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Abstract

Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the
difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for com-
paring trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection
and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their
evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find
that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching
structure.
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Introduction
A fundamental challenge in the study of evolution is that for a
given set of organisms, markedly different phylogenetic trees
can be inferred from each combination of input data, soft-
ware, and settings (Sullivan et al. 1996; Rokas et al. 2003; Jiang
et al. 2014). Reasons for this include lack of informative data,
differences between tree inference methods, conflicting sig-
nals from descent and selection (convergent evolution), and
the fact that evolution is not always tree-like: Gene trees differ
from species trees, and many organisms exchange genes hor-
izontally. Phylogenetic uncertainty is often apparent following
Bayesian Markov Chain Monte Carlo (MCMC) inference of
trees from data (e.g., BEAST [Drummond et al. 2012] and
MrBayes [Huelsenbeck and Ronquist 2001]). These tools pro-
duce large posterior collections of trees which can include
considerable variety and are therefore hard to summarize.
Phylogenetic incongruence describes the (often related) issue
of conflicting trees from different loci, for example, individual
gene trees carrying different evolutionary signals.

Direct qualitative comparison of trees is illustrative but
becomes unwieldy and uninformative when the trees are
large or differ considerably. Approaches to direct comparison
include visualizing the differences between two trees with
tanglegrams and exploring the differences in collections of
trees using consensus networks (Holland et al. 2005) (for
unrooted trees) or DensiTree (Bouckaert 2010) plots (for
rooted trees). These visualizations can be challenging to in-
terpret when there are large numbers of trees to be com-
pared. Quantitative, metric-based tree comparisons are an
alternative to visual methods, but they currently suffer from
drawbacks including counterintuitive behavior (Kuhner and
Yamato 2014) and poor resolution (Hillis et al. 2005). For
example, in the widely used Robinson–Foulds (RF) un-
weighted metric (Robinson and Foulds 1981), also known

as the “symmetric difference,” many pairs of trees are the
same distance apart, and large distances between trees do
not imply large differences among the shared ancestry of
most tips (Steel and Penny 1993). These limitations hamper
the examination of Bayesian posterior collections of trees, so
posterior distributions are typically summarized with a single
maximum clade credibility (MCC) tree together with edge
support values that describe the location and extent of un-
certainty. How that uncertainty arises from the ancestral pat-
terns in the data is not revealed; using a single summary tree
carries the drawback that crucial information can be lost
(Heled and Bouckaert 2013).

A “metric” is a mathematical notion of distance; specifying
a metric gives structure and shape to a set of objects. Each
metric on a set of trees defines a “tree space.” The size and
complexity of tree spaces present serious challenges; there are
ð2k� 3Þ!! possible topologies for rooted, binary trees with k
labeled tips (Rohlf 1983). As an illustration, this means that
there are 34,459,425 trees with just 10 tips, and 1076 trees with
50 tips.

Here we present an approach to compare and cluster
groups of trees. Central to our approach is a tree metric which
lends itself to clear visualizations of tree space in low dimen-
sions. It enables straightforward detection of distinct groups
of similar trees. Accordingly, our method provides a natural
solution to the problem of summarizing complex tree spaces,
producing a small number of representative trees that cap-
ture distinct patterns of evolution reflected in the data.

New Approaches
Our metric compares the placement of the most recent com-
mon ancestor (MRCA) of each pair of tips in two trees. The
trees must be rooted and have identical sets of tips labels. We
will use k to denote the number of tips in each tree. We
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record the distance between the MRCA of a pair of tips (i, j)
and the root, in each tree, in two ways: The number of edges
mi;j, and the path length Mi;j (fig. 1). We also record the
length pi of each “pendant” edge between a tip i and its
immediate ancestor. This procedure results in two vectors
for a tree T:

mðTÞ ¼ ðm1;2;m1;3; . . . ;mk�1;k; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
k times

Þ;

MðTÞ ¼ ðM1;2;M1;3; . . . ;Mk�1;k; p1; . . . ; pkÞ :

