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Abstract

Malignant cell growth is fueled by interactions between tumor
cells and the stromal cells composing the tumor microenviron-
ment. The human liver is a major site of tumors and metastases,
but molecular identities and intercellular interactions of different
cell types have not been resolved in these pathologies. Here, we
apply single cell RNA-sequencing and spatial analysis of malignant
and adjacent non-malignant liver tissues from five patients with
cholangiocarcinoma or liver metastases. We find that stromal cells
exhibit recurring, patient-independent expression programs, and
reconstruct a ligand–receptor map that highlights recurring
tumor–stroma interactions. By combining transcriptomics of laser-
capture microdissected regions, we reconstruct a zonation atlas of
hepatocytes in the non-malignant sites and characterize the
spatial distribution of each cell type across the tumor microenvi-
ronment. Our analysis provides a resource for understanding
human liver malignancies and may expose potential points of
interventions.
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Introduction

Cancer is a heterogeneous disease, exhibiting both interpatient and

intrapatient variability (Marusyk et al, 2012; Meacham & Morrison,

2013; Patel et al, 2014; Alizadeh et al, 2015). Tumor cells do not

operate in isolation, but rather closely interact with a complex

milieu of supporting stromal cells that form the tumor microenvi-

ronment (TME) (Polyak et al, 2009; Hanahan & Weinberg, 2011;

Lambrechts et al, 2018). These cells include, among others, a range

of immune cells, cancer-associated fibroblasts (CAFs), and endothe-

lial cells. Interactions between the tumor and stromal cells are criti-

cal for cancer cell survival (Meacham & Morrison, 2013). Stromal

cells supply the cancer cells with growth factors, facilitate immune

evasion, and modulate the composition of the extracellular matrix.

Given the diversity of cell types that form the TME, it is essential to

apply single cell approaches to resolve their molecular identities

(Tirosh et al, 2016; Puram et al, 2017; Lambrechts et al, 2018).

The liver is a major site of both primary tumors and metastases

(Llovet et al, 2016). Tumors of liver origin include hepatocellular

carcinomas (Guichard et al, 2012), cholangiocarcinomas [tumors

originating from liver cholangiocytes (Patel, 2011; Sia et al, 2013)],

and hepatoblastomas. Liver metastases often originate in colorectal

and pancreatic tumors and are the main cause of mortality in these

cancer patients (Weinberg, 2013). Single cell atlases have provided

important insight into the development (Camp et al, 2017; Segal et al,

2019; Popescu et al, 2019), physiology (MacParland et al, 2018;

Aizarani et al, 2019), and pathology (Zhang et al, 2019, 2020;

Ramachandran et al, 2019; Sharma et al, 2020) of the human liver.

Here, we reconstruct a cell atlas of the malignant human liver in

patients with liver metastases or cholangiocarcinomas. Our analysis

highlights recurring stromal cell type signatures and interaction

modalities with the carcinoma cells. By combining spatial informa-

tion, we reconstruct zonation patterns of hepatocytes in the non-

malignant tissue sites and identify distinct spatial distributions of cell

types across the TME.

Results

A cell atlas of the human liver tumor microenvironment

To assemble a cell atlas of the human liver TME, we analyzed

tissues from six patients who underwent liver resection (Fig 1A,

Appendix Fig S1). Three Patients underwent hepatic resection for
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colorectal metastases, two for intrahepatic cholangiocarcinoma, and

one for a cyst at a benign stage (Dataset EV1). We dissociated the

tissues into single cells and measured their transcriptomes using

MARS-seq (Jaitin et al, 2014; Materials and Methods). In parallel,

we preserved tissues for spatial analysis using laser-capture

microdissection (LCM) (Moor et al, 2017, 2018) and single molecule

fluorescence in situ hybridization (smFISH) (Bahar Halpern et al,

2015).

Our single cell atlas included 7,947 cells, 4,140 from the malig-

nant sites and 3,807 from the non-malignant sites (Fig 1B). The

non-malignant sites did not show histological signs of fibrosis, with

the exception of the cholangiocarcinoma patient p2 (Materials and

Methods, Dataset EV1). The cells formed 17 clusters, which we

annotated based on known marker genes and a recent cell atlas of

cirrhotic human livers (Ramachandran et al, 2019) (Fig 1C).

Notably, the stromal clusters included a mixture of cells from dif-

ferent patients (Appendix Fig S1), demonstrating recurring stromal

signatures. Cells from the non-malignant liver sites included clusters

of hepatocytes and several non-parenchymal cell populations—
hepatic stellate cells, vascular smooth muscle cells (vSMC), Kupffer

cells, T cells, B cells, liver sinusoidal endothelial cells (LSEC), liver

vascular endothelial cells (LVEC), and cholangiocytes, the latter

clustering with the carcinoma cells. Cells from the malignant liver

sites included carcinoma cells, marked by KRT8, KRT18, and

EPCAM (Puram et al, 2017; Fig 1B) and diverse TME cell popula-

tions, including fibroblasts, endothelial cells, and immune cells

(Fig 1C). Carcinoma cells exhibited distinct gene expression dif-

ferences between the cholangiocarcinoma patients and the meta-

static patients (Appendix Fig S1E). Genes elevated in

cholangiocarcinomas included higher expression of the cholangio-

cyte gene Beta-defensin 1 (DEFB1) (Harada et al, 2004) and FGFR2.

Genes elevated in colorectal cancer metastasis included higher

expression of Cadherin 17 (CDH17) (Panarelli et al, 2012) and the

adhesion molecules CEACAM5 and CEACAM6, previously shown to

correlate with metastasis colonization (Powell et al, 2018). We

extracted global gene expression signatures and unique markers for

each of these cell types (Fig 1D, Datasets EV2 and EV3). We vali-

dated the expression of a panel of 12 marker genes using smFISH

(Appendix Fig S2).

TME cell types exhibit recurring expression signatures

A common question in single cell analysis is whether the recon-

structed cell atlases are stable with regard to the numbers of cells

per sample and the numbers of samples (Mereu et al, 2020). This

question is particularly important in cancer, due to the profound

levels of interpatient heterogeneity (Marusyk et al, 2012;

Meacham & Morrison, 2013; Patel et al, 2014; Alizadeh et al,

2015). We assessed the stability of the expression signatures

obtained from our atlas with regard to the number of sampled

patients and the number of sampled cells. To this end, we recon-

structed the mean gene expression signatures for each of the 17

cell type clusters, based on subsamples of the six patients, and

equally sized subsamples of cells from all patients as controls.

We compared these mean expression signatures of subsets of the

data with those obtained from the full atlas. We found that the

gain in correlations, when adding new patients, strongly curtailed

for most cell types beyond three patients and converged on the

correlations obtained when subsampling cells rather than patients

(Appendix Fig S3). An exception was the carcinoma cluster,

where gene expression signatures changed with each new added

patient (Appendix Fig S3). Our analysis thus demonstrates that,

while carcinoma cells exhibit high interpatient variability, the

liver TME exhibits recurring gene expression signatures that are

more uniform between patients.

