12]. Evidence suggests both patient-level (insurance type, patient’s primary
language, and age) and visit-level (first-time patients, appointment time, day of the week) attributes to
be associated with late arrivals [4,10–12].

Nevertheless, most existing models for predicting late arrivals have adopted traditional methods
(different forms of regression analysis), limited predictor variables, and small samples. Moreover,
these models are evaluated only based on their predictive power and tested on a single clinic. In this
research, it is hypothesized that the use of machine learning (ML) algorithms and a large dataset with
a comprehensive set of predictors can capture the complex synergistic interaction of risk factors to
predict the patient-specific tardiness risk accurately. Two ambulatory care centers, an ear-nose-throat
(ENT) clinic, and a women’s health (WH) clinic, experiencing a high incidence of tardy arrivals, are
considered. Further, their retrospective electronic medical record (EMR) data are leveraged for model
building. Since each ML algorithm may differ in its training approach, the study aims to (i) conduct
a comparative analysis of four ML models (logistic regression, random forests, gradient boosting
machine, and artificial neural networks), with respect to predictive performance, computational time
and interpretability, and (ii) identify model-specific critical predictors for patient punctuality.

2. Materials and Methods

In this research, a systematic and structured approach is adopted for (i) pre-processing the EMR
data, (ii) designing the experiment for training different ML models, (iii) evaluating ML models,
and (iv) deploying a suitable model for informing the practitioners in advance (Figure 1).
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2.1. Data Collection and Pre-Processing

The data for this research are obtained from two different specialty clinics (ENT and WH) located
at a regional medical center in Pennsylvania, USA. For each clinic, the last two years of EMR data are
extracted upon obtaining approval from the institutional review board. During this period, the ENT
facility and WH clinic had 46,421 and 78,294 patient visits, respectively. Each record extracted includes
the following information:

• Patient characteristics—age, gender, race, marital status, insurance type, patient type (new vs.
return), medical record number (MRN), and zip code;

• Visit information—appointment duration, appointment time, appointment date, timestamps of
patient arrival time, treatment begin time, and check-out time.

In consultation with the clinical care team, 21 predictor variables are identified, where each
of them can be grouped into one of the four categories: patient-level (could change for every
patient), appointment-level (could differ for every visit), clinic-level (could vary for each clinic),
and environment-related (could fluctuate for every hour of the day), as shown in Table 1. Moreover,
the predictor variables employed can be a field extracted from the EMR (raw feature) or derived from
one or more fields available in the EMR (derived feature).

Table 1. Description of predictor variables.

Features Variable Type Source

Patient-related
• Age (in years) Continuous Raw
• Gender Categorical (Male, Female) Raw

• Marital Status Categorical (Single, Married, Divorced, Separated,
Widowed) Raw

• Race Categorical (African American, Asian, Caucasian, Other) Raw
• Visit Count Continuous Derived
• Insurance Group Categorical (Medicare, Medicaid, Private, Uninsured) Raw
• Patient Types Categorical (New, Return) Raw
• Commuting Distance (in miles) Continuous Derived
• Neighborhood SES Continuous Derived
Appointment-related
• Month of the Year Categorical (Jan, Feb, . . . , Dec) Raw
• Day of the Week Categorical (Mon, Tue, . . . , Fri) Raw
• Appointment Time Categorical (Morning, Afternoon) Raw
• Procedure Duration Categorical (Brief, Intermediate, Extended) Raw
• Before National Holiday Categorical (Yes, No) Derived
• After National Holiday Categorical (Yes, No) Derived
• Lateness History Continuous Derived
Clinic-related
• Resource Type Categorical (MD, Nurse, . . . .) Raw
• Visit Type Categorical (ENT, Audiology, . . . ) Raw
Environment-related
• Temperature (in oF) Continuous Derived
• Visibility (in miles) Continuous Derived
• Weather Condition Categorical (fog, light rain, normal, thunderstorms, snow) Derived