In m(T) we have recorded each pendant length as 1, as
each tip is 1 step from its immediate ancestor. The vector M,
which is similar to the vector of cophenetic values (Sokal and
Rohlf 1962; Cardona et al. 2013) (see supplementary material,
Supplementary Material online) depends on the tree’s branch
lengths, whereas m only depends on its structure or “topol-
ogy.” We combine m and M with a parameter k 2 ½0; 1�,
which determines how much the topology of the tree only
(k¼ 0), versus the tree with branch lengths (k¼ 1), contrib-
utes. In this way, we capture each tree with a vector
vkðTÞ ¼ ð1� kÞmðTÞ þ kMðTÞ. The distance between
two trees—our metric function—is the Euclidean distance
between these vectors:

dkðTa; TbÞ ¼ jjvkðTaÞ � vkðTbÞjj:

A more formal description and proof that this is a metric
are given in the supplementary material, Supplementary
Material online.

There are various techniques available to use distances
between a set of objects (in this case, trees) to visualize, group,
and compare them. For example, multidimensional scaling
(MDS) (Cox TF and Cox MAA 2000) is a technique that
projects distances in such a way as to best capture them
with just a few (e.g., two or three) dimensions. Given a reliable
projection we can visually explore comparisons between trees
(Amenta and Klingner 2002; Hillis et al. 2005; Holmes 2006;

Berglund 2011; Chakerian and Holmes 2012), for example,
using color to differentiate trees derived from different genes
or data sources, and assessing whether or not they form dis-
tinct groups in the space. Alternatively, within a collection of
trees such as a Bayesian posterior, clustering algorithms such
as k-means or nearest-neighbor clustering can use the dis-
tances to detect groups of similar objects (so that within-
group distances are smaller than between-group distances).
These tools do not rely on projections; there is an extensive
literature on methods for robust clustering and cluster signif-
icance (Legendre P and Legendre LFJ 2012). Here, we use MDS
projection to illustrate our metric’s distances between trees.
We use k-means clustering applied to the distances, and
choose the number of clusters so as to optimize the
Bayesian Information Criterion (BIC). We illustrate our ap-
proach using three data sets: The set of all possible trees with
six tips, species trees of anole lizards (Geneva et al. 2015a,
2015b), and trees of Ebolavirus sequences (Gire et al. 2014).

The metric also provides a convenient way to select a
representative summary tree (or a summary tree per cluster)
using the geometric median tree. Unlike other summary
tree methods, this produces representative tree(s) selected
from the original tree set with well-supported, nonnegative
branch lengths.

In the supplementary material, Supplementary Material
online, we prove that the distance we define is a metric and
discuss further its properties and possible extensions (sup
plementary section S1), relate it to other approaches to tree
comparisons (supplementary section S2), and provide sup-
plementary analyses and results (supplementary section S3).

Results
Figure 2A gives a visualization using MDS of the topological
(k ¼ 0) distances in our metric between all 945 phyloge-
netic trees on six tips. In the plot each point represents a
tree, and the distance between any pair of points approxi-
mates the distance between them given by the metric when

FIG. 1. A tree is characterized by the vectors m and M, which are calculated as shown. These are used to calculate the distance between two trees for
any k 2 ½0; 1�. Here, d0ðT1; T2Þ ¼ 2 and d1ðT1; T2Þ ¼ 1:96.
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FIG. 2. A comparison of all 945 trees on six tips using our metric (k ¼ 0). (A) MDS visualization of tree distances when k ¼ 0. Colors correspond to
tree shapes, of which examples are shown with triangles. Symmetries correspond to permutations of the labels. As the projection often requires
that multiple trees are plotted at the same co-ordinates, contour lines are used to indicate density of points. (B) Distance matrix for these trees
(k¼ 0), with trees grouped according to shape as indicated by the color bars. (C) Unweighted RF distance matrix for the same trees. Most (64%) of
the tree pairs are at RF distance 8.
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k ¼ 0. Our metric captures differences in both shape and
labeling, and preserves symmetries of distances between la-
bel permutations. It produces a wide range of tree distances
and captures intuitive similarities (e.g., the similar chimp–
human pairing in the yellow and gray triangles in figure 2A,
basal to the other species). In figure 2C we compare our tree
distances with those of the unweighted RF metric because
this is currently the most widely used topological metric
(branch lengths are not considered, so it is directly compa-
rable to our metric with k ¼ 0). However, it is designed for
unrooted trees, whereas our approach captures the root
placement. In supplementary section S2 and figures S3–
S7, Supplementary Material online, we provide comparisons
to other tree metrics, including those which take into ac-
count branch lengths and/or root position.

