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Abstract: 
Macrolide resistant Streptococcus pneumoniae infections have limited treatment options. While some resistance mechanisms are well 
established, ample understanding is limited by incomplete genome annotation (hypothetical genes). Some hypothetical genes encode a 
domain of unknown function (DUF), a conserved protein domain with uncharacterized function. Here, we identify and confirm macrolide 
resistance genes. We further explore DUFs from macrolide resistance hypothetical genes to prioritize them for experimental 
characterization. We found gene similarities between two macrolide resistance gene signatures from untreated and either erythromycin- or 
spiramycin-treated resistant Streptococcus pneumoniae. We confirmed the association of these gene sets with macrolide resistance through 
comparison to gene signatures from (i) second erythromycin resistant Streptococcus pneumoniae strain, and (ii) erythromycin-treated 
sensitive Streptococcus pneumoniae strain, both from non-overlapping datasets. Examination into which cellular processes these macrolide 
resistance genes belong found connections to known resistance mechanisms such as increased amino acid biosynthesis and efflux genes, 
and decreased ribonucleotide biosynthesis genes, highlighting the predictive ability of the method used. 22 genes had hypothetical 
annotation with 10 DUFs associated with macrolide resistance. DUF characterization could uncover novel co-therapies that restore 
macrolide efficacy across multiple macrolide resistant species. Application of the methods to other antibiotic resistances could 
revolutionize treatment of resistant infections. 
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Background: 
Streptococcus pneumoniae (S. pneumoniae) infections cause 
approximately 1.2 million life-threatening illnesses resulting in 
7,000 deaths annually including bacterial upper respiratory 
infections and pneumonia and meningitis, and bloodstream, ear, 
and sinus infections [1, 2]. Macrolide antibiotics (i.e. erythromycin 
and spiramycin) are first line treatments for S. pneumoniae infections 
[3] that function by binding reversibly to the 50S bacterial 
ribosomal subunit, preventing protein synthesis (translation). 
Unfortunately, full macrolide resistance in S. pneumoniae, defined 
clinically by a minimum inhibitory concentration (MIC) greater 
than 256 mg/mL, is increasingly common [3] with approximately 
30% of severe S. pneumoniae cases being fully resistant to one or 

more clinically relevant antibiotics [1]. This makes antibiotic-
resistant S. pneumoniae a serious public health threat [1]. 
 
Several macrolide resistance mechanisms have been reported [2]. 
Known macrolide resistance mechanisms include (1) ribosomal 
modification, for example via the ermB gene which is responsible 
for 50S subunit methylation, (2) efflux proteins encoded by major 
facilitator super-family ormef (E/A), mel, and msrD genes, and (3) 
ribosomal nucleic acid mutations, which can be either a simple 
point mutation causing a single amino acid change, such as lysine-
63-glutamaine in the ribosome rplD gene, a deletion of three amino 
acids (Met-82, Lys-83, and Glu-84) from rplV, or a variety of 
additional L4 and L22 ribosomal mutations [2-4]. Dual macrolide 
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resistance genotypes our understanding of direct resistance 
mechanisms further, some macrolide resistant isolates use one of 
these mechanisms while others use multiple mechanisms with no 
clear connection to level of resistance [2]. Therefore, despite a good 
understanding of various direct macrolide resistance mechanisms, 
co-therapies to overcome macrolide resistance have yet to be 
established. 
 
Mutant library studies have revealed large numbers of genes that 
both directly, as discussed prior, and indirectly influence drug 
resistance with many of these genes not clearly involved in known 
drug-resistant mechanisms [5]. Indirect mechanisms associated 
with resistance can be metabolic, such as decreased Kreb’s (i.e. 
TCA) cycle in vancomycin intermediate resistant Staphylococcus 
aureus [6]. One way to uncover genes functioning indirectly with 
antibiotic resistance mechanisms is to examine gene expression and 
identify genes with markedly different expression (differentially 
expressed) between two conditions for further examination (i.e. 
hypothesis generation). This approach has been used to 
successfully predict antibiotic resistance in some bacterial 
pathogens such as Escherichia coli [5], but its application to other 
organisms like S. pneumoniae has been slow. Identifying 
differentially expressed genes associated with antibiotic resistance 
is a first step in fully elucidating the interaction between direct and 
indirect drug-resistance mechanisms. 
 