Differences in TME gene expression between the malignant and
non-malignant sites

Our single cell analysis of matching malignant and non-malignant

sites within the same patients enabled identification of gene expres-

sion differences in distinct cell populations that compose the TME

(Fig 2). Genes elevated in tumor endothelial cells compared to the

non-tumor endothelial cells included the von Willebrand factor

VWA1, encoding a glycoprotein previously shown to facilitate

tumor cell extravasation (Terraube et al, 2007), as well as SOX17

(Yang et al, 2012) and INSR (Nowak-Sliwinska et al, 2019), both

shown to promote tumor angiogenesis (Fig 2A). The immune cell

populations in the malignant liver predominantly included scar-

associated macrophages (SAMs) (Ramachandran et al, 2019; Fig 2

B). These cells express the marker genes CD9 and TREM2, a tumor

suppressor in hepatocellular carcinoma (Tang et al, 2019), as well

as the markers CAPG and GPNMB. GSEA analysis of Subramanian

et al (2005) SAM genes resulted in a significant enrichment of apical

junction genes and the complement system. Their recurring signa-

tures included lipid-associated genes, such as PLIN2 and LPL, over-

lapping the recently identified SPP1+ lipid-associated macrophages

(LAMs) in mouse fatty livers (Remmerie et al, 2020). Liver mononu-

clear phagocyte populations from the non-malignant liver sites were

composed of Kupffer cells, expressing C1QB, MARCO, CD5L, and

CD163 (Appendix Fig S4). T cells from the malignant sites were

predominantly composed of Tregs, marked by CTLA4 and FOXP3,

whereas T-cell populations from the non-malignant sites were

predominantly composed of cytotoxic T cells, expressing CCL5,

▸Figure 1. Single cell atlas of the malignant human liver.

A Experimental scheme, tumor, and adjacent non-tumor liver samples from surgeries were dissociated for scRNA-seq, frozen for LCM, and fixed for smFISH.
B tSNE plot colored by normalized sum of pan-carcinoma markers taken form Puram et al (2017). “n”—indicates the number of cells per group.
C tSNE plot colored by the 17 Seurat clusters including hepatocytes, endothelial cells (liver sinusoidal endothelial cells—LSEC, non-tumor liver vascular endothelial cells

—LVEC, and tumor liver vascular endothelial cells—LVECt), mesenchymal cells (Stellate cells, cancer-associated fibroblasts—CAFs, Pericytes, vascular smooth muscle
cells—vSMC), immune cells (Kupffer cells, scar-associated macrophages—SAMs, tissue monocytes 1—TM1, cDC1, cDC2, T cells, and B cells), proliferating cells, and
carcinoma cells.

D Heatmap showing the normalized expression of marker genes for the different clusters (Materials and Methods). Expression is normalized by the maximal expression
among all cell types.
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GZMK, and NKG7 (Fig 2C). These divisions within the immune cell

populations suggest a recruitment of immune-suppressive subsets of

T cells and macrophages, as previously demonstrated for other

tumors (Lambrechts et al, 2018; Binnewies et al, 2018). Additional

immune cell types in the TME included conventional dendritic cells

(cDC1 and cDC2), tissue monocytes (TM1), expressing FCN1 and

S100A12 (Ramachandran et al, 2019), and B cells (Fig 1C,

Appendix Fig S4).

We further assessed the differences in the expression signa-

tures of endothelial cells, mononuclear phagocytes, and T cells

between the tumor sites of the cholangiocarcinoma patients and

the metastases patients (Fig 2D). Endothelial cells and T cells

did not exhibit differential expression between these two etiolo-

gies. In contrast, mononuclear phagocytes exhibited up-regula-

tion of chemokines such as CCL4, CCL4L2, and CCL3L3 in the

cholangiocarcinoma samples and extracellular remodeling genes
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Figure 2. Expression signatures of tumor endothelial and immune cells.

A–D Top-left—tSNE plot of the Seurat clusters, boxes demarcate compared clusters. Dashed boxes and labels indicate the cell clusters that are compared in panels A–C.
(A) Volcano plot of differential gene expression (DGE) between liver vascular endothelial cells in the tumor and non-tumor samples. (B) Volcano plot of DGE
between mononuclear phagocytes in the malignant and non-malignant samples. (C) Volcano plot of DGE between T cells in the tumor and non-tumor samples. (D)
DGE analysis between tumor mononuclear phagocytes classified by cancer type (cholangiocarcinoma in dark purple and metastasis in light purple). Wilcoxon rank-
sum tests were used to generate P-values, Benjamini–Hochberg multiple hypotheses correction was used to compute q-values. Labeled dots in all panels are gene
names of selected differentially expressed genes between the compared two clusters.
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such as MMP19, MMP12, and HS3ST2 in the metastatic

patients.

Diversity of the human liver mesenchymal cells

Our atlas included four mesenchymal cell clusters (Fig 3,

Appendix Fig S5A). Hepatic stellate cells, marked by the retinol

binding protein 1 (RBP1), and vascular smooth muscle cells,

marked by Myosin-11 (MYH11) (Ramachandran et al, 2019), were

abundant in the non-malignant liver sites (Fig 3A,

Appendix Fig S1C). Mesenchymal cells in the malignant liver sites

included two clusters. Cancer-associated fibroblasts (CAFs),

expressing extracellular matrix (ECM) genes such as COL1A1, LUM,

and BGN, formed the larger cluster. A second cluster included cells

expressing classic markers of pericytes, periendothelial mesenchy-

mal cells with important roles in regulating vascular integrity

(Armulik et al, 2011). These markers included RGS5 and CSPG4,

encoding the neuron-glial antigen 2 protein (NG2) (Armulik et al,

2011). We found that some previously suggested markers of peri-

cytes, such as DES (Nehls et al, 1992) and ANPEP (Kumar et al,

2017), were not specifically expressed in pericytes in the malignant

human liver context (Dataset EV3). Importantly, pericytes were

almost absent from the non-malignant sites (Appendix Fig S1C). We

used smFISH to demonstrate that the RGS5+ cells are indeed adja-

cent to endothelial cells, marked by PDGFB, as expected from peri-

cytes (Fig 3B and C). In contrast, cells expressing the CAFs marker

COL1A1 resided farther away from the endothelial cells (Fig 3B and

D, and Appendix Fig S5A).

Paracrine and juxtacrine interactions between endothelial cells

and their attached pericytes have been shown to be important

for proper vascularization (Annika et al, 2005). Our single cell

atlas enabled unbiased identification of signaling pathways that

could affect gene expression between the physically interacting

endothelial cells and pericytes. To this end, we applied NicheNet

(Browaeys et al, 2019), a computational method that predicts

ligand–receptor interactions based on induction of downstream

target genes (Fig 3E, Dataset EV4). We identified signaling from

endothelial cells to pericytes via JAG1,2-NOTCH3, and PDGFB-

PDGFRB (Fig 3E, Appendix Fig S5B), and signaling from peri-

cytes to endothelial cells through SLIT2-ROBO1,4 (Fig 3E,

Appendix Fig S5C) and ANGPT2-TEK (Fig 3E). The ligands and

receptors mediating the endothelial cell–pericyte cross-talk were

enriched for juxtacrine signaling pathways, angiogenesis, and

chemokine and cytokine signaling (Fig 3F).

