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Abstract: With the frequent occurrence of extreme climate, global agriculture is confronted with
unprecedented challenges, including increased food demand and a decline in crop production. Nan-
otechnology is a promising way to boost crop production, enhance crop tolerance and decrease
the environmental pollution. In this review, we summarize the recent findings regarding innova-
tive nanotechnology in crop production, which could help us respond to agricultural challenges.
Nanotechnology, which involves the use of nanomaterials as carriers, has a number of diverse applica-
tions in plant growth and crop production, including in nanofertilizers, nanopesticides, nanosensors
and nanobiotechnology. The unique structures of nanomaterials such as high specific surface area,
centralized distribution size and excellent biocompatibility facilitate the efficacy and stability of
agro-chemicals. Besides, using appropriate nanomaterials in plant growth stages or stress conditions
effectively promote plant growth and increase tolerance to stresses. Moreover, emerging nanotools
and nanobiotechnology provide a new platform to monitor and modify crops at the molecular level.
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1. Introduction

Nanotechnology is a prospective field with multiple applications across various areas
of modern science, including physics, pharmacology chemistry, computer science, agri-
culture and engineering [1]. The distinct physical, chemical and biological properties of
nanoparticles (NPs) give them the ability to modify typical chemicals and devices [2]. NPs
are defined as natural and artificial materials with at least one dimension ranging from
1 nm to 100 nm and these materials can be organic, inorganic or polymeric compounds [3].

With the rapid growth of the population and deterioration of the environment, tradi-
tional agriculture is facing unprecedented challenges [3]. Fertilizers and pesticides have
played pivotal roles in satisfying food production needs for decades [4]. However, ex-
cessive use of these chemicals also hinders sustainable agricultural development [5,6].
Increased use of nanotechnology could provide innovative solutions to improve sus-
tainable agriculture, which would also fulfill food demands [7]. Current studies have
shown that nanotechnology can be widely used to address various agricultural problems,
such as excessive use of fertilizers and pesticides, and plant stress induced by extreme
climate [8–12]. Besides, nanomaterials significantly promote plant growth, seed germi-
nation and stress tolerance [3]. Moreover, applications of nanotechnology also include
plant growth status monitoring, rapid and simple genome modification and transgene
expression in intact plant cells [13,14].

Currently, research involved in nanotechnology applied in agriculture has increased
exponentially. However, few reviews integrate all aspects of nanotechnology used in crop
production together, especially the emerging nanosensors and nanobiotechnology. In this
review, we summarize the current research on nanotechnology in crop production, which
helps us develop sustainable agriculture.
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2. Nanofertilizers

Chemical fertilizers are indispensable for modern agricultural systems. However, the
efficiency of synthetic chemical products has been decreasing for decades, accompanied by
water pollution, soil contamination and greenhouse gas emissions [3]. Nanotechnology
could pave the way for sustainable agriculture (Figure 1).
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Figure 1. Simplified application model of nanofertilizers and nanopesticides. Fertilizers and pesti-
cides are encapsulated by versatile nanoparticles. Nanofertilizers and nanopesticides can be applied
by spraying or irrigation to increase the efficiency of nanochemicals, promote the absorption of
fertilizers, decrease fertilizer outflow and pesticides doses and promote environmental sustainability.