While the raw features are directly used in the prediction algorithm, the derived features are
pre-processed in multiple ways. The predictor variable “Visit Count”, which denotes the rolling
sum of the number of visits by a patient, is computed based on the MRN (a unique identifier for
each patient) extracted from the EMR. The “Commuting Distance” for each patient is obtained
by leveraging an application programming interface (API) for Google Maps, which provides the
driving distance between the patient’s and clinic’s zip codes. Another derived patient-related feature,
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neighborhood socioeconomic status (SES), is a composite score obtained by combining the normalized
value of the average household income and education level corresponding to the patient’s zip code.
The appointment-level derived feature “Lateness History”, a patient’s rolling history of late arrivals for
a given appointment, is determined by adding the number of times that patient (identified by MRN) was
tardy in the past. The other appointment-level derived feature indicates whether a visit is scheduled
before or after a national holiday. This information is determined by comparing the appointment date
to the list of national holidays in the USA. The hourly climate forecast (environment-related variables)
on the day of the appointment, namely, temperature, visibility, and weather conditions, are derived
using the API for a commercial weather service provider.

The outcome variable is dichotomous—on-time and late arrival. It is determined for each patient
using the EMR timestamp data. A patient is considered to be tardy if the difference between the actual
arrival time and scheduled check-in time is over five minutes and punctual otherwise. The reason
for allowing a five-minute grace period is that some patients may arrive on-time at the clinic but are
checked-in a few minutes late if the front desk staff is busy. Moreover, the clinic can accommodate
patients coming up to five minutes past the scheduled appointment time without incurring a substantial
disruption. The distribution of predictor variables that are common to both the clinics is shown in Table 2.

Table 2. Summary of predictor variables that are common for ear-nose-throat (ENT) and women’s
health (WH) clinics.

Predictors
ENT Clinic WH Clinic

On-time Arrival
(n = 36,191)

Late Arrival
(n = 10,230)

On-time Arrival
(n = 59,965)

Late Arrival
(n = 19,329)

Gender
• Female 45.93% 46.87% 100% 100%
• Male 54.07% 53.13% - -
Marital Status
• Divorced 4.42% 4.89% 5.53% 5.14%
• Married 21.63% 30.71% 60.39% 55.35%
• Separated 0.72% 0.81% 1.68% 2.06%
• Single 70.14% 59.42% 30.79% 36.38%
• Widowed 3.09% 4.17% 1.61% 1.07%
Race
• African American 6.06% 8.98% 4.87% 8.29%
• Asian 2.06% 2.15% 1.85% 2.46%
• Caucasian 80.04% 73.48% 83.49% 75.86%
• Other 11.84% 15.39% 9.79% 13.39%
Insurance Group
• Medicaid 31.13% 38.91% 25.31% 18.91%
• Medicare 22.68% 14.62% 4.75% 7.3%
• Private 44.54% 44.05% 68.08% 72.51%
• Uninsured 1.65% 2.42% 1.86% 1.28%
Holiday Event
• Before National Holiday 1.66% 1.86% 1.81% 1.66%
• After National Holiday 3.94% 3.52% 4.52% 4.41%
Patient Type
• New 27.74% 28.54% 19.07% 19.16%
• Return 72.26% 71.46% 80.93% 80.84%
Procedure Duration
• Brief 35.29% 32.58% 35.29% 32.58%
• Extended 9.69% 11.26% 9.69% 11.26%
• Intermediate 55.02% 56.16% 55.02% 56.16%



Int. J. Environ. Res. Public Health 2020, 17, 3703 5 of 15

Table 2. Cont.