Recurring interactions between the carcinoma cells and the
tumor microenvironment

Tumor growth is highly dependent on the cross-talk between the

tumor cells and the stromal cells in the TME. Stromal cells provide

important growth factors and signaling molecules that enhance

tumor growth and survival. In turn, the tumor cells secrete ligands

sensed by the stromal cells, which facilitate their recruitment (Zhou

et al, 2017). Our single cell atlas facilitated an analysis of the molec-

ular cross-talk between tumor cells and each of the stromal cell

types. To this end, we parsed a database of ligand–receptor interac-
tions (Ramilowski et al, 2015) and identified pairs, for which the

interacting proteins were specific to the carcinoma cell cluster on

the one hand and to the supporting stromal cell clusters on the other

(Zhou et al, 2017; Halpern et al, 2018; Materials and Methods). We

found that CAFs and SAMs were interaction hubs, representing

49.3% of all carcinoma–TME interactions (Fig 4A). We focused on

specific ligand–receptor interactions that recurred in at least three of

the five patients with malignant cancer (Fig 4B, Dataset EV5). The

resulting tumor interactome network highlighted several recurring

modules, including a large matrix remodeling module, modules

centered around ERBB, HGF-MET, TGFbeta, FGF, IGF, and VEGFA,

a lipid trafficking module, and a WNT planar cell polarity module

(Fig 4B).

The largest module consisted of matrix remodeling proteins.

The malignant ECM has a unique composition that is shaped by

ECM assembly and degrading proteins, collectively known as the

tumor matrisome (Naba et al, 2016; Varol & Sagi, 2018).

Features of the ECM such as stiffness and porosity facilitate both

optimal cellular contacts, maximize accessibility of growth

factors and control immune cell exclusion from cancer cells (Bin-

newies et al, 2018). Within the matrix remodeling module, we

found that CAFs produced most of the collagens and laminins,

interacting with integrin receptors on the tumor cells (Fig 4B).

Our scRNA-seq analysis further enabled identifying the secreting

stromal cell type for each of the matrisome components (Naba

et al, 2016; Appendix Fig S6).

The WNT Planar cell polarity (WNT-PCP) pathway has been

suggested to promote metastases and cancer cell invasion (Wang,

2009). PCP signaling is activated by non-canonical Wnt morpho-

gens, such as WNT5A, which we found to be expressed by both

CAFs and immune cells (Fig 4B–D). CTHRC1, a secreted collagen

triple helix filament that forms a complex that stabilizes WNT bind-

ing to its tumor-expressed receptor-FZD (Yamamoto et al, 2008),

was specifically expressed by CAFs. Thus, immune cells and CAFs

jointly modulate WNT-PCP tumor signaling.

We observed a similar cooperation of immune cells and CAFs

within the MET signaling module. MET signaling is a major driver

in hepatic tumors and metastases (De Silva et al, 2017). We found

that HGF, the main activating ligand of MET, was expressed by both

SAMs and CAFs (Fig 4B–D). DCN, encoding the decorin protein, is

expressed by CAFs and in turn inhibits HGF-MET binding (Goldoni

et al, 2009). Our interaction map further revealed an additional role

of DCN as an interactor of the carcinoma-specific receptor EGFR

(Fig 4B). In summary, our tumor interactome analysis revealed the

details of the molecular cross-talk between the tumor and stromal

cell types.

Recurring interaction network connectivity correlates with liver
tumor severity

The recurring interactions between the carcinoma cells and cells in

the TME suggest that elevated expression of these ligands and their

matching receptors could convey a selective advantage to cells in

the liver TME. To assess this hypothesis, we examined a cohort of

383 bulk-sequenced liver tumors from the TCGA database and

computed a network score based on our recurring network connec-

tivity (Fig 4E and F). For each tumor, we first computed a score that

consists of the summed products of the expression levels of each

ligand and matching receptor and normalized it by computing a

randomized score based on degree-preserving random networks
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(Materials and Methods, Fig 4E). This normalization is important,

since a high score may simply reflect elevated expression of the

ligands and receptors, often oncogenes, rather than the coordinated

expression of ligands and their matching receptors. We found that

the network score significantly increased along the liver tumor

stages (Fig 4F). Thus, our interaction score correlates with tumor

severity.

Spatial transcriptomics identifies zonation patterns
of hepatocytes

Cells in tissues and solid tumors reside in zones that often

exhibit variability in oxygen levels, nutrient availability, and

morphogen concentrations. These can in turn generate spatial

heterogeneity of gene expression (Moor & Itzkovitz, 2017) and

A B

E FC D

Figure 3. Mesenchymal heterogeneity in the liver malignant sites.

A Key marker genes for the four mesenchymal clusters (RBP1, COL1A1, RGS5, and MYH11). Light gray dots denote cells originating from non-tumor samples. Dark
gray dots denote cells originating from the tumor samples.

B Left—Representative smFISH image of patient p1 stained for RGS5 and COL1A1 showing distinct spatial localization of CAFs and pericytes. Scale bar 10 µm. Dashed
lines mark the shortest distance of cells (2a) and (2b) from the cell (1). Middle—zoom-in of (1) from left panel, showing a blood vessel like structure formed by
endothelial cells marked by PDGFB (magenta) wrapped by pericytes marked by RGS5 (green). Dashed lines are two consecutive cell layers of endothelial cells and
pericytes. Scale bar 2.5 µm. Right—zoom-in of (2a and b) from the left panel, showing two distant CAFs expressing high COL1A1 signal but not RGS5. DAPI used for
nuclei staining. Scale bar 2.5 µm.

C, D Violin plot of the distance from blood vessels of low/high RGS5 expressing cells (n = 358 and n = 360, respectively) and low/high COL1A1 expressing cells (n = 359
and n = 359, respectively). “p” is the P-value determined by Wilcoxon rank-sum test. Empty circles are the medians over all repeats.

E Schematic representation of the top-ranked interaction (bona-fide) detected by NicheNet (Materials and Methods). Results are sorted by the prior interaction
potential between pericytes and tumor LVECt cells.

F Pathway enrichment analysis for all bona-fide genes (Dataset EV4) using Enrichr tool. Images in this figure are representative images out of eight independent
experiments over four patients.
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result in distinct spatial representation of different cell types.

The liver is a spatially heterogeneous organ, composed of repeat-

ing anatomical units termed lobules, which are polarized by

centripetal blood flow (Ben-Moshe & Itzkovitz, 2019). Spatially

resolved single cell transcriptomics in mice revealed extensive

zonation of hepatocyte gene expression along the lobule radial

axis (Halpern et al, 2017), and pseudotime analysis of scRNA-

seq data suggested that similar zonation may also be prominent

in the human liver (Aizarani et al, 2019). We have recently

developed approaches to combine scRNA-seq with transcrip-

tomics of laser-capture microdissected (LCM) tissue to infer the

zonation patterns of genes in the intestine (Moor et al, 2018;

Halpern et al, 2020). We sought to apply this approach to obtain

zonation patterns of human hepatocytes.

We used LCM to dissect six lobule zones within the non-malig-

nant liver site, spanning the central vein and portal node (Fig 5A

and B). We extracted RNA from each zone and performed bulk

RNAseq using mcSCRBseq (Materials and Methods), a sensitive

method for sequencing ultra-low mRNA levels. We used our scRNA-

seq atlas to identify hepatocyte-specific genes, and among these,

selected panels of pericentral and periportal landmark genes that

exhibited zonated expression in the LCMseq dataset

(Appendix Fig S7A, Dataset EV6, “non-malignant_liver_LCM”

sheet). Using these panels, we inferred the lobule coordinates of

each sequenced hepatocyte and averaged spatially resolved groups

to obtain a global zonation map. Since our data contained approxi-

mately 400 hepatocytes, we applied the LCMseq reconstruction to a

recently published cell atlas of the non-malignant human liver that

included more than 2,500 hepatocytes (Aizarani et al, 2019). This

enabled higher statistical power in resolving zonation patterns

(Fig 5C). We validated our reconstructed zonation patterns by

comparing the zonation profiles of hepatocyte-specific genes not

used as landmarks to the LCMseq profiles (Appendix Fig S7B–D).
Our reconstructed profiles also recapitulated zonated human hepa-

tocyte genes previously identified using LCM (McEnerney et al,

2017; Appendix Fig S8A).