Incomplete genome annotation substantially limits gene expression 
analysis [7], and is common for bacterial genomes [4, 8] with up to 
50% of some bacterial genomes lacking annotation [9]. A 
hypothetical gene is defined by its sequence alone, having little to 
no experimental evidence of its function, and lacking homology to 
genes with known function [4, 9]. There are two types of 
hypothetical proteins: (i) uncharacterized protein families that lack 
domain information and are not usually conserved across 
phylogenetic lineages, and (ii) domains of unknown function 
(DUFs), functionally uncharacterized protein sections that have 
been shown to play essential roles in bacterial processes [9, 10]. 
Over 20% of protein domains have DUFs annotations with around 
2,700 DUFs found in bacteria and more than 800 DUFs shared 
between the domains of life [10]. Identifying hypothetical genes 
associated with antibiotic resistance and prioritizing them for 
experimental characterization, such as structural determination [7], 
could lead to the development of life-saving co-therapies to 
preclude or overcome antibiotic resistance. 
 
In this paper, we identify and validate genes associated with 
macrolide resistance by comparing therapeutic response gene 
expression signatures (list of genes ranked from high to low 
differential expression between untreated and macrolide treated 
samples) in S. pneumonia (Figure 1). We noticed these genes were 
associated with known mechanisms of macrolide resistance, such as 
efflux, showing our approach’s ability to identify potential co-
therapies to overcome macrolide resistance. However, as 

anticipated, 22 out of 160 (13.75%) macrolide resistance genes 
identified had hypothetical annotation. To address this, we 
examined hypothetical genes for DUFs and propose prioritized 
gene targets related to macrolide resistance for immediate 
experimental characterization. Through we introduce this approach 
while exploring erythromycin resistant S. pneumoniae, 
recommendations provided by applying our approach to other 
antibiotic resistant bacterial infections can reduce development 
costs and time to availability for potential new co-therapy targets, 
substantially renovating the way antibiotic resistant infections are 
treated clinically. 
 
Methodology: 
Gene expression datasets 
Macrolide resistant S. pneumoniae samples used in this study came 
from the Gene Expression Omnibus (GEO) accession GSE54176, 
which included samples of untreated (n=6) and macrolide treated 
(1.2mg/L erythromycin n=6, 0.1mg/L spiramycin n=3) macrolide 
resistant (GA17547, n=2/condition, 6 samples total, and XZ7022, 2 
for erythromycin and vehicle, 1 for spiramycin, 5 samples total) and 
sensitive (XZ8009, n=2 for erythromycin and vehicle, 4 samples 
total) strains [3, 11, 12]. Gene expression data was used as provided 
by GEO without alteration. 
 
Identification and validation of macrolide resistance genes 
Using these expression data, we created erythromycin and 
spiramycin gene signatures (ranked by T-score) for macrolide 
resistant GA17547 strain (Figure 1). We used the erythromycin 
signature as reference and 250 most over- or under-expressed 
spiramycin genes as query gene sets for Gene Set Enrichment 
Analysis (GSEA), which calculates a running summation 
(enrichment score) based on the T-score of matches (hits) between 
the reference signature and query gene sets [13]. From this, we can 
(i) estimate how similar these signatures are (significance) by 
calculating a normalized enrichment score (NES) and p-value from 
1000 gene permutations, and (ii) identify genes that contribute to 
achieving maximum enrichment score (i.e. leading-edge genes) 
associated with macrolide resistance. Leading-edge (93 over- and 67 
under-expressed, Table 1 and Table 2, respectively) genes are used 
for further analysis. 
 
To confirm that identified leading-edge genes are related to 
resistance, we (i) used leading-edge genes as query gene sets for 
GSEA with a T-ranked erythromycin response signature from a 
macrolide sensitive strain (XZ8009) as reference, and (ii) utilized 
Principal Component Analysis (PCA) and Leave One Out Cross 
Validation (LOOCV) to examine expression of leading-edge genes 
in another macrolide resistant strain, XZ7022 (Figure 1). PCA is an 
unsupervised dimensionality reduction machine-learning 
technique that visualizes high-dimensional datasets (in our case 67 
and 93 dimensions) in 2D space. PCA considers all samples of high 
dimensional and converts them into principal components, a 
smaller number of uncorrelated variables. When principal 
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components are plotted in 2D space, variation between samples is 
observed as separation along principal components. Alternatively, 
LOOCV will set aside each sample individually (i.e. test set) and 
calculates a multiple linear regression equation from the remaining 
samples (i.e. training set). The resulting equation is used to predict 
the treatment condition of the test set sample. This process is 
repeated until all samples are left out and accuracy determined 
from the results.  
 