Predictors
ENT Clinic WH Clinic

On-time Arrival
(n = 36,191)

Late Arrival
(n = 10,230)

On-time Arrival
(n = 59,965)

Late Arrival
(n = 19,329)

Appointment Day of Week
• Monday 20.44% 19.06% 20.46% 19.32%
• Tuesday 18.57% 17.14% 23.87% 24.26%
• Wednesday 22.652% 23.47% 16.15% 16.22%
• Thursday 21.67% 22.23% 21.14% 21.12%
• Friday 16.67% 18.1% 18.38% 19.08%
Appointment Time
• Afternoon 46.38% 40% 42.57% 38.47%
• Morning 53.62% 60% 57.43% 61.53%
Weather Conditions
• Fog 3.84% 3.77% 3.97% 3.93%
• Light Rain and Drizzle 5.8% 6.11% 6.15% 6.49%
• Normal 87.79% 87.49% 87.27% 86.92%
• Rain and Thunderstorms 1.33% 1.44% 1.33% 1.3%
• Snow 1.24% 1.19% 1.28% 1.36%
Continuous Variables
Age 35.24 ± 28.89 28.04 ± 26.88 34.16 ± 11.62 36.73 ± 13.73
Lateness History 0.07 ± 0.16 0.73 ± 0.3 0.61 ± 0.3 0.11 ± 0.18
Neighborhood SES 0.115 ± 0.35 0.1018 ± 0.36 0.1 ± 0.37 0.11 ± 0.35
Distance 29.42 ± 38 28.81 ± 36.49 19.9 ± 50.84 20.63 ± 44.54
Temperature 57.04 ± 19.7 58.06 ± 19.74 58.09 ± 19.69 57.6 ± 19.56
Visibility (MPH) 8.82 ± 2.54 8.86 ± 2.5 8.82 ± 2.52 8.81 ± 2.53

2.2. Predictive Modeling

The goal of any predictive model is to uncover the function that describes the relationship
between the features and outcome variable based on representative training examples (historical cases).
To prepare the data for predictive modeling and evaluation, they are randomly split into two parts:
training and testing. Subsequently, the 21 features and the corresponding outcome from the training
dataset are presented as examples to the ML model. Besides, to avoid the risk of overfitting (or learning
the noise), a k-fold cross-validation procedure is performed in the learning phase, where the training
dataset is divided into k subsets in which one subset is used for validation, and the remaining subsets
are used for learning the examples. The process is repeated until each of the subsets is used exactly once
for validation. Finally, the trained model, which has hypothesized a function between the predictors
and outcome, is used to predict the risk of late arrival only based on the features from the testing
dataset (unseen examples).

While the model building and evaluation procedure are consistent across different supervised
learning algorithms, each classification model may adopt a unique approach to learn the relationship
between the features and outcome, which, in turn, affects the predictive performance, time required
to train, and ability to explain the mapping function. Further, it is difficult to identify the most
appropriate algorithm for a given dataset. Therefore, in this research, a comparative analysis of four
popular ML algorithms that are diverse with respect to their training approach is conducted: logistic
regression (LR) [13], feed-forward artificial neural network with backpropagation learning (ANN) [14],
random forest (RF) [15], and stochastic gradient boosting machines (GBM) [16]. The hyperparameters
of the ML algorithms are tuned using a grid search method, which performs an exhaustive search
through a user-specified parameter space during training and returns the best parameter in that
space. Mainly, the reason for examining these four algorithms is as follows. The LR algorithm is
one of the most widely used algorithms for classification tasks in the medical domain as it is easy
to understand and performs well for linearly separable datasets [17–19]. Recently, ANN has also
played a significant role in medical decision support as it is routinely used to detect anomalies in
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clinical systems, obtain diagnostic/prognostic inferences, and gain insights on health outcomes [17,20].
However, ANN is sensitive to changes in the training data, which could lead to high variance in the
predictions [21]. Ensemble methods, which combine the predictions of multiple algorithms, are known
to reduce the variance and yield a superior predictive performance [22]. In particular, tree-ensembles
(GBM and RF) have consistently outperformed other ML algorithms in the literature [23,24].

2.2.1. Logistic Regression

LR is a statistical learning model that represents the binary outcome variable (i.e., on-time or late
arrivals) using a sigmoid function with a weighted linear combination of the predictor variables [13].
Thus, the predicted probability of a certain outcome (e.g., late arrival) can be expressed as shown in
Equation (1), where Xi are the independent variables (e.g., X1 = Age, X2 = Sex, . . . , X19 = Weather
Condition) and βi are the weights as determined by the maximum likelihood method.