We found that, as observed in mice, many hepatocyte genes

were significantly zonated along the lobule radial axis (2,677

genes out of 8,536 genes with expression higher than 1e-5 of

cellular UMIs had q-value < 0.2, Fig 5C, Dataset EV7, “recon-

structed_human_hepatocytes” sheet). Pericentrally zonated

processes included primary bile acid biosynthesis and metabolism

of xenobiotics, whereas periportally zonated processes included

oxidative phosphorylation and fructose and mannose metabolism

(Fig 5D, Appendix Fig S9). We compared the zonation profiles in

mouse (Halpern et al, 2017) and human and found both discor-

dant and concordant profiles (Dataset EV7, “human_mouse_com-

parison” sheet, Fig 5D and E, Appendix Fig S9). Genes that

exhibited overlapping profiles between mice and human included

the pericentral genes CYP1A2 and LGR5 and the periportal genes

HAL and SDS. The gene SLC2A2, encoding the main hepatic

glucose transporter GLUT2, exhibited pericentral zonation, in

contrast to its periportal zonation in mice. Similarly, the lipogene-

sis genes SREBF1, ACLY, FASN, and ACACA were pericentrally

zonated in human and periportally zonated in mice (Dataset EV7,

“human_mouse_comparison” sheet, Fig 5E). Additional discordant

pathways included ribosomes, which were periportally zonated in

human and pericentrally zonated in mouse, and complement and

coagulation cascades, which were periportally zonated in mouse

and pericentrally zonated in human (Fig 5E, Appendix Fig S9).

Our map further revealed zonated transcription factors such as

the pericentral ZNF101, AHR, and TBX3 and the periportal ID1,

TBX15, and SOX4, as well as zonated surface markers

(Appendix Fig S8B and C). The high-resolution hepatocyte zona-

tion map forms a resource for exploring spatial heterogeneity in

the human liver.

Spatial distributions of TME populations

Solid tumors have been shown to exhibit variability in cell composi-

tion and expression programs as a function of the location within

the tumor (Giesen et al, 2014; Angelo et al, 2014; Keren et al, 2018;

preprint: Moncada et al, 2018). This heterogeneity is often dictated

by cell proximity to spatial landmarks that include the tumor bound-

ary, blood vessels (Kumar et al, 2019), and immune cell aggregates

(Colbeck et al, 2017). We next asked whether different TME cell

types in our atlas are more abundant in distinct tumor microenvi-

ronments.

We used LCM to dissect 63 tissue regions from four patients.

These regions included the tumor border (tb), tumor core (tc), the

border between the tumor and the fibrotic regions (ftb), tumor islets

within the fibrotic regions (ti), and fibrotic zones (fz, Fig 6A and B).

▸Figure 4. Human liver interactome delineates tumor–stroma cross-talk.

A Summary of the total number of ligand–receptor interactions among clusters with at least 20% tumor cells. Interactions of tumor TME cell types with the carcinoma
cluster marked by red box.

B Network of recurring ligand–receptor interactions between carcinoma cells and stromal cells from the malignant sites. Node colors denote the cell type cluster in
which the ligands/receptors are enriched. Gray arrows color indicates the interaction Zscore (Materials and Methods). Recurring modules are shaded. Included are all
recurring interactions that significantly appeared in at least three patients.

C Dot-plot of selected genes highlight shared interaction motifs between different clusters colored by max normalized expression for each genes across all clusters in
(A). For each gene, dot size represents the fraction of positive cells for each cluster.

D Recurring interaction motifs between CAFs and tumor immune cells. Top—CAFs and SAMs comodulate carcinoma–stroma interaction. CAFs produce DCN that
modulates the interaction between the CAF-SAMs-expressed ligand HGF and the carcinoma-expressed receptor MET. Bottom—CAFs produce CTHRC1 that modulates
the interaction between the WNT5A ligand, expressed by CAFs, SAMS, and TM1 and the carcinoma-expressed receptor FZD5.

E Strategy for computing interaction scores for each tumor. A score is computed as the sum of the products of all ligands and matching receptors of the recurring
interaction network. These are compared to the average score obtained when randomizing the real interaction network in a manner that preserves the number of
outgoing and incoming interactions of each ligand and receptor (Scorerand). The ratio of the real and randomized scores constitutes a network score.

F Network score increases with increasing tumor stage. Analysis for 383 TCGA sample of liver hepatocellular carcinoma (LIHC) and cholangiocarcinoma (CHOL). P-value
determined by Wilcoxon rank-sum test. Empty circles are the medians over all repeats. Dashed lines are the median over the tumor stage.

◀
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Figure 5. Spatial analysis of the malignant and non-malignant human liver.

A H&E staining of malignant and non-malignant sites from patient p4, separated by the white dashed line. Scale bar is 100 µm.
B Non-malignant human liver lobule from patient p4 used for LCM stained with HistoGene Staining Solution (Materials and Methods). Top—sequential zones from the

central vein (cv) to the portal node (pn) before microdissection. LCM captured zones marked by the black dashed line. White dashed line marks the boundaries of
NPC (non-parenchymal cells) located in the pn and not included in the analysis. Bottom—Tissue after microdissection. Scale bar is 100 µm.

C Zonation of human hepatocytes. Left—Max normalized expression over the reconstructed six lobule layers (L1–L6), sorted by center of mass from the central vein (cv)
to the portal node (pn). Right—selected pericentrally (top), and periportally (bottom) zonated genes. Blue patches are standard errors of the mean.

D Gene set enrichment analysis of genes with maximal expression above 1e-5 normalized UMI counts. Centrally (cv) enriched sets are marked with blue dots, and
portally (pn) enriched sets are marked with red dots. Green fonts denote pathways that are concordantly zonated in mouse, black fonts denote pathways that are not
zonated in mouse, and red fonts denote pathways that are inversely zonated in mouse. “K” denotes gene sets obtained from KEGG database, and “H” denotes gene
sets obtained from Hallmarks database.

E Zonation profiles of selected genes from human (blue) and mouse (green). Each profile is normalized by the maximal expression across zones. Patches are standard
errors of the mean.

Data information: Mouse data used in (D and E) were obtained from Halpern et al (2017).
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We performed bulk RNAseq on these regions (Dataset EV6 “malig-

nant liver LCM” sheet) and used the expression signatures of the

cell types in our single cell atlas to estimate the proportions of each

cell type, based on the bulk measurements. To this end, we used

AutoGeneS (preprint: Aliee & Theis, 2020) to deconvolve the data

(Fig 6C, Dataset EV9, Materials and Methods). We found that dif-

ferent cell types differentially populated different tumor zones. As

expected, hepatocytes were most abundant in the tumor border

zones and almost completely depleted from other tumor zones.

