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Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the
central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally
by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in
seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress,
mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging
trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and
plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly
their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development
and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful
in protecting against excitotoxicity-associated neurodegeneration.Thus, targeting of multiple pathways simultaneously may be the
strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity
and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KAmodel
of neurodegeneration.

1. Introduction

Neurodegeneration involves the progressive loss of struc-
ture and function of neurons. Various types of biological
mechanism have been implicated in neurodegeneration.
Excitotoxicity is considered to be a major mechanism of neu-
ronal death in acute and chronic neurodegenerative diseases,
such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), temporal lobe epilepsy (TLE),
and amyotrophic lateral sclerosis (ALS) [1]. The concept of

“excitotoxicity” was formulated by Olney in 1969 [2] which
was referred to as a neuronal degeneration triggered by the
over- or prolonged activation of glutamate receptors in the
central nervous system (CNS) by excitatory amino acids.

Glutamate is a major excitatory neurotransmitter that
mediates fast synaptic transmission and plays an important
role in the mammalian CNS (brain and spinal cord) [3,
4]. Excess glutamate is highly toxic to neurons. Glutamate
acts through glutamate receptors. There are two major
classes of glutamate receptors: ionotropic glutamate receptors
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Figure 1: Proposed mechanism of action in KA-induced excitotoxicity.

(iGLURs) and metabotropic glutamate receptors (mGLURs).
These glutamate receptors differed in terms of their function-
ality. iGLURs mediate fast postsynaptic potentials by activat-
ing ion channels directly, while mGLURs mediate slow post-
synaptic potentials by coupling to intracellularGproteins and
second messengers [5, 6]. iGLURs can be divided into three
subtypes: N-methyl-D-aspartic-acid (NMDA) receptors, 𝛼-
amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)
receptors, and kainate receptors. They are generally named
after their specific ligand and by the types of their activating
agonists [7, 8].

In the animal models of neurodegeneration, excitotoxic-
ity is commonly induced experimentally by chemical convul-
sants, particularly by kainic acid (KA) [9]. Administration of
KA has widely been used as a tool to explore the mechanism
involved in excitotoxicity.

2. Kainic Acid-Induced Excitotoxicity Model

KA [2-carboxy-4-(1-methylethenyl)-3-pirrolidiacetic acid] is
a structural L-analog of glutamate and an agonist of kainate
subtype of ionotropic glutamate receptors. KA exerts its
neuroexcitatory property by binding to kainate receptors,
which have presynaptic modulatory and postsynaptic exci-
tatory actions [10, 11]. KA activates glutamate receptors and

the overactivation of glutamate receptors produces neuronal
membrane depolarization. This causes the influx of calcium
ion (Ca2+) and subsequently triggers excitotoxic neuronal
death cascade events (refer to Figure 1).

Studies in KA-induced animal experimental model have
shown that administration of KA resulted in seizures [12–
15], behavioral changes of rodents [16–22], oxidative stress
[23–25], glial activation [26–32], production of inflamma-
tory mediators [32, 33], endoplasmic reticulum (ER) stress
[34–37], mitochondrial dysfunction, and selective neuronal
degeneration in the brain of rodents [15, 36, 38–40].

Administration of KA is known to induce a sequence
of well-characterized seizure syndromes and has resulted in
behavioral changes of rodents including motor and cognitive
performance [15, 17–20]. A single systematic injection of a
convulsive dose of KAhas resulted in limbic status epilepticus
(SE), initiating neuropathological changes in limbic brain
areas and subsequently long-term spontaneous recurrent
seizures (SRSs) in both rat [40] and mice [41] as well as
neuropathological lesions reminiscent of those found in
patients with TLE [15, 42]. KA-induced SE causes irreversible
neuronal degeneration in the selective brain areas, particu-
larly in limbic structures (i.e., in the CA1 and CA3 regions of
hippocampus and the hilus of dentate gyrus (DG)) [15].

Several studies have also demonstrated that there are
behavioral changes in rodents after KA administration that
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resulted in memory deteriorations in the elevated plus-maze
[16], increase in the activity in the open field test [21], and
cognitive impairment in the passive avoidance test [22] and
in Morris water maze task [17–20].