Functional association and hypothetical gene identification from macrolide 
resistance genes  
To identify cellular processes associated with our leading-edge 
genes, we utilized the Panther search feature [14] at the Gene 

Ontology (GO) knowledgebase [15, 16], accessed October 17, 2018 
(Figure 1). Panther calculates a p-value using the Fisher’s Exact Test 
for each user-inputted gene set compared to established gene sets 
in the GO knowledgebase. For this comparison, we converted each 
leading-edge gene’s locus tag provided by GEO to a gene symbol. 
To do this, we queried the Protein database from the National 
Center for Biotechnology Information (NCBI) for each locus tag and 
collected gene symbols from the connected Conserved Domains 
Database [17]. If a locus tag did not have domains in the Conserved 
Domains Database, we verified its hypothetical status by examining 
homologs identified via Basic Local Alignment Search Tool Protein 
(BLASTP) [18]. Symbols for all leading-edge genes without 
exception were included in GO analysis. 

 
Figure 1:  Schematic representation of study approach. Signatures (ranked list of genes from high to low expression) are created by ranking 
genes in expression dataset by T-score calculated by comparing untreated and macrolide-treated (either erythromycin or spiramycin) 
samples collected during mid-log phase of growth. To identify macrolide resistance genes, the erythromycin signature from erythromycin 
resistant S. pneumoniae strain GA17547 was used as reference and the top and bottom 250 genes from the GA17547 spiramycin signature 
were used as query gene sets (unranked list of genes with biological relevance) for Gene Set Enrichment Analysis (GSEA) comparison. 
Gene matches (hits) between the reference signature and query gene set being compared that contribute most to are grouped together as a 
leading-edge gene set. Leading-edge gene sets were then used (i) as query gene sets for GSEA comparison against a erythromycin gene 
signature from erythromycin sensitive strain XZ8009 (reference), (ii) to select genes for principal component analysis and leave one out 
cross validation on erythromycin resistant strain XZ7022, and (iii) for functional analysis by collecting gene symbols, descriptions, and 
protein domain information from National Center for Biotechnology Information (NCBI) databases then using Gene Ontology to assess 
lists for overrepresentation to known biological processes gene sets and prioritizing genes without symbols (hypothetical genes) by domain 
of unknown function detection. 
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Discussion: 
Similarities between erythromycin and spiramycin signatures reveal genes 
associated with macrolide resistance 
To identify genes associated with macrolide resistance, we 
compared erythromycin and spiramycin gene expression 
signatures with the idea that genes with similar differential 
expression when erythromycin resistant S. pneumoniaeis treated 
with different macrolides are associated with macrolide resistance. 
We observed a statistically significant similarity between 
erythromycin and spiramycin signatures (p<0.22, Figure 2a). Of the 
250 most over- and under-expressed genes from the spiramycin 
signature used as query gene sets for comparison to the 
erythromycin signature, 93 over- and 67 under-expressed genes 

were identified as contributing most to achieving maximum 
enrichment score (i.e. leading-edge, Table 1 and Table 2, 
respectively). We then used each leading-edge gene set as query for 
GSEA against an erythromycin response signature from a 
macrolide sensitive S. pneumoniae strain with the hypothesis that 
these genes would not be differentially expressed in response to 
macrolide treatment. We observed a relatively random distribution 
of leading-edge genes across the macrolide response signature 
(p>0.900, Figure 2b), supporting their role in resistance rather than 
their expression changing as a response to treatment. These genes 
may contribute to macrolide resistance and become valuable 
reverse macrolide resistance therapeutic targets. 