Anole Lizards
In the evolution and ecology of higher organisms, phyloge-
netic trees are used to uncover the origins and adaptations of
existing species. This is greatly hindered by the difficulty in
resolving species trees using nuclear DNA from different loci
and/or mitochondrial DNA. Loci may not contain sufficient
variation to estimate fully resolved trees, and often result in
discordant trees. Anole lizards in particular are a model sys-
tem for ecological phenomena including reproductive char-
acter displacement, adaptation, behavior, and speciation
(Geneva et al. 2015b). Recently, Geneva et al. performed
the first comprehensive phylogenetic analysis of the distichus
group of trunk ecomorph anoles (based on mitochondrial
and nuclear DNA) (Geneva et al. 2015a, 2015b). They tested
three key hypotheses concerning the biogeographical origins
and boundaries of anoles from Hispaniola and the Bahamas,
and the evolution of their dewlap coloration. There were two
main areas of uncertainty in the species tree, reflected in
clades in the MCC with low support values (fig. 3A).

We computed pairwise tree distances according to our
metric (k ¼ 0) for a random sample of 1,000 posterior species
trees from a *BEAST analysis (fig. 3C). It is immediately ap-
parent from a 2D MDS visualization that the posterior is not
unimodal, but contains distinct clusters of tree topologies.
Using k-means clustering, we identified eight distinct groups
of trees, most of which are arranged in visually separated
clusters, particularly when shown in 3D (supplementary fig.
S9, Supplementary Material online). The MCC tree (fig. 3A) is
situated in the center of the largest cluster. There are many
trees with the same topology as the MCC tree, so it appears in
figure 3C as one point surrounded by multiple contour lines,
to illustrate the density of points. As the clusters of trees have
comparable posterior probabilities (fig. 3B), there is no reason
(in the absence of further research) to exclude the alternative
clusters to the MCC tree, which alone cannot capture the
distinct, likely patterns of evolution supported by the data.

We therefore computed an individual MCC tree for each
cluster, to illustrate the clusters’ alternative arrangements of
the taxa. The support values for clades in cluster-specific MCC
trees are high. In other words, the clusters correspond to
alternative resolutions of uncertain clades in the posterior.
This result is not limited to the anole data set; we also find

clusters corresponding to distinct, likely evolutionary histories
for a variety of data sets including species trees of chorus frogs
(see supplementary material, Supplementary Material on-
line). We find that where a cluster is tightly defined in the
metric, the corresponding support values are higher than
they are if the cluster is loosely defined (supplementary fig.
S11, Supplementary Material online).

The key differences between the anole tree clusters are
in the placement of the ocior, distichus, dominicensis2 clade,
which in the MCC tree and on the left-hand side of figure 3C
is sister to the sejunctus–ignigularis clade, but on the right-
hand side is sister to the dominicensis1–dominicensis4 clade.
These alternative placements affect the likely origins of the
Bahamian anoles ocior and distichus, placing them closer in
their evolutionary history to the anoles of the North or South
Paleo-island of Hispaniola, respectively (see supplementary
material, Supplementary Material online). The placement of
dominicensis1 and the topology of the aurifer–dominicensis4
clade also vary between clusters. For each of the eight repre-
sentative trees, we retested the hypothesis that evolution of
dewlap color between pale yellow and dark red has occurred
repeatedly across the species group. All eight trees supported
this hypothesis, but the inferred transition rates and ancestral
coloring of major clades differed between the clusters (see
supplementary material, Supplementary Material online).