CAFs were most abundant in the fibrotic zones. Pericytes showed

spatial abundances that highly overlapped those of LVECt, as

expected based on their physical attachments (Fig 3). Notably,

SAMs and both tumor T cells and non-tumor T cells showed higher

abundance in the tumor border zones (Fig 6C).
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Figure 6. Spatial distribution of the TME populations.

A, B Tissue sections from patients p1 and p3 stained with HistoGene Staining Solution. Laser-captured zones are marked with dashed black line including: tumor core
(tc), the border between the tumor and the fibrotic regions (ftb), tumor islets within the fibrotic regions (ti) and fibrotic zones (fz) in panel (A), and tumor border
(tb) in panel (B). Small images in (A) are magnifications of the corresponding zones in the large image for the left. White dashed line in (B) marking the non-
malignant liver (nml) border. Scale bars in all panels are 100 µm.

C Spatial distribution of the different TME populations across the analyzed five zones. Values are the estimated proportions based on deconvolution of the
transcriptome of each zone with the average transcriptome of the cell types (Materials and Methods). Y-axes show the estimated fractions of the cells, and empty
circles are the medians over all repeats (n = 8 for tb, 11 for tc, 15 for ftb, 14 for ti and 15 for fz).
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Discussion

Our study combined single cell transcriptomics with spatial analysis

techniques to reconstruct a cell atlas of the malignant and non-

malignant human liver. Cancer treatment has been hampered by

tumor heterogeneity, attributed to patient-specific somatic muta-

tions and epigenetic changes. This heterogeneity raises a challenge

of tailoring personalized treatments to match the unique properties

of each patients’ tumors (Bedard et al, 2013). Our analysis of the

cross-talk between the TME and carcinomas revealed recurring

interaction modules between different patients. This finding

suggests that drugs targeting stromal cells or their mechanisms of

cross-talk with the tumor could potentially be more broadly applica-

ble. Our ligand–receptor interaction maps (Fig 4, Dataset EV5)

provide the tools to identify potential targetable candidates that

could perturb tumor–stroma cross-talk.

Tumor fitness depends on proper vascularization, which in turn

is strongly affected by the proper attachment and function of peri-

cytes and endothelial cells (De Palma et al, 2017). Our study identi-

fied the molecular interactions between endothelial cells and

pericytes in the malignant human liver. SLIT-ROBO signaling was

previously shown to be important for endothelial–pericyte attraction

in the formation of blood vessels in malignant human cell lines

(Wang et al, 2003). Our analysis highlighted a potential role of this

pathway, composed of the pericyte SLIT2 ligand and endothelial

ROBO receptor in maintaining endothelial–pericyte interaction in

the TME. Additional pathways included delta-notch and VEGF

signaling, previously shown to be important blood vessels formation

(Pitulescu et al, 2017), and PDGFB-PDGFRB signaling, shown to

facilitate pericyte recruitment (Raza et al, 2010). This analysis of

pericyte–endothelial cross-talk could form a basis for potential inter-

ventions aimed at perturbing vascular integrity by targeting

endothelial–pericyte cross-talk.

Diverse methods for reconstructing spatial gene expression pro-

files in tissues have been developed in recent years (Moor & Itzko-

vitz, 2017). The combination of single cell RNAseq with external

spatial measurements of landmark genes using technologies such as

LCMseq (Moor et al, 2018) or smFISH (Halpern et al, 2017) has

proven to be particularly accurate. Our measurements of transcrip-

tomes of laser-capture microdissected regions along the liver lobule

pericentral axis enabled reconstructing a zonation map of human

hepatocytes with high spatial resolution. This zonation analysis

could assist in modeling metabolic function in the human liver

(Gille et al, 2010). Moreover, zonated surface markers that we have

identified (Appendix Fig S8C) could be used for bulk measurements

of spatially stratified human hepatocyte populations, to obtain the

zonated features of proteins, metabolites and other cellular proper-

ties (Ben-Moshe et al, 2019). Our spatial transcriptomics of the

malignant site demonstrated higher abundance of immune cell

types, specifically T cells and SAMs, in the tumor border (Fig 6C).

This localization pattern resembles structured immune microenvi-

ronments previously observed in breast tumors (Keren et al, 2018).

Recent work has begun to lay the ground for a comprehen-

sive human cell atlas, consisting of a blueprint of all cell types

in the human body (Regev et al, 2017). Similar single cell

atlases in human tumors are essential for understanding the

contribution of different cells to the malignant process (Tirosh

et al, 2016; Puram et al, 2017; Zheng et al, 2017; Lambrechts

et al, 2018; Azizi et al, 2018). Our study constitutes a step in

this direction, by characterizing the cell types in the non-malig-

nant and malignant human liver.

Materials and Methods

Patients

This study was approved by the institutional review board commit-

tees of the Weizmann Institute of Science and Hadassah hospital,

Israel (0327-17-HMO). Informed consent was obtained from all

samples donors included in the study. Patients with colorectal

metastasis, cholangiocarcinoma, or liver cyst were included in the

study. All samples were collected from isolated tumors immediately

after surgical isolation (Dataset EV1). The fibrotic status of the non-

malignant livers was assessed by a pathologist, using Masson

Trichrome stain (Dataset EV1). The only patient that exhibited

substantial fibrosis was the cholangiocarcinoma patient p2.

Sample collection

Samples were collected from the surgery room immediately after

isolation into sterile saline solution and processed in a sterile cabi-

net. In each surgery, two distinct samples were obtained—one

from the tumor region (“malignant site”) and another from an

adjacent non-tumor region that was at least 1-5cm from the tumor

region (“non-malignant site”). Each sample was divided equally

into three pieces as follows: (i) sample for scRNA-seq stored in

cold 1× DMEM, supplemented with glutamine (GIBCO, 35050-

038), (ii) sample embedded into OCT (Scigen, 4586) block and

kept on dry ice, and (iiii) sample fixed in cold 4% paraformalde-

hyde (PFA, Santa Cruz Biotechnology, sc-281692) in PBS on ice

for 3 h (Fig 1A).

Tissue fixation and smFISH

Tissue was fixed in 4% PFA for 3 h at 4°C and then transferred

to 30% sucrose solution in 4% PFA for overnight at 4°C. Fixed

tissues were embedded in OCT and stored at −80°C for later

use. Five µm sections of fixed human tissue were mounted onto

poly L-lysine coated coverslips and used for smFISH staining.