Oxidative stress may have a contributory role in neuronal
and glial cell death [23–25, 43, 44]. There are growing
evidences to suggest that oxidative stress has been implicated
in the mechanism of excitotoxicity on different brain regions
after the induction of KA on rodents [23–25]. The brain is
considered to be very vulnerable to oxidative stress because
of its great consumption of energy, oxygen, and glucose,
large amount of peroxidizable polyunsaturated fatty acids,
and relatively low antioxidant capability [45].

Oxidative stress occurs when there is disturbance in
balance between antioxidant mechanism and the production
of free radicals and redox status. KA acts on and activates
kainate receptors to incite the influx of intracellular calcium.
The entry of intracellular calcium can stimulate the formation
of free radicals.

Overactivation of glutamate receptors by KA has resulted
in the increased production of reactive oxygen species (ROS),
the mediators of oxidative stress [24]. Oxidative stress can
cause cellular damage and generation of ROS, which oxidizes
membrane lipids, protein, and DNA. Increased level of
intracellular Ca2+ also leads to the activation of several Ca2+-
dependent enzymes [46]. Those enzymes include proteases
(responsible for breaking down membrane and cytoskeletal
proteins), endonucleases (responsible for DNA fragmenta-
tion), kinases, phospholipases (responsible for membrane
damage), phosphatases, andnitric oxide synthase (NOS) [46–
48].

Glial activation and neuroinflammation are believed to
contribute to the development and progression of acute
and chronic neurodegeneration [49–53]. Upon neuronal
injury, neurons interact with glial cells (i.e., astrocytes and
microglia). The survival of neurons and the postinjury repair
of neurons are influenced by the activity of astrocytes and
microglia. The activation of glial cells (as measured by
increased activation ofmicroglia and astrocytes) is associated
with neuronal death upon KA administration [30–32]. Sys-
temic injection of KA on rats has resulted in large increase
of reactive astrocytes and microglial cell [54]. Activated
microglia and astrocytes produced a large amount of inflam-
matory mediators, such as nitric oxide (NO), interleukin-1
beta (IL-1𝛽), and tumor necrosis factor-alpha (TNF-𝛼) [55],
which influence the outcome of neurodegeneration [32, 33].

The overactivation of glutamate receptors by KA can also
cause the fragmentation of ER membrane and ER stress with
the activation of ER proteins like binding immunoglobu-
lin protein (BiP, also known as glucose-regulated protein
78/GRP78), CCAAT/enhancer-binding protein- (C/EBP-)
homologous protein (CHOP, also known as growth arrest and
DNA damage inducible gene 153/GADD153), and caspase-12,
which are involved in the neuronal apoptosis [34, 35].

Excessive influx of Ca2+ into neurons through ionic
channels and generation of free radicals also cause the
accumulation of Ca2+ and mitochondrial dysfunction, which
leads to the collapse of potential at the mitochondrial inner

membrane. This results in the mitochondrial swelling and
the release of mitochondrial factors at the mitochondrial
inner membrane space. The release of mitochondrial factors
also triggers the activation of caspase and proteases that are
responsible for the activation of apoptotic neuronal death.
This leads to the cleavage of essential cellular substrates such
as poly(ADP-ribose) polymerase-1 (PARP-1).

In a study by Gilliams-Francis et al. the intracerebral
injection of KA has resulted in DNA damage, PARP-1 activa-
tion, and neuronal death [56]. The work suggested that there
is a link between activation of caspase pathways and excito-
toxic cell death and the neurons undergo caspase-mediated
death, involving the DNA fragmentation and cleavage of
PARP-1.

KA administration also causes mitochondrial dysfunc-
tion. Excessive generation of ROS causes reduction in energy
level (depletion in ATP) and lipid peroxidation which leads
to mitochondrial dysfunction [36]. These alterations in the
mitochondrial function could be an early event prior to
neuronal cell death.