We compared the analysis derived from our metric to a
similar pipeline using the RF metric and found that it does not
resolve the posterior into a manageable number of distinct,
well-supported patterns of evolution (see supplementary ma
terial, Supplementary Material online). In addition, the MDS-
projected distances of the RF metric are not very well corre-
lated to the RF distances. MDS visualizations of RF and Billera,
Holmes, Vogtmann (BHV) (Billera et al. 2001) distances be-
tween trees were discussed in Holmes (2006), Chakerian and
Holmes (2012), Amenta and Klingner (2002), Hillis et al.
(2005), and Berglund (2011), but these approaches have
been hampered by the limitations of the underlying metrics,
as discussed earlier and in the supplementary material,
Supplementary Material online.

Ebolavirus
Comparing trees estimated from different genes or loci can
play a role in quantifying phylogenetic incongruence and de-
tecting horizontal movement of genes and convergent evo-
lution. We compared trees from the seven genes of Ebolavirus
which causes the fatal Ebola hemorrhagic fever. We selected
20 published sequences (Gire et al. 2014) which differed on
every gene (including all five viral species of the Ebolavirus
genus) and inferred trees in BEAST from each gene separately
and from all genes together. Our method shows (fig. 4) that
the VP30 gene, an essential viral transcription activator, has a
distinctive phylogenetic pattern, forming three distinct clus-
ters with comparable likelihoods (fig. 4B). Each cluster of VP30
trees resolves the phylogenetic uncertainty in the placement
of the Sudan clade (pink), placing it in one of three positions:
Sister to the EBOV, TAFV and BDBV clade, sister to a larger
clade containing all the other sequences, or sister to the
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Reston clade. The latter placement, which is also found in all
the MCC trees other than VP30, agrees with previous analysis
(Dudas and Rambaut 2014; Gire et al. 2014). Each cluster
places the Reston and Sudan sequences into monophyletic
clades, but there are differences in the placement of the
Reston 1990 and Sudan 2011 tips.

The alternative phylogenetic signals from VP30, with dif-
ferences in the deep structure of the tree, suggest that there is
something distinct in the deep ancestry among these se-
quences in the VP30 gene that is not shared with the other
genes (which in turn are highly congruent with each other).
Our method simply detects this distinctive phylogenetic sig-
nal in a group of trees. The signal may be the result of a
historical recombination event, convergent evolution, or
lack of sufficient information in this gene to reconstruct the

deep ancestry of the taxa (though if that were the case we
would not expect to have found such tight and distinctive
clusters, and posterior probabilities comparable to the other
genes). Although an extensive comparison of tools to detect
recombination is outside the scope of this work, we used the
standard tool GARD (Pond et al. 2006), which compares
neighbor-joining trees, and it did not detect recombination
among these sequences.

Marzi et al. recently found that a new whole-cell vaccine,
EBOVDVP30, is safe and effective against lethal Ebola chal-
lenge in nonhuman primates (Halfmann et al. 2008; Marzi
et al. 2015). They also did not observe recombination in rel-
atively short-term experiments (based on viral passage).
However, if VP30 is amenable even to rare recombination
events or rapid convergent evolution in this genus, this could

FIG. 3. Identifying and exploring islands in anoles *BEAST trees. (A) MCC tree for the whole posterior. (B) Boxplots of the *BEAST log-likelihood
scores of the sampled trees, separated and colored by cluster. The log-likelihood distributions were comparable for each cluster. (C) MDS plot of
1,000 trees from the posterior, colored according to eight clusters found using k-means clustering. Four examples of an MCC tree for an individual
cluster are given here. A more visually dispersed cluster corresponds to more uncertainty in larger clades. The relatively small number of points in
the plot (� 1; 000) corresponds to the small number of distinct topologies explored; density of points is illustrated with contour lines.
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threaten the future efficacy of EBOVDVP30 by allowing
Ebolavirus to generate vaccine escape strains. Accordingly, it
is important to have tools which can rapidly uncover phylo-
genetic incongruence and analyze phylogenetic uncertainty.