P(Y = late arrival) =
e(β0+β1X1+β2X2+...+βNXN)

1 + e(β0+β1X1+β2X2+...+βNXN)
(1)

2.2.2. Feed-Forward Artificial Neural Networks with Backpropagation Learning

The artificial neural network [14] bases its algorithm on the biological neural network to learn the
relationship between predictors and an outcome. While there are different types of neural networks,
a feed-forward artificial neural network with backpropagation learning (ANN) is used in this research
as it is most suitable for the classification task under study. The ANN consists of three interconnected
layers (input, hidden, output), where each layer has a specified number of nodes. Each node (j) at
a given layer (l) is connected to a node (i) in the next layer by a connection weight (wij). Further,
each predictor corresponds to a node in the input layer. The ANN uses a forward and backward
pass as a learning mechanism. The forward pass is used to predict the outcome (Ŷ) from the input
variables through the hidden layer(s) by calculating the weighted sum of values incident at each node.
The activity or output at node i (oi) during the forward pass is calculated as shown in Equation (2),
where v j denotes the value of node j in the previous layer. After each iteration (k) of the forward pass,
a backward pass is performed to progressively alter (if required) the weights for the next iteration
(k + 1), such that the squared difference between the predicted and expected outcome is minimized
(Equation (3)). The weights for iteration, k + 1, is adjusted as shown in Equation (4), where ρ denotes
the learning rate. Both the forward and backward passes are repeated until the model is fully trained
(i.e., weights are optimized). The parameters for the ANN considered in this research are the number
of nodes in the hidden layer (H) and the learning rate (ρ).

oi =
1

1 + e−(w0+
∑

j wi jv j)
(2)

E =
(
Y − Ŷ

)2
(3)

wk+1
i j = wk

i j − ρ

(
∂E
∂wi j

)k

(4)

2.2.3. Tree-based Ensemble Methods

RF [15] and GBM [16] are decision-tree-based algorithms, which use an ensemble of classification
trees for predicting a categorical outcome. Unlike logistic regression, a classification tree is a
non-parametric method that recursively partitions data into two subsets based on a chosen independent
variable Xi with a spilt-point c (Xc

i ). The algorithm begins with a root node, where a binary partition
(M1 and M2) of the M training samples is performed based on the split-point of predictor Xi
(i.e., M1 = {X| Xi ≤ c} and M2 = {X| Xi > c}). To choose the best feature for partitioning at each iteration,
Gini gain (∆̂G

(
M, Xc

i

)
), a measure for evaluating the split of M samples based on Xc

i , is used
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(Equation (5)). Note that Ĝ(M) in Equation (5) is equivalent to 1 −
∑

j

(
p j

)2
, where p j denotes the

proportion of samples belonging to outcome class j ε {on-time arrival, late arrival} in M examples.

∆̂G
(
M, Xc

i

)
= Ĝ(M) −

|M1|

|M|
Ĝ(M1) −

|M2|

|M|
Ĝ(M2) (5)

The best split-point c for variable Xi is obtained using Equation (6), and the best feature for
splitting is then determined based on Equation (7).

∆̂G
max
i = max

c
∆̂G

(
M, Xc

i

)
(6)

Xi
∗ = X

argmax(∆̂G
max
i )

i = 1,2,...,N

(7)

Likewise, each new node is split based on a chosen feature {Xi}
N
i = 1, resulting in a tree-like structure.

The procedure is repeated until a stopping criterion is met (e.g., no change in Gini gain after splitting).
The RF algorithm builds T classification trees, where each tree only uses a bootstrapped subset of the

M training examples. However, unlike the traditional decision tree algorithm, the RF algorithm chooses
the best feature split among the randomly selected m (< N) predictors at each node. Upon training,
the final prediction is the majority vote of all T classification trees. In GBM, a shallow (weak)
classification tree is fit at each iteration on a random subsample of the training data (selected without
replacement). The depth of each classification tree is controlled by two parameters: number of splits
in each tree (S) and minimum samples required in a terminal node (R). The GBM algorithm aims
to achieve incremental improvement in subsequent iterations by prioritizing training samples that
were incorrectly classified in the previous iterations. A learning rate (ρ) is specified to emphasize the
importance of rectifying the errors of the prior models. Finally, a weighted vote of all the classification
trees is used to predict the outcome category. Thus, GBM adopts an additive training approach by
sequentially fitting T classification trees.