3. The Mechanism of Preventive and
Therapeutic Treatment Approaches in
Neurodegeneration

Since excitotoxicity is an important process in the pathogen-
esis of neurodegeneration, neuroprotection seems promising
for the preventive and therapeutic approaches in neurode-
generative diseases. Neuroprotection offers the potential to
ameliorate or delay the process of neurodegeneration or to
slow the rate of neurodegeneration through the interaction
with the pathological changes process as well as the pro-
gression of clinical manifestations of the neurodegeneration
diseases.

Considering the implication of oxidative stress in the
mechanism of excitotoxicity-associated neurodegeneration,
antioxidants and anti-inflammatory agents serve as potential
candidates for neurodegeneration preventive and therapeutic
treatment. Antioxidantswould serve as agents that can inhibit
the production of free radicals, interfere with formed free
radicals, and limit the degree of damage to neurons [57].

In addition, inflammation can enhance the neuronal
death and neuronal degeneration through the production of
inflammatory mediators, such as cytokines and prostagl-
andin. The reduction of inflammation via cyclooxygenase-
2 (COX-2) and 5-lipoxygenase (5-LOX) activities could also
decrease inflammatory molecules, including prostanoids.
Glia-derived cytokines can also counteract inflammation
to block the unique signal transduction of specific proin-
flammatory cytokines and can also modify the outcome of
neurodegeneration progression.

Other potential approaches for treatment of neurode-
generative diseases are to improve the function of mito-
chondria and ER to inhibit the ER stress and apoptosis. A
short summary and illustration of the proposed mechanism
of action for the preventive and therapeutic strategies for
neurodegenerative diseases are presented in Table 1 and
Figure 2. Combination of multiple agents that target multiple
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Figure 2: Illustrations of proposed mechanism of preventive and therapeutic treatment approaches in neurodegeneration.

Table 1: Proposed mechanisms of preventive and therapeutic
treatment approaches in neurodegeneration.

Proposed mechanisms Reference(s)
Anti-inflammation [87–95]
Antioxidant activity [25, 96–102]

Anticonvulsion and antiepileptic
[14, 15, 42,
64, 70, 72,
103, 104]

Modulation of apoptosis-related genes/proteins
and signaling pathways

[74, 75, 84,
104–111]

Cognitive enhancer [17–20, 22]
Manipulation of glial activation and inflammatory
cytokines

[29, 72, 112–
115]

Combating excitotoxicity [116]
Enhancing mitochondrial functions [36, 111]
Inhibition of ER stress by small molecular
compounds [34–37]

Inhibition of Phospholipase A by Phospholipase
A inhibitors [117]

Inhibition of NO by NOS inhibitors [118]

pathways may result in synergistic effects to bring additive
neuroprotective effect.

4. The Protective Effect of Natural Products
and Plant Extracts in the KA Model of
Neurodegeneration

For decades, many efforts attempted to elucidate the mech-
anism of excitotoxicity and neurodegeneration and to inves-
tigate its pharmacological interventions. Recently, there has
been an emerging trend to search for natural resources to
combat against neurodegenerative diseases. Reports on the
potential beneficial effects of natural products and plant
extracts in the experimental treatment of neurodegenera-
tion continue to expand, largely on the effect by various
constituents, including polyphenols for a wide range of
medicinal, pharmacological, and biological properties. The
following are summaries of the various reported studies
on selected natural products and plant extracts involving
the KA-induced experimental neurodegeneration model,
namely, ginseng, Uncaria rhynchophylla, tea, and honey bee
propolis.

4.1. Ginseng (Panax 𝑠𝑝.). Ginseng is the dried root of several
species from Panax genus (Araliaceae family). There are
seven major species to Panax genus but Panax ginseng
(Asian ginseng), Panax quinquefolius (American ginseng),
and Panax japonicus (Japanese ginseng) are the three most
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widely studied species [58–60].Themajor active components
found in ginseng are ginsenosides (steroidal saponins) [61].
The rest are polysaccharides, peptides, polyacetylenic alcohol,
and fatty acids [58, 60, 61]. Ginsenosides have been isolated
and classified into three groups, based on chemical structure
of their sapogenins (aglycones): the panaxadiols group (i.e.,
Rb
1
, Rb
2
, Rb
3
, Rc, Rd, Rg

3
, Rh
2
, and Rh

3
), the panaxatriols

group (i.e., Re, Rf, Rg
1
, Rg
2
, and Rh

1
), and the oleanolic

acid group (i.e., Ro) [62]. Ginseng has been shown to
possess antioxidants and anti-inflammatory properties [58].
Pharmacological effects of ginseng have been demonstrated
on the CNS, with stimulatory effects and neurotransmission
modulation [63].