Discussion
Our method reveals distinct patterns of evolution, both in
viruses and in higher organisms. It exposes the extent to
which choosing a single summary tree discards other well-
supported alternatives. It allows quantitative comparisons
between the evolutionary patterns of different genes or loci.
Further, it can measure the extent to which a particular locus
shapes the most likely phylogenetic trees for a set of data, and
thereby identify phylogenetically informative sites, loci or
genes. It provides a framework for comparing and testing
tree estimation methods, particularly where these produce
rooted trees or where an outgroup is available (see supple-
mentary results, Supplementary Material online, for dengue
virus). Addressing tree estimation challenges is increasingly
important as data sets grow to tens of thousands of tips,
rendering standard inference methods infeasible. More gen-
erally, our method is relevant to any rooted, labeled trees with
the same set of tips, including decision trees, network span-
ning trees, hierarchical clustering trees, and language trees.
The method expands the toolkit for tree comparisons. It is
implemented within the R package “treescape” (Jombart et al.

2015), which also makes other tree metrics available for use in
the same pipeline.

The example in figure 2 of the space of trees with six tips
demonstrates that, while the space is not continuous, vec-
tors which correspond to trees are densely packed together.
This helps to show that when we do see “gaps” between
clusters of trees, for example in figure 3, these truly corre-
spond to parts of tree space which have either been rejected
or not explored by the inference process. The Ebolavirus
example in figure 4 demonstrates that some Bayesian pos-
teriors do center around a single tree topology without
widely separated clusters. This is seen most strongly for
the trees from all genes together, which vary only marginally,
and is true for most of the individual genes. The appearance
of widely separated clusters in other trees, such as those
from the VP30 gene, is therefore significant and an impor-
tant consideration for further analysis.

While requiring trees to have a root is in some sense a
limitation, many evolutionary analyses are implicitly or explic-
itly performed in the context of a root. This applies to any
analysis with a temporal component, as this defines a direc-
tion back through time in the tree, in which the root is the
earliest point. Time plays a role in analyses of speciation and
diversification rates, species dating analyses, phylodynamic
analyses (Stadler et al. 2012; Didelot et al. 2014; Rasmussen
et al. 2014), and many others. In addition, in many analyses it
is both desirable and straightforward to include an outgroup

FIG. 4. Ebolavirus comparison of individual and “all” gene trees. (A) MCC tree from “all” (purple triangle). (B) MDS plot of 1,200 trees (150 per type),
showing three distinct groups of topologies for VP30. (C) A closer look at the largest group from B. The MCC tree per gene is marked as a triangle.
The MCC trees for GP and VP24 are plotted in almost the same position, in the center of the largest group among individual gene trees. The
distance between them is

ffiffiffi
2
p

, the minimum distance by our metric. (D) MDS plot of all 1,200 trees using the RF metric. Distinct VP30 topologies
are not detected, in fact, the VP30 MCC tree is identical to the NP MCC tree according to RF because it is an unrooted metric. (E–G) MCC tree from
lower left VP30 cluster, upper left VP30 cluster, and main cluster, respectively. The MCC tree from the largest cluster, G, is naturally more similar to
A than to E or F.
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consisting of taxa known to be phylogenetically distinct from
taxa in the data set. This defines a natural root for the data set
taxa. In all of these cases, taking the root placement into
account in the analysis (and in tree comparisons) is impor-
tant, and our results suggest that it can substantially improve
the resolution and utility of tree comparisons.

In our metric, differences in a tree near the root cause larger
tree distances than differences near the tips. Branching events
closer to the root are also typically harder to infer than those
nearer to the tips. Accordingly, the fact that the metric is
sensitive to differences in the deep branching structure allows
it to easily detect viable alternative deep tree structures in a
collection of trees, and to group the credible alternatives to-
gether with their downstream consequences. The height of
the root may also be challenging to estimate; different genes
may produce trees that are structurally concordant but that
differ in the root height. Length differences can easily domi-
nate tree distances in such a case; the flexibility of our metric
to explore this by weighting structure versus length allows us
to detect this phenomenon (see supplementary material,
Supplementary Material online).