2.3. Model Evaluation

The ML models are evaluated based on three criteria: predictive performance, computational
complexity, and interpretability. The area under the receiver operating characteristic (AUC) value,
which ranges between 0 and 1, is used to assess the predictive performance. An AUC score of 1 indicates
a perfect classification performance, while an AUC score of 0.5 represents a model that is equivalent to
a random guess. Typically, a classifier achieving an AUC value of 0.8 or higher is regarded to be a
good model [19,25]. Besides, the statistical significance between the AUC values of ML algorithms is
established using the DeLong’s method [26]. Computational complexity is estimated based on the
time required to train an ML algorithm. Finally, interpretability is evaluated based on an algorithm’s
ability to identify the key predictors and explain its influence on patient punctuality.

3. Results

The ENT facility had 22% of late-arriving patients, while the WH clinic had a comparatively higher
incidence of unpunctual arrivals (32.8%). About 70% of EMR data (32,495 ENT visits and 54,806 WH
visits) is used for training the ML algorithms using a 10-fold cross-validation procedure. The analysis
is performed with R version 3.2.3 using the caret package for ML model development/analysis [27]
and the pROC package for comparing the AUC values using Delong’s method [28]. All the analyses
were executed on a computer running the Intel Core i7 4.20 GHz processor, Windows 10 operating
system, and 64 GB RAM.

The ML algorithm’s prediction on the cross-validation and testing dataset is used to compute
the AUC values and appraise its performance. It can be observed from Figure 2 that all the ML
algorithms have an average cross-validated AUC value of 0.8 or above, indicating good discriminating
ability. GBM produced the best result with an average cross-validated AUC value of 0.923 and
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0.885 for ENT and WH clinics, respectively. Further, RF is the next best model that demonstrates
superior performance. While GBM yields a significantly better AUC value than RF for the ENT
clinic (p-value = 0.03), this metric is not significantly different for the WH clinic (p-value = 0.20).
The predictive performance of GBM is also significantly higher than the ANN for the ENT and WH
clinics. On the other hand, LR resulted in the least average AUC value on the validation dataset
(AUCENT = 0.823; AUCWH = 0.810). Besides, DeLong’s method indicated the AUC value of LR to be
significantly lower than those of GBM, RF, and ANN for both the clinics (p-value < 0.05). For each ML
algorithm under study, Table 3 provides the AUC values obtained using the testing dataset. The ML
algorithms’ AUC values on the testing dataset are not significantly different from their cross-validation
performance, thereby suggesting that the model is generalizable and not overfitting on the training
data. Based on the results obtained from the hold-out sample and testing dataset, GBM is dominant in
accurately classifying patients as punctual and unpunctual.
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Table 3. AUC value based on testing datasets for the ENT and WH clinics.

ML Algorithm ENT Clinic WH Clinic

Logistic Regression 0.828 0.781
Random Forests 0.868 0.849

Gradient Boosting Machines 0.904 0.863
Artificial Neural Network 0.861 0.837

The performance of the ML algorithms with respect to computational complexity is presented in
Table 4, where the CPU times required to build each model on the training dataset for the ENT and
WH clinics are summarized. For both clinics, LR is the fastest and achieves a CPU time that is several
orders of magnitude smaller than the other three ML algorithms under study. GBM is the distant
second with respect to computational complexity for both the clinics and is closely followed by ANN.
RF performed the worst with regard to training time as it required 31.4% and 34.7% more CPU time
than ANN for the ENT and WH clinics, respectively. However, the runtimes of the non-linear ML
algorithms (RF, GBM, and ANN) are still tractable as they required less than 90 min for training, which
is still practical for real-life applications.
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Table 4. Training time of different ML algorithms.