Probe libraries were designed using the Stellaris FISH Probe

Designer Software (Biosearch Technologies, Petaluma, CA), see

Dataset EV10. smFISH was performed according to a previously

published protocol (Itzkovitz et al, 2011) with the following

modification: Sections were digested with proteinase K at 50°C
for 10 min for better cellular permeability before the wash buffer

denaturation steps. DAPI (Sigma-Aldrich, D9542) was used for

nuclear staining. smFISH imaging was performed on a Nikon-Ti-

E inverted fluorescence microscope equipped with 100× oil

immersion objective and a Photometrics PRIME 95B 25 mm

sCMOS camera. Probe libraries for messenger RNAs of interest

were coupled to Cy5, Alexa594, or TMR. To stain carcinoma

cells, tissues were incubated with pan-cytokeratin antibody

(1:100, Invitrogen, 53-9003-82) conjugated to Alexa Fluor 488 in

GLOX buffer for 20 min at room temperature and washed once

by fresh GLOX buffer before mounting.
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Single cell preparations and isolation

Isolated human liver samples were chopped into small parts

using sharp scalpel in fresh 1× DMEM supplemented with gluta-

mine (GIBCO, 35050-038). All parts were placed in preheated

enzymatic solution and digested mechanically according Liver

Dissociation Kit (GentelMAX, 130-105-807) with small modifi-

cations. Liberase Blendzyme3 recombinant collagenase (Roche

Diagnostics) were added to the enzymatic cocktail and preheated

in 37°C for 10 min. After adding the liver parts, mechanical

digestion was performed using m_liver_03 built-in program as

suggested by the protocol using GentelMAX Dissociator (Gen-

telMAX, 130-093-235) and incubated for 30 min at 37 C with

gentle mixing using a rotator. An additional mechanical digestion

step was applied after the incubation using m_liver_04 built-in

program, followed by filtering the mixture using 100 µm nylon

mesh (FALCON, 352360) as mentioned in the protocol. The cells

were concentrated by centrifugation for 10 min at 100 g and

resuspended in cold FACS buffer (2 mM EDTA pH 8, 0.5% BSA

in 1× PBS). The concentrated cell suspension was taken directly

for sorting. Forward scatter (FSC) and side scatter (SSC) were

calibrated to exclude debris. Dead cells were excluded using PI

staining (1:1,000 v/v, Thermo Fisher P3566). Single cells were

collected directly to MARS-seq lysis solution (Jaitin et al, 2014)

in a format of 384-well plate and stored at −80°C (see MARS-

seq library preparation).

MARS-seq library preparation

Single cell libraries were prepared, as described previously (Jaitin

et al, 2014). Briefly, mRNA from cells sorted into MARS-seq capture

plates was barcoded and converted into cDNA and pooled using an

automated pipeline. The pooled sample was then linearly amplified

by T7 in vitro transcription, and the resulting RNA was fragmented

and converted into sequencing ready libraries by tagging the

samples with pool barcodes and Illumina sequences during ligation,

reverse transcription, and PCR. Each pool of cells was tested for

library quality, and concentration was assessed as described in

Jaitin et al (2014). Machine raw files were converted to fastaq files

using bcl2fastq package, and to obtain the UMI counts, reads were

aligned to the human reference genome (GRCh38.91) using zUMI

package (Parekh et al, 2018) with the following flags that fit the

barcode length and the library strandedness: -c 1-7, -m 8-15, -l 66, -

B 1, -s 1, -p 16. Downstream analysis done as explained in “scRNA-

seq analysis” part.

scRNA-seq analysis

scRNA-seq analysis of the unique molecular identifier (UMI) counts

for exon mapped reads produced by the zUMI pipeline was

processed with Seurat 3.1 (Satija et al, 2015) running in R3.5.1 for

each patient individually. Cells with UMI counts below 200 or

higher than 3,000 or mitochondrial content above 35% were

removed. This analysis resulted in 7,947 cells (with median of 797

UMIs and 430 detected genes per cell). The data were log-normal-

ized according to default Seurat settings. Variable genes for princi-

pal component analysis were identified using the Seurat function

“FindVariableFeatures” using the “vst” method with the default

parameters. UMI number and mitochondrial gene content were

regressed out.

To combine the Seurat output for all patients, integrated data

object were generated using single cell integration analysis (Stuart

et al, 2019). Integration anchors and combined data were calculated

with “dims = 50” parameter. Principle component analysis was

performed on the expression levels of the detected variable genes.

The first 30 principal components were included for further down-

stream analyses based on Seurat’s “JackStrawPlot” function. T-

distributed stochastic neighbor embedding (tSNE) was used to visu-

alize the computed clusters. Clustering was performed with Seurat

“FindClusters” function, using the first 30 principle components and

resolution of 1.

Annotation for detected clusters was based on highly expressed

genes for each cluster and performed in two stages. In the first

stage, markers were detected by comparing each cluster to all other

clusters in the atlas (Dataset EV2, general sheet). This resulted in

some markers that were found in several clusters (e.g., COL1A1 that

marks CAFs, stellate cells, and pericytes). To further refine the clus-

ter annotation, we grouped the 17 Seurat clusters into coarse-

grained clusters based on the known pan-markers of immune cells

(PTPRC), endothelial cells (PTPRB), and mesenchymal cells

(TAGLN). We then identified coarse-grained marked by comparing

each cluster to the other clusters within its coarse-grained group

(Dataset EV2, type-specific markers sheet). Carcinoma clusters were

merged for downstream analysis. The list of cell type markers

(Dataset EV2) was obtained by running the Seurat function

“FindAllMarkers” with the following parameters: log-fold change

above 0.25, minimum fraction of cells expressing a gene in either of

the compared populations is 10%, minimum cells expressing a gene

is 10, positive genes only. The concise list of cell type-specific mark-

ers (Fig 1D) was obtained as follows: We performed Wilcoxon rank-

sum tests between each cell type cluster and all other clusters and

retained genes that had a minimal expression of 5e-5 of cellular

UMIs in the respective cluster, expressed in more than 20% of the

cluster cells and at 4-fold higher expression compared to the other

clusters and q-value less than 0.01. Next, we generated the follow-

ing coarse-grained clusters: hepatocytes, fibroblasts, immune cells,

cancer cells, endothelial cells, and proliferating cells. We retested

the retained marker genes against other cell type clusters from the

same coarse-grained cluster and retained genes with 10-fold higher

expression compared to the mean expression in the other cell types

within the respective coarse-grained cluster. The top marker genes

of each cluster are presented in Fig 1D.

Cluster stability

Expression signatures for each cell type were calculated for all possi-

ble combinations of patients and were compared to the signatures

based on the full atlas using Spearman correlations. Only genes with

expression above 5e-6 were included in the correlation analysis. To

examine the gain in correlation when adding new patients, we

constructed two subsampled datasets: (1) datasets that include all

possible combinations of n < 6 patients, where n = 1, 2, 3, 4, 5. We

additionally included three bootstrap iterations for each patient

combination. Values for the six-patient group were obtained by

bootstrapping all cells. (2) For each set in (1) equally sized subsets

of sampled cells from the complete atlas, while ignoring the patient
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information. Set (2) served as a control to assess the decrease in

gene expression signature correlation that arised from the decrease

in the number of cells, rather than patients. The two calculated

correlations converged, with an exception of the carcinoma cluster,

where the gene expression signatures changed with each new added

patient. In this analysis, T cells were split into two cell populations

according to their sample origin (tumor and non-tumor), as were

Cholangiocytes, which were separated from the carcinoma cells

according to their non-tumor origin.

Quantification of RGS5 and COL1A1 from smFISH images

Two sets of cells were selected per image for this analysis: (i) all

PDGFB expressing cells and (ii) randomly selected COL1A1/RGS5
expressing cells (30 cells on average per image) to reach 718-

segmented cells from eight independent images of three different

patients—p1, p2, and p4. For COL1A1/RGS5 expressing cells, we

calculated the intensity of COL1A1 signal, cell area, the number of

RGS5 dots, and the distance from the closest PDGFB expressing cell.

To subtract the background signal from COL1A1 intensity value, the

mean intensity of the bounding rectangle without cell area was used

as a local background intensity for each cell. RGS5 expression was

computed as the number of smFISH dots divided by the cell volume

(dot concentration). COL1A1 corrected intensity values and RGS5

dot concentrations were split into two groups: lower 50 percentile

and the upper 50 percentile and designated as low/high COL1A1/
RGS5, respectively.