In KA-induced excitotoxicity model, Lee et al. work
in 2002 was the first to suggest that ginseng may have
anticonvulsant activity [64]. It reported that KA-induced
seizure in animal pretreated with a mixture of ginsenosides
had shorter duration than in KA-only treated animals. This
was supported by Shin et al. work [65], where repeated
treatment with ginsenosides mixture before administration
of KA has significantly reduced the number of wet dog shakes
(WDS), delayed the onset of seizures, and decreased the
score of seizures [65]. In another study by Lian et al., it has
been demonstrated that the onset of KA-induced seizures
was delayed and the score of seizures was decreased in
animals pretreated with the partial purified Rb ginsenosides
(Rb extract), significantly [60]. These results indicated that
ginseng particularly with the presence of Rb ginsenosides
suppresses KA-induced seizures and has significant anticon-
vulsant property.

Moreover, pretreatment with Rb extract before KA
administration has reduced the percentage of animal having
immunoreactivity for heat-shock protein-72 (HSP-72) [60].
Pretreatment with ginsenosides mixture before KA admin-
istration has also suppressed the induction of HSP-70 and
has attenuated the neuronal cell death in the CA1 and CA3
regions of the hippocampus [64].

In addition, the treatment with the mixture of ginseno-
sides has significantly reduced the rise in KA-induced protein
oxidation and lipid peroxidation and has significantly atten-
uated KA-induced glutathione oxidation in the homogenates
and mitochondrial fraction of the hippocampus. The effect
was more apparent in the mitochondrial fraction than in the
homogenate of the hippocampus [65]. Mixture of ginseno-
sides also attenuated the decrease in manganese-superoxide
dismutase-like immunoreactivity (SOD-2-IR) and in super-
oxide dismutase-2 (SOD-2) protein level in the CA1 and CA3
regions of the hippocampus [65] sinceMn-SODcould protect
mitochondria from superoxide radicals and the damage
induced by KA-induced oxidative stress. This indicated that
ginsenosides could prevent KA-induced excitotoxicity by
attenuating oxidative stress, particularly in mitochondria,
through its antioxidant mechanism.

Mixture of ginsenosides had also significantly attenu-
ated the increase in intramitochondrial Ca2+ level and the
decrease in mitochondrial transmembrane potentials in the
hippocampus [65]. These findings implied that the mixture
of ginsenosides of ginseng could reduce or protect against

the excitotoxic effect of KA by attenuating the mitochondrial
dysfunction.

Upon KA administration, a significant astrocyte and
microglial response was observed and Rb fraction signifi-
cantly inhibits the activation ofmicroglia against KA-induced
excitotoxicity [26]. Rb fraction also has been shown to
prevent the hippocampal-dependent impairment of spatial
cognitive function and hippocampal neurodegeneration [26].
This indicated that Rb fraction could protect neuron and glial
cells against excitotoxicity induced by KA.

In a study on red ginseng extract (RGE), it has been shown
that RGE decreased the production of ROS in KA-exposed
primary hippocampal neuronal cell culture and inhibited the
lipid peroxidation in hippocampal tissue [66]. This indicated
that RGE can protect neurons from excitotoxicity through
its antioxidant mechanism. Moreover, RGE has also been
shown to attenuate the elevation of intracellular Ca2+ level
and inhibit neuronal cell loss in KA-induced excitotoxicity
in vitro model [66]. Excess accumulation of intracellular
Ca2+ can initiate the excitotoxic process, leading to neuronal
damage or death. By decreasing the elevation of intracellular
Ca2+ level, RGE can protect neurons from neuronal damage
or death.