Nanofertilizers are mineral nutrients manufactured mainly by encapsulation with
NPs and can be classified into macronutrients and micronutrients [4]. Macronutrients such
as carbon (C), nitrogen (N), potassium (K), phosphorus (P), calcium (Ca), sulfur (S) and
magnesium (Mg) have been encapsulated by different nanomaterials, to improve crop
absorption of fertilizers and decrease fertilizer outflow [6,15–20]. The high specific surface
area, high stability and excellent biocompatibility of NPs provide NP fertilizer composites
with increased release efficiency [21]. For example, urea-hydroxyapatite (HA) NPs have
exhibited great potential for prolonging the release time and reducing the consumption
of nitrogen fertilizers. Urea obtains the advantages of NPs by interacting with amine and
carbonyl groups of HA NPs [15]. Field trial data have shown that, compared with pure urea,
nanohybrids of urea and HA increase agronomic nitrogen use efficiency by approximately
30% [15]. In addition, numerous studies have revealed that the high specific surface area
and density of NPs endow nanohybrids with high reactivity [3,7,22]. The application of
nanofertilizers has great promise for promoting fertilizer absorption and increasing crop
yields [6]. Recent studies have reported that loading N, P and K into chitosan NPs increases
the acquisition of N, P and K by 17.04%, 16.31% and 67.50%, respectively, compared to
that of an untreated control in cultured coffee plants [16]. Sprayed on cotton, magnesium
oxide (MgO) NPs significantly increased the seed cotton yield by 42.2% relative to the
untreated control [19]. Furthermore, nanofertilizers also control the loss of fertilizers and
decrease damage to the soil. Phosphate ions-loaded layered double hydroxide (LDH)
significantly increased the soil pH value and decreased the soil absorption of P [17]. In
conclusion, the nanohybrids mentioned above, with plentiful pores and less volume,
facilitate nutrient uptake. Fertilizers encapsulated by NPs, especially porous NPs, are
hardly damaged by environmental factors such as rain and wind while those compounds
are easily transferred into plant cells. This feature prolongs the fertilizer release time
and improves soil physical and chemical properties [3]. Specifically, traditional fertilizers
chemically or physically interact with NPs such as HA or chitosan NPs, and these kinds of
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interactions help fertilizers escape degradation by environmental factors [15,16]. Moreover,
chemical reactions of NPs and fertilizers decrease and homogenize the particles size of
fertilizers. This process endows nanofertilizers with stability and high specific surface area,
which significantly increases the efficiency of fertilizers [4].

Micronutrients such as iron (Fe), boron (B), manganese (Mn), copper (Cu), zinc (Zn)
and molybdenum (Mo) have also been enclosed in nanomaterials such as chitosan, zinc
oxide NPs (ZnO NPs), Cu NPs and Ca NPs, which improve the effective accessibility of
micronutrients to plants [6,23–25]. These micronutrients play crucial roles in diverse plant
physiological and chemical reactions, including photosynthesis, enzyme components and
enzyme activators. Moreover, the application of nanofertilizers made of micronutrients
promotes plant growth and increases yields [24,25]. For example, ZnO NPs fertilization of
strawberry significantly increased fruit setting and the grain yield compared to strawberry
fertilized with zinc sulfate (ZnSO4) [24]. B deficiency damages shoot growth and pollen
germination. However, foliar application of calcium borate NPs (CaO2B2O3·10H2O NPs) to
lettuce promoted the accumulation of B 1.54-fold and 3.95-fold in shoots and roots, respec-
tively, compared with treatment using a nutrient solution in traditional B addition [25]. As
mentioned above, extra fertilizing micronutrients can enhance the photosynthesis rate and
antioxidant enzyme activity. These physiological processes lead to elevated dry weights,
shoot lengths, root lengths and biomass. Hence, foliar or drench application of nanotype
micronutrients significantly increases yields and promotes plant growth.

The size distribution of NPs is an effective parameter related to fertilization effi-
ciency [26]. Interestingly, nanotype fertilizers all have decreased particles sizes and in-
creased numbers of particles per unit, leading to high specific surface areas [4]. Increased
interaction with leaves and roots enables better absorption of fertilizers by plants. In addi-
tion, the unique properties of NPs lead to enduring effects. NPs encapsulated fertilizers
resist degradation by hydrolysis, photolysis, evaporation, microbial organism decompo-
sition and weathering [3]. Furthermore, their porous structures and small size profiles
may help NPs be transferred into cells by molecular transporters or ion channels, which
activates signaling pathways related to phytohormones or other growth factors [21].