ML Algorithm Computational Time (in seconds)

ENT Clinic WH Clinic

Logistic Regression 8.55 13.70
Random Forests 1447.49 4392.15

Gradient Boosting Machines 1001.32 3082.68
Artificial Neural Network 1101.53 3260.67

The third criterion for the model evaluation is interpretability. LR provides the highest
interpretability as it identifies the key predictors (p-value < 0.05) and quantifies its impact on
patient lateness using odds ratio (OR) (see Tables 5 and 6). Among the continuous variables, lateness
history has the highest impact on tardy arrivals for both the clinics under study. Besides, the number
of clinic visits, marital status, weather conditions, and appointment time (morning vs. afternoon)
are significantly associated with late arrivals. On the other hand, appointment duration is the only
variable that has a contrasting impact on the two clinics. Compared with brief appointments (typically
scheduled for 15 min), intermediate appointments are likely to be punctual for ENT clinics but late for
WH clinics. It can also be observed that some of the significant variables are non-overlapping among
the two clinics under study.

Table 5. Significant predictors of the ENT clinic and their odds ratios in the logistic regression model.

Variable (Reference) Odds Ratio Odds Ratio 95% CI p-Value

Visit 1.08 (1.07, 1.09) < 0.0001
Lateness History 19.24 (15.48, 23.9) < 0.0001
Visibility 0.97 (0.95, 0.99) 0.0139
Marital Status (Married)
• Divorced 0.78 (0.61, 0.98) 0.0342
• Single 0.86 (0.72, 1.02) 0.0460
After National Holiday 0.78 (0.6, 1.01) 0.0484
Resource Type (MD)
• Audiologist Assistant 2.75 (1.89, 4.01) 0.0000
• Audiologist 2.28 (1.52, 3.43) 0.0001
• Other 2.41 (1.76, 3.3) 0.0000
• Physician Assistant 1.17 (0.99, 1.39) 0.0480
• Speech Pathologist 1.80 (1.32, 2.46) 0.0002
Visit Type (Pediatric Surgery)
• Audiology 0.65 (0.47, 0.9) 0.0093
• ENT 0.76 (0.61, 0.95) 0.0171
Procedure Duration (Brief)
• Extended 0.57 (0.44, 0.73) 0.0000
• Intermediate 0.80 (0.69, 0.93) 0.0037
Appointment Time (Morning)
• Afternoon 0.62 (0.56, 0.68) < 0.0001
Appointment Weekday (Monday)
• Thursday 0.84 (0.72, 0.98) 0.0225
Weather Conditions (Normal)
• Thunderstorm 1.43 (0.96, 2.12) 0.0358
• Snow 1.59 (1, 2.53) 0.0483
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Table 6. Significant predictors of the WH clinic and their odds ratios in the logistic regression model.

Variable (Reference) Odds Ratio Odds Ratio 95% CI p-Value

Visit 1.04 (1.03, 1.05) < 0.0001
Lateness History 4.81 (4.21, 5.49) < 0.0001
Age 0.99 (0.98, 1.00) 0.0002
Marital Status (Married)
• Single 0.93 (0.86, 0.99) 0.0283
Resource Type (MD)
• Nurse 1.96 (1.21, 3.18) 0.0060
Visit Type (Gynecology)
• Obstetrics 1.28 (1.18, 1.4) < 0.0001
• Gynecologic Surgery 1.32 (1.17, 1.48) < 0.0001
• Urogynecology 1.88 (0.90, 3.92) 0.0412
• Maternal-fetal Medicine 1.37 (1.19, 1.59) < 0.0001
• Endocrinology 1.25 (1.08, 1.44) 0.0023
• Radiology 1.61 (1.42, 1.81) < 0.0001
Patient Type (New)
• Return 1.41 (1.25, 1.60) < 0.0001
Appointment Duration (Brief)
• Intermediate 1.18 (1.08, 1.29) 0.0002
Appointment Time (Morning)
• Afternoon 0.8 (0.75, 0.85) < 0.0001
Weather Conditions (Normal)
• Thunderstorm 1.16 (1.02, 1.31) 0.0235