 
Figure 2: Similarities detected between erythromycin (reference) and spiramycin (spira, query gene sets) signatures from an erythromycin 
resistant S. pneumoniae strain, revealing leading-edge genes. (a) Differential expression of leading-edge genes (query gene sets) was not a 
response erythromycin treatment as seen by comparison to a erythromycin signature from a macrolide sensitive S. pneumoniae strain 
(reference). (b) These findings suggest identified leading-edge genes are associated with macrolide resistance rather than response to 
macrolide treatment. 
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Table 1: Over-expressed leading-edge genes 
Functional Categories1 Locus tag Gene 

symbol 
Gene description Size  

(amino 
acids) 

SPAR46_1029 dapA dihydrodipicolinate synthase 311 

SPAR46_1028 asd aspartate-semialdehyde dehydrogenase 358 

SPAR46_1697 alr alanine racemase 367 

SPAR46_0936 proC pyrroline-5-carboxylate reductase 265 

SPAR46_0934 proB glutamate 5-kinase 369 

SPAR46_0842 ilvE branched-chain amino acid aminotransferase 340 

Alpha-amino acid biosynthetic 
process genes 
(7.5%) 

SPAR46_1037 glyA serine hydroxymethyltransferase family protein 418 

SPAR46_2172 pstC phosphate ABC transporter, permease protein 287 

SPAR46_0811 glnQ ABC transporter family protein 240 

SPAR46_1501 glnQ ABC transporter family protein 209 

SPAR46_1502 hisM ABC transporter protein 213 

SPAR46_2048 yadH ABC-2 type transporter family protein 195 

SPAR46_1653 macA ABC transporter family protein – macrolide resistance 171 

ABC transporter genes (7.5%) 

SPAR46_1352 mdlB ABC transporter transmembrane region family protein – 
multi-drug resistance 

582 

SPAR46_0355 rlmL methyltransferase small domain protein 385 

SPAR46_0253 rlmL acetyltransferase family  231 

SPAR46_0980 mdtG major facilitator superfamily  399 

Efflux genes (4.3%) 

SPAR46_1610 MFS1 major facilitator superfamily  383 

SPAR46_1772 secY2 accessory Sec system translocase SecY2 405 

SPAR46_0224 secY preprotein translocase, SecY subunit 436 

SPAR46_1562 fieF cation diffusion facilitator transporter family  367 

SPAR46_0733 livM branched-chain amino acid transport system / permease 
component family  

318 

SPAR46_0835 yufQ branched-chain amino acid transport system / permease 
component family  

272 

SPAR46_0162 metP binding--dependent transport system inner membrane 
component family  

230 

SPAR46_1922 dppC binding--dependent transport system inner membrane 
component family  

308 

SPAR46_0311 manZ PTS system mannose/fructose/sorbose IID component 
family  

272 

Miscellaneous transporter genes 
(9.6%) 

SPAR46_1888 pnuC nicotinamide mononucleotide transporter 268 

SPAR46_0331 mpa1 polysaccharide export, MPA1 family  230 

SPAR46_0349 oppA bacterial extracellular solute-binding subunit, 5 middle 
family  

660 

Exported product genes (3.3%) 

SPAR46_1389 hisJ bacterial extracellular solute-binding subunit, 3 family  271 

SPAR46_0205 rplD 50S ribosomal protein L4 207 Translation process genes (8.6%) 

SPAR46_0207 rplB ribosomal protein L2 277 
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SPAR46_0217 rpsN ribosomal S14p/S29e family protein 89 

SPAR46_0218 rpsH ribosomal S8 family protein 132 

SPAR46_0532 infB translation initiation factor IF-2 624 

SPAR46_1609 truA tRNA pseudouridine synthase A 249 

SPAR46_1740 fmt methionyl-tRNA formyltransferase 311 

 

SPAR46_1799 prmA ribosomal protein L11 methyltransferase 316 

SPAR46_2127 matE matE family protein 260 

SPAR46_2128 matE matE family protein 166 

SPAR46_1311 crcB crcB-like family protein 42 

SPAR46_1312 crcB crcB-like family protein 124 

SPAR46_1350 ssnA amidohydrolase family protein 419 

SPAR46_2182 ykuR amidohydrolase family protein 376 

SPAR46_1183 yigB HAD hydrolase, IA, variant 1 family protein 237 

Genes with duplicate 
descriptions (8.6%) 

SPAR46_2126 ysbA HAD hydrolase, IA, variant 1 family protein 206 

SPAR46_0591 rnjA RNA-metabolizing metallo-beta-lactamase family protein 553 

SPAR46_1277 topA DNA topoisomerase I 648 

SPAR46_2293 ctsR transcriptional regulator CtsR 152 

SPAR46_0151 mutR transcriptional activator, Rgg/GadR/MutR family 287 

SPAR46_1018 His histidine triad domain protein 189 

SPAR46_2342 yesM histidine kinase-, DNA gyrase B-, and HSP90-like ATPase 
family protein 