3. Nanopesticides

Nanoformulation or encapsulation of insecticides, herbicides, fungicides and bac-
tericides with nanomaterials holds enormous potential for decreasing chemical pesti-
cides doses, increasing crop production and promoting sustainable development [11,22].
Nanocarriers of nanopesticides include polymeric NPs (such as chitosan and solid lipids),
inorganic nonmetallic NPs (such as silica NPs and nanoclays) and metallic NPs (such as Cu
NPs and ZnO NPs) [27–34]. Several studies have shown that nanotype insecticides are more
efficient at killing pests and less likely to cause side effects on humans [35]. For example,
spinosad- and permethrin-loaded chitosan NPs applied to Drosophila melanogaster displayed
reinforced bioavailability even at lower doses than free spinosad and free permethrin, and
the nanocomposites caused decreased damages to humans and the ecological environ-
ment [27]. Upon encapsulation by NPs, the nanoinsecticide particles become smaller and
more centralized, which endows them with stability and a slow release capacity. These
properties increase the activity of insecticides and decrease their toxicity towards humans.
In addition, the biological toxicity of highly concentrated NPs provides a unique pathway
for directly inhibiting the growth of pests, bacteria and viruses. For instance, several
nanoinsecticides take advantage of the toxicity of metallic NPs. Aluminum oxide (Al2O3)
NPs exhibited great potential for eliminating Sitophilus oryzae on stored rice compared with
bulk Al2O3 treatment [36]. Pheromones have been verified to be a promising and effective
method to control pest populations [37]. Composites of nanocarriers and pheromones
amplify the advantages of sex pheromones [38]. For example, methyl eugenol-loaded
nanogels applied to guava orchards increased the number of trap catches compared with
the control group containing only methyl eugenol [39].
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Herbicides, which are widely used to clear weeds, have exhibited numerous side
effects, including toxic effects on living organisms, water pollution and contamination of
soil and air, since commercial production of these chemical compounds [40]. Encapsulation
of herbicides by nanoparticles is a promising mean to decrease herbicide residues in
environment and increase weed control efficiency [41]. Among various kinds of NPs, solid
lipids are the most suitable nanocarriers for nanoherbicides due to their good chemical
stability and simple metabolism [42]. For example, foliar application of metsulfuron
methyl-loaded polysaccharide NPs to weeds growing in wheat significantly decreased
the weed biomass compared with normal herbicide [43]. Moreover, the cytotoxicity of
nanoherbicides and traditional herbicides was also detected by incubation with cells, and
the results showed that herbicide-loaded NPs were less toxic than normal herbicides [43].
Another study of solid lipid NP-based nanoherbicides showed better release profiles and
herbicidal activity than normal herbicides. Encapsulation of atrazine by solid lipid NPs
significantly inhibited the growth of Raphanus raphanistrum (weed species) compared with
the normal herbicide-treated group. Furthermore, the tested nanoherbicide concentration
had no toxicity toward Zea mays [44].

As mentioned above, metallic NPs appear to have unique potential for producing
nanobactericides and nanofungicides [45]. For example, compared with free-leaf extracts,
nanobactericides composed of silver NPs (Ag NPs) and holy basil leaf extract showed in-
creased inhibition of Xanthomonas axonopodis pv. punicae on pomegranate [28]. Experiments
examining bacterial activity revealed that Cu NPs inhibited the growth of five bacteria,
Agrobacterium tumefaciens, Dickeya dadantii, Erwinia amylovora, Pectobacterium carotovorum
and Pseudomonas savastanoi pv. Savastanoi [46]. Furthermore, metallic NPs have the capacity
to inhibit bacteria/fungi, and nonmetallic NPs can suppress plant diseases. For instance,
chitosan NPs effectively controlled infection by Xanthomonas campestris in chili peppers
compared with the untreated group [47].

Similarly, metallic NPs also inhibit fungi. For example, cobalt ferrite (CoFe2O4) NPs
and nickel ferrite (NiFe2O4) NPs reduced the incidence of Fusarium wilt compared with
that in untreated plants, and these NPs had no side effects on the growth of Capsicum
plants [31]. Moreover, the complexes of NPs and fungicides have concentrated particle
size distributions and large specific surface areas, which improve antifungal activity and
prolong fungicide release times [48]. Several studies have reported that fungicides encap-
sulated by NPs performed superbly in controlling fungi [30,49]. Chitosan-hexaconazole
NPs crosslinked with tripolyphosphate (TPP) enhanced the inhibition of the growth of
Ganoderma boninense compared with pure hexaconazole [49].

In addition to bacteria and fungi, phytoviruses lead to tremendous crop production
losses due to their rapid duplication, genomic diversity and dynamic evolution (Table 1) [50].
NPs have become promising management tools to prevent viral invasion in different
ways, such as by interacting with nucleic acids, triggering plant immune responses and
delivering RNA interference systems. Foliar application of carbon nanotubes to tobacco
effectively suppressed symptoms of the Tobacco mosaic virus (TMV) relative to untreated
control. The relative expression level of viral coat proteins decreased in carbon nanotubes
(CNTs)-treated plants. The concentrations of salicylic acid and abscisic acid in CNTs-treated
plants dramatically increased over those in the untreated group. These results show that
CNTs inhibit TMV infection by hindering viral replication and movement [51]. A recent
study reported that metallic NPs such as Ag NPs can interact with the coat protein and
induce a plant immune response to inhibit infection by the Tomato mosaic virus (ToMV)
and Potato virus Y (PVY). Infection of tomato by ToMV and PVY decreased compared
to untreated control when sprayed with Ag NPs. Meanwhile, the total soluble protein
(TSP) content and polyphenol oxidase (PPO) activity in tomatoes infected with ToMV
significantly increased compared with the control [52].
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Table 1. Effects of nanoparticles (NPs) on crop protection.