NicheNet interaction analysis and pathway enrichment

Malignant cells of the combined Seurat cluster were tested for

potential interaction between pericytes and LVECm clusters using

NicheNet (Browaeys et al, 2019). The pipeline was run as detailed

by the authors with minor modifications. For LVECm as sender cells

and pericytes as receiver cells, we included genes with mean expres-

sion above 1e-5 of cellular UMIs and present in more than 10% of

the cells in either cluster. For pericytes as sender cells and LVECm

as receiver cells, we included genes with mean expression above 1e-

5 of cellular UMIs and present in more than 5% of the cells in either

cluster. This lower threshold was used to increase the number of

background genes due to the smaller number of the malignant

LVECm cells compare to pericytes. Genes of interest to be poten-

tially affected by cell–cell interaction in both comparisons were

selected as follows. First, we performed Wilcoxon rank-sum test

between each cluster and all other clusters. We retained genes that

had a minimal expression of 1e-5 of cellular UMIs in the respective

cluster and had an expression of 2-fold higher compared to the other

clusters and q-value less than 0.01. We grouped each cluster to one

of the following parent clusters: hepatocytes, fibroblasts, immune

cells, cancer cells, endothelial cells, and proliferating cells. Next, we

retested the retained genes against other malignant mesenchymal

cells in the case of pericytes (resulting in 40 specific genes) or malig-

nant endothelial cells in the case of LVECm (resulting in 31 specific

genes). Wilcoxon rank-sum test was used in all comparisons.

Further steps in the pipeline kept with no changes. All predicted

ligands of the ligand activity analysis were used for the downstream

analysis. The first 600 target genes were used to score ligand activ-

ity. Enrichr (Chen et al, 2013; Kuleshov et al, 2016) was used to

identify enriched pathways among the ligands and receptors, using

the pooled “bona-fide” set of ligands and receptors. Results in Fig 3F

are taken from a metabolic, cell signaling, and pathway database

Panther 2016 (Mi et al, 2019).

Matrisome analysis

Marker genes of stromal clusters with malignant cells above 20%

were extracted from the single cell data. Marker genes were selected

to have a mean expression above 1e-5 of cellular UMIs and three

times higher than the maximal mean expression in the other clus-

ters. Next, we looked for matrisome genes that were included in the

generated maker genes list (extracted from Naba et al, 2016, 1,027

matrisome-related genes). For the purpose of this analysis, we

merged stellate malignant cells with CAFs malignant cells. Prolifera-

tion cluster was excluded from the analysis. We performed hierar-

chical clustering on the retained genes using the clustergram

function in MATLAB version 2019b, computed over a Zscore matrix

of the sum-normalized UMI count table using default parameters.

Genes were sorted by the mean expression for the respective matri-

some subclass (Appendix Fig S6A). Visualization of the clustering

shown in Appendix Fig S6B used only genes with Zscore > 1 or

Zscore < -1.

Ligand–receptor analysis

Ligand–receptor analysis was performed similar to Bahar Halpern

et al (2018). Briefly, a list of ligand–receptor pairs was extracted

from Ramilowski et al (2015) (708 unique ligands and 691 unique

receptors). We calculated the average of the logarithm of the UMI-

summed normalized expression, xcg for each gene g in each cluster c

over all cells derived from both the malignant and the non-malig-

nant tissues. Clusters with less than 15 cells were filtered out. We

computed a Zscore, Zc
g, representing the enrichment of each ligand

and receptor in each cluster:

Zc
g ¼

xcg �meanðxcgÞ
stdðxcgÞ

(1)

where the means and standard deviations were computed over all

cluster cells. We next defined an interaction score as:

Zinteraction ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZc1

L Þ2þðZc2
R Þ2

q
(2)

where Zc1
L is the ligand Zscore for cluster c1, and Zc2

R is the receptor

Zscore for cluster c2. The resulting list of interactions was filtered

using the following parameters: The minimum number of cells

expressing either the ligand or the receptor was above seven cells,

the average expression of either the ligand or the receptor was

higher than 1e-5 of the cellular UMIs, Zc1
L and Zc2

R were positive

and Zinteraction was above 1.5. For the purpose of this analysis, the

carcinoma clusters were combined and defined as a single tumor

cluster, and the malignant stellate cells were combined with the

malignant CAF cells. To focus on interactions that occur in the malig-

nant site, we considered clusters with more than 20% malignant

cells. Next, we focused on recurring interactions between carcinoma

cells and stromal cells in different patients (Dataset EV5,
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“carcinoma_stroma_interactions” sheet, 1,709 interactions). Patient

with benign stage, p6, was excluded as it had no malignant cells

(Dataset EV1). We counted the number of unique interactions

between carcinoma cells and non-carcinoma cell types in different

patients, and interactions that appeared in three or more patients

were retained (Dataset EV5, “recurring_interactions” sheet, 335 inter-

actions). The highest Zscore for the recurring interactions was

assigned in the unique list of recurring interactions (Dataset EV5,

“unique_recurring_interactions” sheet, 101 interactions). Proliferation

cluster was excluded from the analysis. Cytoscape (Shannon et al,

2003) was used to visualize the “unique_recurring_interactions” list.

Network score

A score was computed based on the recurring interactions (Fig 4B)

as the sum of the products of the expression of all ligands and

matching receptors. Additionally, a randomized score Scorerand was

computed as the mean Score obtained from 1,000 degree-preserving

randomized networks (preserving the number of outgoing and

incoming interactions for each ligand and receptor). The random-

ized networks were generated using mfinder (v1.2) (Milo, 2002)

with the command “mfinder -r 1000 -ornet -nsr 10”. The network

score was defined as the ratio between Score and Scorerand (Fig 4E).

We computed this score on bulk RNAseq samples of primary liver

tumors downloaded from the TCGA database. Tumors used

included untreated individuals or individuals not reported as treated

(383 samples). Kruskal–Wallis test was conducted to assess the

significance of the network score between different tumor stages—
tumor stage i, ii, iii (grouped with tumor iii substages), and iv

(grouped with tumor substage) (Fig 4E).

Laser-capture microdissection

Tissue blocks for laser-capture microdissection were briefly washed

in cold PBS and embedded in OCT on dry ice. LCM protocol was

applied as previously described by Moor et al (2018) with minor

modifications. Briefly, 12 µm thick sections were cut from the

frozen block, mounted on polyethylene-naphthalate membrane-

coated glass slides (Zeiss, 415190-9081-000), air-dried for 1min at

room temperature, washed in 70% ethanol for 30s, incubated in

water for 30 s (Sigma-Aldrich, W4502), stained with HistoGene

Staining Solution for 100 s (Thermo Fisher Scientific, KIT0401), and

washed again in water for a of 30 s. The stained sections were dehy-

drated with subsequent 30-s incubations in 70, 95, and 100% EtOH

and air-dried for 90 s before microdissection. Tissue sections were

microdissected on a UV laser-based PALM-Microbeam (Zeiss). To

ensure minimal damage to the surrounding cells, laser intensity and

focus were calibrated before each session using Zeiss calibration

wizard supplemented with the LCM operating software (Zeiss).

Manual detection of analyzed regions in each tested slide and

labeling of the desired areas was done with PALM 10× and 20×
lenses. Tissue fragments were catapulted and collected in 0.2-ml

adhesive cap tubes (Zeiss, 415190-9191-000) containing 7 µl of lysis
buffer (RLT buffer (QIAGEN, 79216) with 1% 2-Mercaptoethanol).