Although there is no a priori best way to define a distance
between two trees, the MRCAs of tip pairs and clades are of
central interest to evolutionary biologists. In our metric, trees
that largely share this ancestry are close together. Indeed, in
the absence of an underlying “true” distance on the set of
trees, a good measure of the quality of a metric must be
whether it captures intuitive similarities and has useful appli-
cations. The RF distance captures the intuitive property of the
number of nearest-neighbor interchanges required to convert
one tree into another, but suffers from the fact that in some
cases, a single regrafting event can result in a high distance. It
also suffers from a lack of resolution (many trees are similar
distances apart), limiting its power in many settings. The BHV
metric has the significant advantages of convexity and geo-
desic distances, but has some similar drawbacks to the RF
approach. The path difference metric (Steel and Penny, 1993)
achieves better resolution of distances but the natural sym-
metries of the space are not clear from the 2D projection of
trees with six tips (supplementary fig. S4, Supplementary
Material online). There is little correlation between any of
these metrics (supplementary figs. S6 and S7, Supplementary
Material online). We compare existing tree comparisons in
more detail in the supplementary material, Supplementary
Material online. As any positive linear combination of metrics
is also a metric, our metric could be used to construct tree
distances that flexibly weight a variety of tree characteristics,
such as the extent to which the root placement is important
(e.g., dðTa; TbÞ ¼ wno rootdRFðTa; TbÞ þ wrootdkðTa; TbÞ, with
wno root;wroot > 0).

Sequencing technologies continue to decrease in cost, with
the result that it is now feasible to sequence up to tens of
thousands of taxa in multiple genes, at least in viruses. As the
computational challenges associated with haplotype phasing
are resolved (Pan et al. 2014; Zhi and Zhang 2014; Regan et al.
2015), phylogenetic methods will be used for large data sets on
higher organisms. As an example, the Epidemiology Network
Ag1000G has 765 Anopheles mosquito genomes visible to the

public (MalariaGEN 2015). Currently, Bayesian tree inference is
not feasible beyond hundreds of taxa, and maximum-
likelihood, maximum-parsimony, and neighbor-joining meth-
ods are often used with add-on estimation of the root and
timing information by software such as Path-O-Gen (Rambaut
2009) and LSD (To et al. 2016). Although this presents chal-
lenges for tree inference, it also provides compelling motiva-
tion to develop appropriate tree comparison metrics.

The examples we have presented here involve small trees
which can be easily viewed. They help to demonstrate how
our intuitive understanding of tree differences matches the
results of the metric, and to show the relationship between
MCC trees, tight clustering, and summary trees. However, the
metric can also be applied to trees with thousands of tips.
Computing the vector per tree is fast—it is at worst quadratic
in the number of tips, when the tree is completely balanced.
Of course, computing pairwise distances between a set of n

trees requires
n
2

� �
calculations for any metric. For trees with

many thousands of tips, the vectors can become infeasibly
long and may need to be represented in a more efficient
format (as many pairs of tips have the same m and M values).
Exploiting different ways to navigate the tree or to reduce the
number of pairwise comparisons made may also yield more
efficient computation.

Obtaining credible trees that capture the relationships pre-
sent in complex data is one of the fundamental open chal-
lenges in evolution today (Heled and Bouckaert 2013), as
markedly different trees with conflicting evolutionary mes-
sages can result from a single data set (Sullivan et al. 1996;
Rokas et al. 2003; Jiang et al. 2014). Our metric adds to the
toolkit available to solve this problem, capturing distinct evo-
lutionary stories embedded in data and comparing corre-
sponding trees in a quantitative way.

Materials and Methods

Anole Lizards
We used species trees from a recent *BEAST analysis of the
distichus species group in the lizard genus Anolis. Geneva et al.
(2015b) made species trees available (Geneva et al. 2015a).
They sampled 54 individuals from the brevirostris (8) and
distichus (46) complexes, both within the distichus species
group. For each individual, they sequenced DNA from seven
exonic nuclear loci and from one mitochondrial locus. They
used gene trees to identify putative species and generated
species trees in *BEAST (Heled and Drummond 2010) using
four independent analyses, each with 2 billion generations.