While it is cumbersome to quantify the influence of each predictor on patient punctuality using
the RF, GBM, or ANN algorithms, it is possible to estimate their relative importance in predicting
the outcome class. Figure 3 visually illustrates the relative importance of the top five variables in
predicting delayed arrivals in the ENT and WH clinics, respectively. The independent variables (x-axis)
are listed in the decreasing order of their importance, while the y-axis shows the relative importance
of each variable. Lateness history appears to be a powerful predictor of patient punctuality in both
the clinics as it is the most crucial variable for all the ML algorithms except one, in which it is ranked
second. Likewise, patient’s age and afternoon appointments are the next most important features
since they are consistently rated among the top five variables for both the clinics. Moreover, it is also
interesting to note that predictors such as forecasted temperature and distance were not significant
for the LR algorithm but are ranked as critical predictors by at least two of the three non-linear ML
algorithms. However, certain variables were found to be of high importance by only one of the three
non-linear ML algorithms (e.g., neighborhood SES by GBM).
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4. Discussion

Recent studies have leveraged ML models to enable patient-specific predictions and effective
delivery of care [19,29–32]. While most of these prior studies focused on estimating the disease risk
of individuals [33–35], some researchers have also focused on predicting clinical uncertainties such
as no-shows and demand [36,37]. This study focuses on the latter category and seeks to predict the
patient-specific risk of late arrivals at ambulatory care centers using ML algorithms. As opposed to
previous studies on late arrivals, this research is among the first to consider unique features pertaining
to the patient, appointment, and environment. Besides, the risk prediction models developed are
evaluated across different specialties, unlike the traditional approach of relying on a single clinic.
Overall, the analysis indicated that the information available in the EMR is sufficient to predict patient
punctuality with high accuracy using advanced ML models. Therefore, hospitals and clinics can obtain
valuable insights without spending substantial money on resources or establishing a new mechanism
to collect the required data. Concordant with other study findings, ensemble ML algorithms (GBM
and RF) are found to have a significantly better predictive performance for both the clinics considered
in this research [19,24,38]. Besides, the relationship between the predictors and outcome appears to
be non-linear as the linear mapping function of LR resulted in an inferior predictive performance as
opposed to the ML algorithms capable of handling non-linearity (GBM, RF, and ANN). Nevertheless,
a single ML algorithm could not perform the best with respect to all the three types of evaluation
measures. While a linear algorithm such as LR is ideal for faster training and interpretable predictions,
ML models capable of handling a non-linear decision boundary are best-suited to optimize the
predictive performance. Therefore, the decision-maker has to make a trade-off between these criteria.

Very few studies have focused on identifying factors associated with patient unpunctuality [10].
In contrast, this research identified the main determinants of patient punctuality that are specific to
each clinic and the ML algorithm. Consistent with the literature, age and appointment time were found
to have a significant impact on late arrival [5,10]. Additionally, “Lateness History” was identified as
the most critical variable for both the clinics. Contrary to the prior research, gender did not have a
substantial influence in predicting late arrivals at the two clinics [5]. Besides, weather conditions and
appointment day of the week are significantly associated with late arrivals for LR but did not affect
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the prediction accuracy for the other three ML algorithms. These findings would allow the clinics
to strategically focus on critical predictors that can improve on-time arrivals instead of analyzing
the exhaustive list of variables available in the EMR. As a result, it can potentially save time and
unproductive labor in the long-run. Moreover, these variables can also help the administrators
to determine the key performance metrics that must be included in the performance monitoring
healthcare dashboards. For example, if morning appointments are likely to be late, then the percentage
of late arrivals during that period would be a suitable metric to monitor and improve over time.
Further, the clinic can adopt strategies to avoid late arrivals by understanding the key determinants.
For instance, if thunderstorms are expected to increase late arrivals, then the clinic could consider
different options to mitigate delays such as providing transportation assistance (e.g., information on
local reliable transportation options, facilitating ride-share services), home healthcare, or virtual care
(telehealth service).