NPs Type Original Pesticide Concentration Target Reference

Chitosan Insecticide Spinosad/permethrin 10 mg/L Drosophila melanogaster [27]
Zinc oxide (ZnO) Insecticide Aspergillus niger 20 mg/L Holotrichia sp. [34]

Aluminium oxide (Al2O3) Insecticide — 2 g/kg Sitophilus oryzae L. [36]
Nanogel Insecticide Methyl eugenol 12 mg/mL Bactrocera dorsalis [39]
Nanogel Herbicide Savory essential oil 15 mL/L weeds [29]

Polysaccharide Herbicide Metsulfuron methyl 0.5 g/L Chenopodium album [43]

Solid lipid Herbicide Atrazine and
simazine 0.3 kg/ha Raphanus raphanistrum [44]

Silver (Ag) Bactericide Leaf extracts
(holy basil) 15 mM Xanthomonas axonopodis pv.

punicae [28]

Copper (Cu) Bactericide — 240 mg/L

Agrobacterium tumefaciens,
Dickeya dadantii,

Erwinia amylovora,
Pectobacterium carotovorum
and Pseudomonas savastanoi

pv. Savastanoi

[46]

Chitosan Bactericide Streptomycin sulfate 1 mg/mL Xanthomonas campestris [47]
Cobalt ferrite (CoFe2O4)

and Nickel ferrite
(NiFe2O4)

Fungicide — 500 mg/L
Fusarium oxysporum,

Colletotrichum gloeosporioides
and Dematophora necatrix

[31]

Chitosan Fungicide Hexaconazole 10 ug/L Ganoderma boninense [49]

Cu Fungicide — 0.5 mg/mL Fusarium solani and
Fusarium oxysporum [30]

Carbon
nanotubes (CNTs) Antiviral-pesticide — 200 mg/L Tobacco mosaic virus (TMV) [51]

Ag Antiviral-pesticide — 50 mg/L Tomato mosaic virus (ToMV)
and Potato virus Y (PVY) [52]

4. Nanotechnology in Regulating Seed Germination, and Plant Growth

Nanotechnology has been used in various aspects of agricultural production, such as
seed germination and plant growth, to increase crop yields and quality (Figures 2 and 3).
Seed germination is a refined and fundamental biological process associated with environ-
mental factors, genetic traits, and soil parameters. Recently, some studies have shown that
NPs such as CNTs, silicon dioxide (SiO2) NPs, ZnO NPs, titanium dioxide (TiO2) NPs and
even gold (Au) NPs have positive effects on seed germination in crop plants, including
tomato, wheat, rice, pearl millet, soybean, barley and maize [12,53–59]. Seed germination
is related to antioxidant enzyme activities and the contents or utilization rates of water
and oxygen [60]. For example, Au NPs significantly increased the germination rate of
pearl millet compared to that of untreated plants [54]. The seed germination rate of wheat
treated with ZnO NPs was increased compared with that of the control group [61]. The two
NPs mentioned above both have the ability to increase antioxidant enzyme activity. TiO2
NPs are beneficial to promoting seed germination, and exogenous treatment with TiO2
NPs enhances the seeds absorption of water and oxygen, leading to decreased germination
time. For instance, tomato seeds soaked with TiO2 NPs exhibited a germination percentage
increased by approximately 8% compared with the untreated control [59]. Another study
has revealed that TiO2 NPs stimulate seed germination and dramatically decrease mean
germination time in wheatgrass [57]. Moreover, nonmetallic NPs such as multiwalled car-
bon nanotubes (MWCNTs) can stimulate seed germination in different crops by increasing
the seed water assimilation capability. Air-spraying MWCNTs on soybean, barley and corn
seed successfully increased the seed germination rate by at least 25% compared with the
untreated control. Further experiments revealed that MWCNTs penetrated the surface of
the seed. Moreover, the relative gene expression of several water-channel-related genes in
soybean, barley and corn seeds sprayed with MWCNTs increased significantly [12].
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Figure 3. The mechanism of nanoparticles induced enhancement in seed germination, plant growth
and stress tolerance.