441 

SPAR46_1254 zwf glucose-6-phosphate dehydrogenase 495 

SPAR46_1065 amyA alpha amylase, catalytic domain protein 579 

SPAR46_0033 cynT carbonic anhydrase family protein 165 

SPAR46_1608 thiD phosphomethylpyrimidine kinase family protein 87 

SPAR46_0592 frmB phospholipase/carboxylesterase family protein 259 

SPAR46_0524 cotS phosphotransferase enzyme family protein 243 

SPAR46_1778 rfaJ glycosyl transferase 8 family protein 315 

SPAR46_1173 aceF 2-oxoacid dehydrogenases acyltransferase family protein 347 

SPAR46_0408 fabH 3-oxoacyl-[acyl-carrier-] synthase III family protein 324 

SPAR46_1564 pcnB poly A polymerase head domain protein 394 

SPAR46_0378 bre phage integrase family protein 101 

SPAR46_0385 cvpA colicin V production family protein 182 

SPAR46_1102 cgtA obg family GTPase CgtA 436 

SPAR46_0982 rnr ribonuclease R 784 

SPAR46_1741 priA primosomal protein N 798 

SPAR46_2124 marR marR family protein 141 

Miscellaneous leading-edge 
genes (35.5%) 

SPAR46_0264 ssuD luciferase-like monooxygenase family protein 349 
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SPAR46_0285 ydiL CAAX amino terminal protease self- immunity family 235 

SPAR46_0511 pncU bacteriocin-type signal sequence domain protein 82 

SPAR46_1993 cinA competence/damage-inducible CinA 418 

SPAR46_2180 glpG rhomboid family protein 225 

SPAR46_2181 fau1 5-formyltetrahydrofolate cyclo-ligase 179 

SPAR46_2335 yhgE yhgE/Pip C-terminal domain protein 104 

SPAR46_0953 istB istB-like ATP binding family protein 322 

SPAR46_0983 smpB ssrA-binding protein 155 

SPAR46_1275 cutC cutC family protein 210 

 

SPAR46_1300 lemA lemA family protein 186 

SPAR46_0361 COG5263 cell wall binding repeat family protein 332 

SPAR46_1800 NUDIX NUDIX domain protein 142 

SPAR46_0330 ywqE PHP domain protein 243 

SPAR46_0034 prsW putative membrane protein 219 

SPAR46_2130 gcs2  hypothetical protein 425 

SPAR46_2110 comGF hypothetical protein 153 

SPAR46_0951 cvfB hypothetical protein 284 

Genes needing improved 
description 
(8.6%) 

SPAR46_1607 polY  hypothetical protein 81 

SPAR46_0844 HP hypothetical protein – DUF969 104 

SPAR46_0846 HP hypothetical protein– DUF979 307 

SPAR46_1280 HP hypothetical protein – DUF389 145 

SPAR46_1604 HP hypothetical protein – no domain information 99 

SPAR46_1486 HP hypothetical protein – no domain information 40 

Hypothetical genes (6.5%) 

SPAR46_0613 HP hypothetical protein – no domain information 86 

1Percentages represent portion of leading edge in that functional category 
 
Table 2: Under-expressed leading-edge genes 
Functional Categories1 Locus tag Gene 

symbol 
Gene description Size  

(amino 
acids) 

SPAR46_2156 pgi phosphoglucose isomerase family protein 426 

SPAR46_1178 pyrC amidohydrolase family protein 323 

SPAR46_0059 purC phosphoribosylaminoimidazolesuccinocarboxamide synthase 235 

SPAR46_2363 hpt hypoxanthine phosphoribosyltransferase 180 

SPAR46_0728 upp uracil phosphoribosyltransferase 209 

SPAR46_2045 ccpA catabolite control protein A 336 

SPAR46_2243 arcC carbamate kinase 315 

SPAR46_2269 dltC D-alanine--poly(phosphoribitol) ligase, subunit 2 79 

Organic substance 
metabolism genes (17.9%) 

SPAR46_0121 sdaA serine dehydratase alpha chain family protein 132 
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SPAR46_1166 rnhB ribonuclease HII family protein 260 