These results suggested that ginseng, particularly with
the presence of ginsenosides, displays neuroprotective and
antioxidant effects against KA-induced excitotoxicity.

4.2. Uncaria. Uncaria rhynchophylla (Miq.) Jacks (UR) is the
dried stems ofUncaria, a genus plant species from Rubiaceae
family. UR is a medicinal herb used in the traditional Chi-
nese medicine (TCM) to treat neuronal-associated diseases.
Active components found in the extract of UR are the
alkaloids of UR, which are rhynchophylline (RP), isorhyn-
chophylline, hirsutine, hirsuteine, corynantheine, corynox-
ine, and dihydrocorynantheine [67, 68]. Among these alka-
loids, RP and isorhynchophylline are the most widely stud-
ied and have been known as neuroprotective compounds
[69].

The extract of UR has been shown to possess anti-
convulsive effect and free radical scavenging activity in
KA-induced epileptic seizures with the inhibition of lipid
peroxidation [70, 71]. In addition, UR extract has reduced the
spread of mossy fibers sprouting, an indicator of recurrent
epilepsy [72]. Pretreatment with UR extract before KA
administration also has increased the survival of neurons
and reduced the epileptiform discharges in the hippocampus
[29].

UR also has been reported to exhibit neuroprotective
effect against KA-induced neuronal damage, associated with
the reduction of microglial activation, neuronal nitric oxide
synthase (nNOS), inducible nitric oxide synthase (iNOS),
and apoptosis [73] and the attenuation of glial fibrillary
acidic protein (GFAP) and S100 calcium-binding protein
B (S100B) expression in the hippocampal region [29, 72].
This suggested that UR can prevent hippocampal neuronal
death.
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Collectively to date, these findings suggest that UR and
RP display neuroprotective and anticonvulsive action in
protecting neuronal damage and suppressing KA-induced
seizures throughmultiple signaling pathways and therapeutic
targets.

4.3. Tea. Tea is made from leaves and stem of Camellia sinen-
sis plant. This plant is the same plant that is used for making
nonfermented (fresh green), semifermented (oolong), fer-
mented (black), and postfermented (Pu-Erh) tea. The chem-
ical composition of tea contains many polyphenolic com-
pounds, called green tea polyphenols.This includes catechins,
theaflavins, tannins, and flavonoids. The most major green
tea polyphenols are catechins, which include (−)-catechin
(EC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin
(EGC), and (−)-epigallocatechin gallate (EGCG). Among
those catechins, EGCG is the most active polyphenol. EGCG
is higher in green tea and is responsible for the green tea effect
[74].

In KA-induced seizures, fresh green tea leaf [74] and
Pu-Erh tea leaves [75] extracts have attenuated the maximal
seizure classes, the behavioral seizure patterns, and lipid per-
oxidation. While in vitro, these tea leaf extracts have reduced
Ca2+ release, ROS production, and lipid peroxidation. These
observations implied that fresh green tea leaves and Pu-
Erh tea leaves extract attenuated oxidative stress and have
anticonvulsive effect.

In the same studies, fresh green tea leaf and Pu-Erh tea
leaf extracts appeared to reduce COX-2 and p38 mitogen-
activated protein kinases (MAPK) expression and have
reduced PGE2 productionKA-induced in vitroPC12 cells [74,
75]. Thus, the tea leaf extract has potential neuroprotective
and anticonvulsive effects against excitotoxicity.

4.4. Honey Bee Propolis. Honey bee propolis is a resinous
mixture that honey bees collect from a variety of botanical
sources. It has been used as a sealant for beehive. The
chemical composition of propolis varies with geographic
origin depending on the specificity of the local flora, the
phenology of the source of plants, and the characteristics of
climate [76].

Propolis has been shown to have a wide range of biolog-
ical activities, including anti-inflammatory [77] and antiox-
idant [78–80], that are attributed chiefly by the presence
of flavonoids [79, 81] and caffeic acid phenyl ester (CAPE)
[80]. There are studies to suggest the role of flavonoids and
CAPE in the antioxidant and anti-inflammatory activities of
propolis [79–83].