Additionally, NPs such as Ag NPs, ZnO NPs, TiO2 NPs, silica NPs and MWCNTs
can promote the growth, photosynthesis and yield of many crop species, such as spinach,
cotton, maize, soybean and barley [12,54,62–65]. NPs primarily accelerate plant growth by
mediating crop antioxidant enzyme activity. For instance, ZnO NPs sprayed on cucumber
improved the plant chlorophyll content and leaf fresh/dry weight. Antioxidant-related
enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT) activities,
in the treated cucumber leaves all increased significantly compared with the untreated
control [66]. In addition, NPs influence plant cell morphology and improve protein and
organic compounds content of the cell [62]. Soil amended with silica NPs promoted the
growth of maize, especially in terms of plant height and root length. Moreover, differences
in plant morphology may be linked to the thickness of the cell wall [62]. Silica-NP-treated
plants showed thicker cell walls and more silica bodies in root cells compared to the
control plant. Meanwhile, the protein content in silica-NP-treated plants was higher
than that in the bulk-silica-treated one. However, organic compounds such as phenols,
aldehydes and ketones were less abundant in silica-NP-treated plants [62]. NPs tend to
induce gene expression related to nutrient assimilation and growth regulation [12,60]. The
bioinformatics helps researchers dig deeper for information [67]. The transcriptome of
ZnO-NPs-treated seedlings revealed that several metal-accumulation-related genes such
as BASIC HELIX-LOOP-HELIX 38 (bHLH38), bHLH39, bHLH100, ZINC TRANSPORTER 9
(ZIP9) and IRON-REGULATED TRANSPORTER 1 (IRT1) were upregulated in seedlings
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treated with ZnO NPs compared with those treated with normal Zn ions [60]. NPs also
have the potential to regulate plant hormone balance [68,69]. Foliar application of Ag NPs
to two varieties of common bean (Bronco and Nebraska) induced gene expression related
to the auxin signaling pathway, leading to a high content of auxin in plants [68].

Due to their structural and surface reactivity properties, NPs can induce intracellular
oxidative stress and genetic damage, which can lead to reduced crop yields and physio-
logical disorders when high concentrations of NPs are applied [55]. As mentioned above,
metallic NPs always have side effects on organisms due to the toxicity of metal elements.
Depending on this property, NPs can be a suitable resource for nanopesticides, but they
are also likely to inhibit plant growth and development. Ag NPs at 500 mg/L significantly
decreased the biomass of squash by 74% compared with the untreated control. In addition,
squash cultured in Hoagland’s solution amended with 100 mg/L Cu NPs exhibited 93%
reduction in biomass relative to the untreated control [70]. Therefore, we must determine
the safest doses of various NPs for different crop species.

5. Nanotechnology in Mediating Abiotic Stress Tolerance

As sessile organisms, plants are readily exposed to abiotic stresses such as cold, heat,
drought, salinity, soil alkalization and heavy-metal contamination, which strongly affect food
production and safety [71,72]. Several studies have indicated that different nanomaterials,
including ZnO NPs, TiO2 NPs, Fe2O3 NPs, silicon (Si) NPs, nanoceria, graphene oxides and
MWCNTs, reduce the deleterious effects of abiotic stress on crop plant species such as potato,
barley, alfalfa, sugar beet, flax, maize, Arabidopsis thaliana and rice [73–81].

NPs enhance plant tolerance to abiotic stress mostly by scavenging ROS and increas-
ing antioxidant enzyme activities [82]. Recent research has shown that graphene NPs
increase the alfalfa tolerance of alkaline conditions, specifically by improving antioxidant
enzyme activities and increasing the fresh weight, dry weight and seedling root length [80].
Ce ions can react with hydroxyl radicals, superoxide anions and hydrogen peroxide to
generate harmless substances such as oxygen, water and hydroxide ions. Polyacrylic
acid nanoceria (PNCs) with a low ratio of Ce3+/Ce4+-reduced ROS levels in Arabidopsis
thaliana leaves [81]. Another study revealed that MgO NPs alleviated lead (Pb) stress in
Daucus carota by increasing the activities of SOD and CAT. Specifically, MgO NPs treatment
increased the activities of SOD and CAT by 29% and 32%, respectively, under Pb stress
relative to the untreated control. MgO NPs treatment also increased the level of polyamines,
which play important roles in plant growth and development [83]. Chitosan-polyvinyl
alcohol (Cs-PVA) hydrogels and Cu NPs combined treatment increased the expression of
SOD compared with the control in tomatoes under salt stress [84].