SPAR46_1894 uvrC enterocin A Immunity family protein 98 

 

SPAR46_1201 lacA galactose-6-phosphate isomerase, LacA subunit 141 

SPAR46_0910 lolD ABC transporter family protein 212 

SPAR46_0499 ccmA ABC transporter family protein 243 

SPAR46_1716 ccmA ABC transporter family protein 231 

ABC transporter genes 
(6.0%) 

SPAR46_1588 AAA ABC transporter family protein 376 

SPAR46_0128 pspA cell wall binding repeat family protein 607 

SPAR46_0365 pspA cell wall binding repeat family protein 40 

SPAR46_0603 rhoD rhodanese-like domain protein 50 

Duplicate genes (6.0%) 

SPAR46_0084 rhoD rhodanese-like domain protein 98 

SPAR46_2241 arcA arginine deiminase 409 

SPAR46_1930 ugpB bacterial extracellular solute-binding family protein 419 

SPAR46_1929 ugpA binding-dependent transport system inner membrane component 
family protein 

288 

SPAR46_1333 lplB binding-dependent transport system inner membrane component 
family protein 

310 

SPAR46_0095 ompR transcriptional regulatory family protein 232 

SPAR46_0607 HIT HIT domain protein 153 

SPAR46_0608 ldcB D-alanyl-D-alanine carboxypeptidase family protein 238 

SPAR46_0674 ftsQ POTRA domain, FtsQ-type family protein 406 

SPAR46_0729 clp clp protease family protein 196 

SPAR46_0999 acm glycosyl hydrolases 25 family protein 250 

SPAR46_1135 degV EDD, DegV family domain protein 279 

SPAR46_1136 himA bacterial DNA-binding family protein 91 

SPAR46_1218 entA enterocinA Immunity family protein 99 

SPAR46_1337 insE transposase family protein 178 

SPAR46_1498 manB phosphoglucomutase/phosphomannomutase 60 

SPAR46_1575 ridA endoribonuclease L-PSP family protein 126 

SPAR46_1649 znuA periplasmic solute binding family protein 71 

SPAR46_1673 ROK ROK family protein 294 

SPAR46_1692 nanH sialidase 300 

SPAR46_1715 gntR bacterial regulatory subunit, GntR family protein 121 

SPAR46_2023 yhaM OB-fold nucleic acid binding domain protein 308 

SPAR46_2024 rmuC rmuC family protein 418 

SPAR46_2025 thiN thiamine pyrophosphokinase 220 

SPAR46_2242 argF ornithine carbamoyltransferase 338 

SPAR46_2244 yfcC C4-dicarboxylate anaerobic carrier family protein 503 

Miscellaneous leading-
edge genes (40.3%) 

SPAR46_1754 yqeH ribosome biogenesis GTPase 368 
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 SPAR46_2303 raiA ribosomal subunit interface protein 182 

SPAR46_1934 isl3 hypothetical protein 113 

SPAR46_1746 sir2 hypothetical protein 48 

SPAR46_1615 fer4 hypothetical protein 38 

SPAR46_0749 yutD hypothetical protein 176 

SPAR46_0899 ycgQ hypothetical protein 271 

SPAR46_0292 tra8 hypothetical protein 74 

SPAR46_0370 liaF hypothetical protein 232 

SPAR46_1126 ybaB hypothetical protein 93 

SPAR46_0423 yloU hypothetical protein 129 

Genes needing improved 
description (14.9%) 

SPAR46_0432 yloU hypothetical protein 121 

SPAR46_0133 HP hypothetical protein – DUF1447  77 

SPAR46_0655 HP hypothetical protein – DUF3042 56 

SPAR46_1193 HP hypothetical protein – DUF3884 54 

SPAR46_1790 HP hypothetical protein – DUF4649 73 

SPAR46_1981 HP hypothetical protein – DUF4231 152 

SPAR46_0494 HP hypothetical protein – no domain information 118 

SPAR46_0497 HP hypothetical protein – no domain information 95 

SPAR46_1159 HP hypothetical protein – no domain information 392 

SPAR46_1297 HP hypothetical protein – no domain information 105 

Hypothetical genes 
(14.9%) 