We sampled 1,000 trees uniformly at random from the
latter half of the available *BEAST posterior (files Anoles_
StarBEAST_posterior.species.trees and Anoles_StarBEAST_
MCC.species.tre for the posterior trees and MCC tree,
respectively, from Geneva et al. [2015a]). We computed all
pairwise tree distances according to our metric (k ¼ 0) in this
sample of 1,000 posterior trees. To detect clusters we used
k-means clustering (using the function find.clusters from
adegenet, which calls kmeans from the stats package in
R [R Development Core Team 2008]), and compared
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clustering solutions with the BIC, as described in the adegenet
package in R (Jombart 2008). We found that a choice of k ¼ 8
clusters minimized the BIC. We visualized the distances using
MDS (dudi.pco in the ade4 package in Chessel et al. [2004]).
Each point represents a tree, and the distances between the
points approximate the distances in our metric. We colored
points according to their k-means cluster. An MCC tree was
found for the whole posterior and for each cluster using
TreeAnnotator (Drummond and Rambaut 2007) and plotted
with FigTree (Rambaut 2006).

We also tested a variety of other clustering methods in-
cluding ward.D, ward.D2, single, complete, UPGMA,
WPGMA, and WPGMC from hclust in the stats package in
R, where more details on each of these methods can be found
in the documentation. The clustering of the trees naturally
varies slightly between methods. However, the important
conclusions are insensitive to the clustering method: 1) The
tighter the cluster, the more similar the trees (with any var-
iation nearer the tips) and 2) there are about six tight clusters,
corresponding to the regions in figure 3 within contour lines.
Note that the contour lines are a result of the MDS projection
and are therefore independent of the clustering method.

Different clustering methods in tree space can now be
tested easily using the function findGroves in the package
treescape (Jombart et al. 2015), which was developed after
we performed this analysis.

Ebolavirus
We analyzed sequence data from Ebolavirus samples, both
historical and from the 2014 outbreak, published recently by
Gire et al. (2014). A full description of the data collection,
library construction, sequencing, single nucleotide polymor-
phism calling, and alignments is available in that work (with
sequence data and Beast inference settings in file
2014_GN.SL_SRD.HKY_strict_ctmc.exp.xml). We selected
the following 20 taxa:

BDBV_2007_FJ217161, BDBV_2012_KC545393,

EBOV_1976_KC242801, EBOV_1994_KC242792,

EBOV_1995_AY354458, EBOV_1996_KC242794,

EBOV_2002_KC242800, EBOV_2007_HQ613403,

EBOV_2014_EM095, RESTV_1990_AF522874,

RESTV_1996_AB050936,RESTV_2008_FJ621583,

RESTV_2008_FJ621584, RESTV_2008_FJ621585,

SUDV_1976_FJ968794, SUDV_2000_AY729654,

SUDV_2011_JN638998, SUDV_2012_KC545389,

SUDV_2012_KC589025, TAFV_1994_FJ217162.

These had no duplicated sequences for any gene among
the other selected taxa, allowing inference of trees from each
gene separately. Following Gire et al. (2014), we used a coa-
lescent prior with exponential growth, a random starting tree,
a strict molecular clock with uniform rate across branches
and prior mean of 0.0001. We used an HKY (Hasegawa–
Kishino–Yano) substitution model with equal rates. We ran
10 million MCMC iterations and confirmed the results with
multiple runs in BEAST v1.8. We used a partitioned Beast

analysis to infer trees from all genes together (fixing the trees
to be shared across partitions).

We sampled 150 trees from the posterior for each gene
(1,200 trees in total; fig. 4 in the main text). We computed
pairwise distances (k ¼ 0) between all these trees and
visualized them with MDS, coloring the points according to
the gene giving rise to the corresponding tree. The results (the
three clusters of trees from VP30, and congruence of the
other trees) do not depend on the random sampling of
150 trees from the posterior.

Supplementary Material
Supplementary material, table S1, and figures S1–S16 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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