An ML algorithm with good predictive performance would provide tremendous value to the
clinic and healthcare practitioner as they can leverage them for targeted interventions and efficient
planning [39,40]. In particular, instead of adopting appointment reminder strategies (e.g., phone calls,
text messages) for all scheduled patients, the staff can only contact patients who are predicted to arrive
late. Besides, the ML model can be used to improve on-time arrivals by evaluating the patient-specific
risk of late arrival for all possible combinations of appointment day and time, and scheduling the
patient to a slot in which he/she is likely to be on-time. Another approach to managing tardy arrivals is
to integrate the patient specific-risk of late arrival into the appointment system design. For example,
given that a patient is likely to arrive late, schedulers can strategically book the patient by overlapping
his/her appointment time with a patient who is expected to come on time so that valuable clinic
resources, such as doctors, are effectively utilized. For example, if a patient who is likely to be on-time
is scheduled from 9 a.m. to 9:30 a.m., and if a patient who is expected to be late by five or more minutes
calls for an appointment, then that patient can be scheduled for 9:25 a.m. instead of 9:30 a.m. to
compensate for a delayed arrival. Note that the best overlapping position should be established based
on extensive analytical and simulation experiments.

The study results and findings successfully demonstrate the ability of the ML model to accurately
predict tardy arrivals well in advance, thereby indicating its suitability as a useful clinical decision
support system (CDSS) for managing and mitigating patient unpunctuality. However, this research
also has some limitations. Even though the data from two different clinics are utilized to develop the
predictive model and analyze its results, the findings are still not generalizable across all ambulatory care
centers. Therefore, future work should consider many other clinic types to identify the determinants
that are common across all ambulatory settings and factors that are clinic-specific. Second, a patient is
classified to be late if he/she arrives five minutes beyond the scheduled appointment time. While this
cut-off is chosen based on the clinics under consideration, its value could change for other clinics.
Certain clinics enforce a strict policy where a patient is considered to be late if he/she arrives beyond the
scheduled appointment time [41,42]. In contrast, some clinics provide a grace period of 15 min before
categorizing a patient to be late [43]. Therefore, the variable importance and predictive performance of
the ML algorithm could change depending on the cut-off value. However, in this research, the benefit
of using an ML algorithm for predicting late arrivals in the chosen clinic is established, and models
developed for other clinics could adopt the proposed framework and use a cut-off that is suitable for
their clinical setting. Third, the ML models developed in this research do not consider the possibility
of patient no-show since it was rarely observed in the clinics under study. However, some clinics may
experience substantial cases of both no-show and late arrivals [44]. In such situations, the ML models
can be easily extended to incorporate three outcome classes: on-time arrival, late arrival, and no-show.

5. Conclusions

Clinics typically overbook appointments and operate close to their maximum capacity to handle
the soaring demand for ambulatory services [45,46]. Under such circumstances, even a few late-arriving
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patients could disrupt the schedule and adversely affect the quality of care, doctor utilization, and patient
satisfaction [47]. Therefore, in this research, four ML models (LR, RF, GBM, and ANN) to predict late
arrivals are developed, and their evaluation supports the following conclusions. First, ML algorithms
can enable a clinic to accurately detect late arrivals in advance using the information stored in
the EMR. Second, tree-based ensembles (GBM and RF) consistently achieve a superior predictive
performance, but a single ML algorithm could not perform best with respect to accuracy, training time,
and interpretability. Third, the key predictors necessary to predict tardy arrivals are found to be
model-specific. Fourth, late arrivals are likely to be affected by patient-, visit- and environmental-level
predictors. Clinics can leverage the generic systematic approach presented in this research to develop
a decision support system for targeted intervention and efficient planning, which can, in turn, improve
the quality of care, resource utilization, and patient satisfaction. Moreover, the insights drawn from
the analysis will enable healthcare administrators to manage and mitigate late arrivals. Finally,
future research can also leverage the patient-specific lateness probability obtained from the ML model
to design effective scheduling strategies.
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