SPAR46_1346 HP hypothetical protein – no domain information 45 

1Percentages represent portion of leading edge in that functional category 
 
To confirm that the macrolide resistance genes (leading-edge) we 
identified are related to resistance, we used PCA to see if 
expression of these genes in a non-overlapping dataset from a 
related erythromycin resistant S. pneumoniae strain could separate 
samples based on treatment (marcrolide or untreated). Both over- 
and under-expressed leading-edge gene sets were able to separate 
macrolide treated from untreated samples, regardless of which 
macrolide (erythromycin or spiramycin) was used for treatment 
(Figure 3a). To quantify this separation ability, we used LOOCV on 
the same erythromycin resistant S. pneumoniae strain dataset. 
Multiple linear regression equations derived from these data were 
successfully able to predict treatment of left out samples with 100% 
and 80% accuracy for over- and under-expressed leading-edge 
genes, respectively (Figure 3b). While the sample size used in this 
study is small and we acknowledge that inclusion of more samples 
would make findings more robust and prevent over fitting, these 
results support the conclusion that our leading-edge genes are 
related to macrolide resistance. 
 
Macrolide resistance genes involved in increased amino acid biosynthesis 
and decreased ribonucleotide synthesis 

To identify which cellular processes our macrolide resistant genes 
(i.e. leading-edge) correspond to most, we compared leading-edge 
gene lists to gene lists of known biological processes from GO to 
assess for over-representation via Fisher’s Exact Test [14-16]. GO 
identified 7 of 93 over-expressed leading-edge genes were related 
to amino acid biosynthesis: dapA, asd, alr, proC, proB, ilvE, and glyA 
(p=0.024). We noted genes clustered into several processes not 
identified as over-represented by GO such as 20 transporter genes 
[3] (7 ABC transporters with 2 related to antibiotic resistance, 4 
efflux genes with 2 belonging to the major facilitator super family 
which is responsible for macrolide efflux [19], and 9 miscellaneous 
transporter genes) and 8 translation-related genes (including 4 
ribosomal subunits). Further, we observed 12 of 67 under-expressed 
leading-edge genes were associated with organic substance 
metabolism: ccpA, arc, dltC, sdaA, rnhB, uvrC, lacA, pgi, pyrC, purC, 
hpt, and upp (p=0.005), with 5 of those genes specializing in 
ribonucleotide synthesis: pgi, pyrC, purC, hpt, and upp (p=0.014). 
This shows the capability of our approach to detect known 
mechanisms of resistance that may or may not be identified by GO 
[19]. 
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Figure 3: Principal component analysis separates erythromycin resistant samples based on treatment using gene expression values of 93 
over- (left) and 67 under-expressed (right) leading-edge genes when plotted along two principal component (PC) that account for the most 
variation (in parentheses) across samples (a). Leave one out cross validation was used to quantify this separation for both leading-edge 
gene sets (b). One sample is removed (i.e. test set) and a multivariable logistic regression equation is computed for remaining samples (i.e. 
training set). The equation is then applied to the test set and based on the value (positive or negative) the program predicts treatment of the 
test set. Predicted equation values for each test set are plotted (colored dots along x-axes). The average coefficients for each gene across all 
training set equations is used to create a master equation used to predict treatment of all samples individually and calculate each 
prediction’s probability of accuracy (red line). 
 
Cellular process detection is limited by incomplete genome annotation: 
Incomplete genome annotation is a wide-spread challenge to 
examining cellular processes in bacteria [20]. Unfortunately, this 
study was not immune to this major limitation as we observed 6 of 
93 (6.5%) over-expressed and 10 of 67 (14.9%) under-expressed 
leading-edge genes had hypothetical annotation and confirmed 
their annotation via BLASTP. Since true hypothetical proteins 

require experimental investigation, we explored genes with 
hypothetical annotation further to provide useful recommendations 
for experimental endeavors. Following such guidance would 
maximize the potential to identify targets for new therapeutics that 
preclude and overcome macrolide resistance while minimizing 
experimental exploration costs. 
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To this end, we noted 3 over-expressed and 5 under-expressed 
hypothetical genes encoding DUFs (over-expressed: DUF979, 
DUF969, DUF389; under-expressed: DUF1447, DUF3042, DUF4649, 
DUF3884, DUF4231). Since DUFs span across domains of life [20], 
we recommend prioritizing these DUFs for experimental 
characterization since they may be involved in resistances in other 
life-threatening infections. Several hypothetical genes related to 
macrolide resistance did not have domain information yet (over-
expressed: SPAR46_0613, SPAR46_1604, SPAR46_1486; under-
expressed: SPAR46_0494, SPAR46_1297, SPAR46_0497, 
SPAR46_1346, SPAR46_1159). We recommend characterizing these 
over other hypothetical genes found in S. pneumoniae genomes 
because of their resistance connection. 
 