Propolis has long been used as a folk medicine and
protective remedy [84, 85]. In KA-induced excitotoxicity
model, pretreatment with ethanol-extracted propolis before
KA administration has reduced the increase of NO pro-
duction along with the increase of thiobarbituric acid reac-
tive substances (TBARS) production and the decrease of
total antioxidant status (TAS) level [86], indicating that
propolis supplementation ameliorated KA-induced oxidative
stress.

Furthermore, propolis has been reported to attenuate
proinflammatory cytokinemarker, the TNF-𝛼 level following
the administration of KA [84], suggesting that propolis can
protect against KA-induced neuronal damage. Propolis also
has been shown to restore glutamine synthase activity [86]
and ameliorate caspase-3 and NOS activities [84] in the
cerebellum, cerebral cortex, and brain stem regions of KA-
induced animals. These findings demonstrated that propolis
supplementation has beneficial effect against KA-induced
neurodegeneration due to its antioxidant, anti-inflammatory,
and antiapoptotic properties.

Moreover, propolis has been shown to protect against
convulsive behavior induced by KA in a dose-dependent
manner [85]. This suggests that propolis may also possess
anticonvulsants property. The pretreatment with propolis
also significantly prevented KA-induced neuronal loss in the
CA1 and CA3 regions of the hippocampus [85].

4.5. Other Natural Products and Plant Extracts. Many other
studies have also tested or reported on the protective effect
of KA-induced excitotoxicity in vivo and in vitro models
involving other natural products and plant extracts (as sum-
marized in Table 2).Thus, natural products and plant extracts
could be potential candidates in the preventive and efficient
treatment of excitotoxicity-associated neurodegeneration
diseases.

Collectively, these findings suggest that the natural prod-
ucts and plant extracts appear to have potential neuropro-
tective effect against KA-induced excitotoxicity through var-
ious mechanisms, primarily through their antioxidant, anti-
inflammatory, and anticonvulsive activities.This signifies the
therapeutic merits of the natural products and plant extracts
as neuroprotective agents. Further studies are needed to
determine the other potentials and various mechanisms of
actions of these natural products and plant extracts guard
against KA-induced excitotoxicity.

5. Conclusion

Natural products and plant extracts appear to offer poten-
tial beneficial effects on the CNS, particularly their neu-
roprotective effect against excitotoxicity. In addition, natu-
ral products and plant extracts provide promising avenue
for further research to guard against development and
progression of acute and chronic neurodegeneration. Fur-
ther work can aim at targeting simultaneous pathways
that underlie the various mechanisms involved in order to
expand the therapeutic yields for various neurodegeneration
diseases.
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[39] S. Ratté and J.-C. Lacaille, “Selective degeneration and synaptic
reorganization of hippocampal interneurons in a chronicmodel
of temporal lobe epilepsy,” Advances in Neurology, vol. 97, pp.
69–76, 2006.

[40] L.-H. Zeng, N. R. Rensing, and M. Wong, “The mammalian
target of rapamycin signaling pathwaymediates epileptogenesis
in a model of temporal lobe epilepsy,” Journal of Neuroscience,
vol. 29, no. 21, pp. 6964–6972, 2009.

[41] S. J. Royle, F. C. Collins, H. Rupniak, J. C. Barnes, and R.
Anderson, “Behavioural analysis and susceptibility to CNS
injury of four inbred strains of mice,” Brain Research, vol. 816,
no. 2, pp. 337–349, 1999.

[42] Y. Ben-Ari and R. Cossart, “Kainate, a double agent that gener-
ates seizures: two decades of progress,” Trends in Neurosciences,
vol. 23, no. 11, pp. 580–587, 2000.

[43] N. Nakao, E. M. Grasbon-Frodl, H. Widner, and P. Brundin,
“Antioxidant treatment protects striatal neurons against excito-
toxic insults,” Neuroscience, vol. 73, no. 1, pp. 185–200, 1996.

[44] A. Melo, L. Monteiro, R. M. F. Lima, D. M. de Oliveira,
M. D. de Cerqueira, and R. S. El-Bachá, “Oxidative stress
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