Parameters for this step were calibrated by the automatic program

wizard. Each capture section was visually confirmed by focusing

the PALM on the targeted adhesive cap after the collection session

and immediately stored at −20°C. Since the non-malignant liver

samples exhibited profound immune cell infiltration in the most

periportal zone, we dissected six zones from the non-malignant liver

(nml) forming consecutive sections of the hepatic lobule from the

central vein to the periportal immune layer (Fig 5B). In the malig-

nant sites, 63 samples were dissected from five zones from patients

p1, p2, p3, and p4. These zones included the following: tumor

border (tb), tumor core (tc), the border between the tumor and the

fibrotic regions (ftb), tumor islets within the fibrotic regions (ti),

and fibrotic zones (fz, Fig 6A). A total area of 50,000–70,000 µm2

was collected per zone, 3–4 replicates.

LCMseq for bulk LCM samples

Tissue samples collected from the adhesive caps, dissolved, and

mixed with additional 7 µl lysis buffer (RLT buffer (QIAGEN, 79216)

with 1% 2-Mercaptoethanol). Lysate was washed using 7 µl AMPure

XP bead (BECKMAN COULTER, A63881). RNA libraries from the

bulk tissues were prepared using mcSCRBseq protocol (Bagnoli

et al, 2018) with minor modifications. RT reaction was applied

directly on the beads with a final volume of 10 µl. 4.2 µl of Rnase
free water was added to the beads and mixed with 4.8 µl reaction
buffer (1× Maxima H Buffer, 1 mM dNTPs, 2 µM TSO* E5V6NEXT,

7.5% PEG8000, 20 U Maxima H enzyme, 1 µl barcoded RT primer).

Subsequent steps were applied as mentioned in the protocol. Library

final concentration of 2 pM was loaded on NextSeq 550 (Illumina)

sequencing machine aiming for 20 M reads per sample. Raw files

were converted to FASTQ files using bcl2fastq package, and to

obtain the UMI counts, fastq reads were aligned to the human refer-

ence genome (GRCh38.91) using zUMI package (Parekh et al, 2018)

with the following parameters: RD1 16bp, RD2 66bp with a barcode

(i7) length of 8 bp. Mitochondrial genes and hemoglobin genes were

removed. Fractions by UMI counts were obtained by normalizing by

the sum of the UMIs per samples. Genes with normalized expression

below 1% of the total UMIs were used for this normalization step.

Hepatocyte zonation reconstruction

We used our single cell atlas to identify hepatocyte-specific genes

(genes with maximum normalized UMI count above 1e-5 and 2-fold

higher mean expression in the hepatocyte cluster compared to the

maximum mean expression of the non-malignant cells in other clus-

ters). This step resulted in 414 hepatocyte-specific genes. Next, we

calculated the center of mass (weighted average) for the hepatocyte-

specific genes based on the LCMseq data. Genes with maximum

expression above 1e-5 were retained. We divided the retained genes

into two groups: pericentral landmarks—genes with center of mass

below 2.5 (13 genes, denoted {pc}) and periportal landmarks—
genes with center of mass above 4.5 (13 genes, denoted {pp},

Appendix Fig S7A). We next used the expression of these landmark

genes to infer the lobule zones of single sequenced hepatocytes from

Aizarani et al (2019). To this end, we computed a unit-less coordi-

nate η value for the each cell using the following equation:

ηi ¼
∑

j∈fppg
Ei
j

∑
j∈fppg

Ei
jþ ∑

j∈fpcg
Ei
j

(3)
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where Ei
j is the UMI-sum-normalized expression of gene j in cell i.

The η values were divided into six equal bins, representing lobule

zones, and gene expression was averaged over all cells in each bin

to obtain zonation values. Significantly zonated genes were

assessed using Wilcoxon rank-sum test. Benjamini–Hochberg false

discovery rate was used to obtain q-values for genes with maximal

zonation value above 1e-5 of the reconstructed mean expression

over the six zones (Fig 5C).

To assess the accuracy of our reconstruction, we compared the

centers of mass of our reconstructed zonation profiles to the ones

measured by laser-capture microdissection. To this end, we consid-

ered all significantly zonated hepatocyte genes but excluded the

landmark genes. We calculated the Spearman correlation between

the two obtained center of mass datasets (Appendix Fig S7B). Corre-

lation coefficient was tested against Spearman Correlation coeffi-

cients calculated by randomized assignment of the center of mass

between the single cell and laser-capture microdissection datasets

(Appendix Fig S7C). P-values were computed using the normal

distribution for the Zscores ((real correlation − mean randomized

correlation)/std(randomized correlations)). In addition, we visual-

ized the expression of genes previously shown to be differentially

expressed in LCMseq of portal and central human liver zones

(McEnerney et al, 2017) (Appendix Fig S8A).

Hepatocyte pathway enrichment analysis and mouse comparison

Hepatocyte-expressed genes with a maximal expression level higher

than 1e-5 of sum-normalized UMI counts sorted by the center of

mass were included as input to gene set enrichment analysis (GSEA)

program to identify enriched pathways against Kegg and Hallmark

pathways (Fig 5D). Genes of the enriched pathways are listed in

Dataset EV8. Annotations of the pathways according to their zona-

tion status in mice were performed using Dataset EV5 in (Halpern

et al, 2017). Comparison of the mean zonation profiles of KEGG

pathways were performed as in (Halpern et al, 2017). In short,

hypergeometric P-value of 186 Kegg pathways was calculated for

expressed genes (normalized UMI counts above 5e-6) and zonated

genes (normalized UMI counts above 5e-6 zonation q-value above

0.2). Pathways were included only if they contained at least 15

expressed genes.

Deconvolution of the malignant liver LCM

LCM RNAseq results were deconvolved into the constituting cell

types using AutoGeneS version 1.0.3 (preprint: Aliee & Theis,

2020) and non-negative least squares regression. First, cell type-

specific gene expression signature vectors were calculated as the

centroids of all cells associated with a given cell type cluster after

normalization to count sum = 1 per cell. Next, 4,106 genes with

high variability across cell types were identified following

scanpy’s highly_variable_genes method (Wolf et al, 2018) (flavor

“Seurat”, minimum dispersion = 0.3). Next, AuotGeneS was

employed to select 700 marker genes out of the pool of highly

variable genes (parameters for AutoGeneS method “optimize”:

ngen = 5000, seed = 0, nfeatures = 700, mode=“fixed”, offspring_-
size = 100, verbose = False). From the set of pareto-optimal solu-

tions returned by AutoGeneS, the solution which minimizes the

correlation between cell types was chosen. Finally, samples were

deconvolved using non-negative least squares regression as imple-

mented within AutoGeneS. T-cell cluster splitted into two clusters

“non-tumor T cells” and “tumor T cells” based on the annotation

of the sample origin.

Data availability

Data have been deposited in the GenBank GEO database under

accession code GSE146409 (http://www.ncbi.nlm.nih.gov/geo/que

ry/acc.cgi?acc=GSE146409). The data can be interactively explored

in the web application at the following link: https://itzkovitzweba

pps.weizmann.ac.il/webapps/home/. All code is available in the

Zenodo repository under the following https://doi.org/10.5281/ze

nodo.4267877.

Expanded View for this article is available online.
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