Conclusion: 
We identified and confirmed macrolide resistance genes in S. 
pneumoniae that are involved in increased amino acid biosynthesis 
and decreased ribonucleotide synthesis. Reversing activity for these 
cellular processes may overcome macrolide resistance. We noted 
that incomplete genome annotation (i.e. hypothetical genes) is a 
limitation to our analysis and further explored hypothetical genes 
related to macrolide resistance to recommend DUFs that are a 
priority for experimental characterization such as structural 
determination via nuclear magnetic resonance or X-ray 
crystallography. Characterization of DUFs identified here has the 
potential to uncover novel co-therapies that reverse macrolide 
resistance [7], restoring efficacy, not only for S. pneumoniae patients, 
but across multiple macrolide resistant species, saving thousands of 
lives annually. 
 
Our gene signature comparison approach to identify DUFs 
associated with antibiotic resistance is a novel way to prioritize 
hypothetical genes for experimental characterization. Application 
of our approach across resistant bacterial infections would be 
valuable in reducing experimental time and financial costs for 
identifying new therapeutic targets. However, a major hindrance in 
these efforts is the availability of datasets run on the same platform. 
Variations in platforms used in gene expression studies require the 
use of gene symbols, reducing signature similarities and resulting 
in detection loss. Regardless, gene expression datasets for antibiotic 
resistant bacteria using the same platform are publicly available 
with more being deposited regularly. Results from further analysis 

could hold far-reaching advancements in treated antibiotic resistant 
infections globally. 
 
References: 
[1] Ventola CL. P T 2015, 40: 277-283. [PMID: 25859123] 
[2] Schroeder MR, Stephens DS. Front Cell Infect Microbiol 2016, 

6: 98. [PMID: 27709102 
[3] Chancey ST, et al. PLoS One 2015, 10: e0116254. [PMID: 

25695510 
[4] Marklevitz J, Harris LK. Bioinformation 2016, 12:254-262. 

[PMID: 28197063 
[5] Suzuki S, et al. Nat Commun 2014, 5: 5792.PMID: 25517437 
[6] Gardner SG, et al. Antimicrob Agents Chemother 2018, 

62.PMID: 29109158 
[7] Ijaq J, et al. Front Genet 2015, 6: 119. [PMID: 25873935 
[8] Khatri P, Draghici S. Bioinformatics 2005, 21: 3587-3595.PMID: 

15994189 
[9] School K, et al. Bioinformation 2016, 12: 209-220. PMID: 

28149057 
[10] Goodacre NF, et al. MBio 2013, 5: e00744-00713. [PMID: 

24381303 
[11] Chancey ST, et al. Antimicrob Agents Chemother 2011, 55: 3413-

3422. PMID: 21537010 
[12] Zahner D, et al. Antimicrob Agents Chemother 2010, 54: 3516-

3519. PMID: 20498319 
[13] Subramanian A, et al. Proc Natl Acad Sci U S A 2005, 102: 

15545-15550. PMID: 16199517 
[14] Mi H, et al. Nucleic Acids Res 2017, 45: D183-D189. PMID: 

27899595 
[15] Ashburner M, et al. Nat Genet 2000, 25: 25-29. PMID: 

10802651 
[16] The Gene Ontology Consortium. Nucleic Acids Res 2017, 45: 

D331-D338. PMID: 27899567 
[17] Marchler-Bauer A, et al. Nucleic Acids Res 2017, 45: D200-

D203. PMID: 27899674 
[18] Altschul SF, et al.J Mol Biol 1990, 215:403-410.PMID: 2231712 
[19] Fyfe C, et al.Cold Spring Harb Perspect Med 2016, 6.PMID: 

27527699 
[20] Bateman A, et al.Acta Crystallogr Sect F Struct Biol Cryst 

Commun 2010, 66:1148-1152. PMID:20944204 
 

 Edited by P Kangueane 
Goad and Harris, Bioinformation 14(9) 488-498 

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License. 

 
 