Additionally, NPs can elevate plant tolerance to stress by increasing the photosynthesis
rate and photoprotection [82]. For instance, the chilling stress-induced reduction in the
photosynthesis rate in sugarcane was relieved by multiple NPs, including SiO2 NPs,
ZnO NPs, selenium (Se) NPs and graphene nanoribbons (GNRs). Compared with the
untreated control, foliar application of SiO2 NPs increased the maximum photochemical
efficiency of PSII (Fv/Fm), maximum photooxidizable P700 (Pm) and photosynthesis
rate (Pn) by 16.7%, 21.3% and 74.5%, respectively. The other three NPs listed above
also elevated these parameters, especially Pn, which increased by at least 47.2% relative
to the control group [85]. Pearl millet seeds were soaked in a Ag NPs solution before
priming, and then parameters related to photosynthesis in seedlings under salt stress were
detected. The results revealed that the photosynthesis rate, transpiration rate and stomatal
conductance of treated plants increased by 148%, 109% and 62% relative to the untreated
control, respectively [86].

Besides, NPs induce genes expression associated with stress and increase the abun-
dance of multiple proteins in plants under abiotic stress [87,88]. For example, several
metal-based NPs increased the drought tolerance of soybean [88]. The expression of three
stress-related transcription factors, GmWRKY27, GmMYB117 and GmMYB174, in leaves
treated with Fe NPs was 8-fold, 6-fold and 4-fold that in the control group under drought
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stress [88]. Label-free proteomics were used to reveal differences in the protein abundance
of wheat roots treated with Fe NPs under drought conditions. The abundance of the
Rubisco protein in plants exposed to Fe NPs was 3-fold that in untreated plants [87]. A
few metallic NPs, such as Al2O3 NPs, ZnO NPs and Ag NPs, were used on soybean to
relieve flooding stress. Among these NPs, Al2O3 NPs performed better than the others in
promoting plant growth and decreasing sensitivity to stress. The proteomics of soybean
seedlings under flooding revealed that the protein abundance related to protein synthesis,
glycolysis and lipid development was increased upon Al2O3 NPs exposure [89]. Hence,
the use of nanomaterials constitutes an effective and environmentally friendly method
to enhance plant tolerance to abiotic stress. However, the toxicity of NPs to plants or the
environment still needs to be considered before using it.

6. Nanosensors Used to Monitor Living Plants

Agricultural applications of nanosensors involve nutrient management, growth mon-
itoring, pest and disease assessment, detection of soil conditions, food production and
plant hormone detection [90]. Nanosensors constitute a new platform for monitoring plant
growth and development, which achieves nondestructive and accurate monitoring, and
can be applied to individual plants in real time (Figure 4) [3]. Common nanosensor detec-
tion techniques include fluorescence resonance energy transfer (FRET), surface enhanced
Raman scattering (SERS), corona-phase molecular recognition and common nanosensors
themselves include electrochemical nanosensors and piezoelectric nanosensors [14,91–95].
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Figure 4. Applications of nanosensors in crops. Nanosensors used in plant monitoring include several
aspects. Firstly, physiological or environmental parameters of plants are monitored by nanosensors.
These data are delivered to electronic equipment, including a smartphone or laptop, immediately.
Secondly, computer system analyzes data and provides instructions. Finally, the cultivation system
or administrators adjust environment conditions and take measures according to instructions.

Nanosensors used in living plants can be divided into several varieties, including
plant signal, growth and stress sensors. First, multiple plant signaling molecules, including
gas, electrical, phytohormone and chemical signals, can be detected by nanosensors [96–99].
Gas signals such as oxygen and nitric oxide (NO) are important internal plant signals
in response to abiotic or biotic stress [100,101]. A fluorescent ratiometric single-walled
carbon nanotubes (SWCNTs) sensor for NO detection is a nanosensor based on a single-
molecule detection technique. The response of SWCNTs sensors in leaves was similar to
that in in vitro tests, which indicated that this nanosensor has the capacity to deal with
complex environments [101]. In addition, electrical/Ca2+ signaling molecules are funda-
mental signaling molecules in organisms and are associated with multiple abiotic and
biotic stresses. Several indicators such as YC3.6, GCaMP and GCaMP-type low-affinity red
fluorescent genetically encoded Ca2+ indicators for optical imaging (LAR-GECO), based
on the FRET technique, provide visible, rapid and high affinity ways to detect transient
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Ca2+ [102–104]. Besides, a needle transistor-based sensor constituted by SWCNTs selec-
tively detects Ca2+ in living cells, although this kind of sensor still does not function in
plants [105]. Phytohormones are the most fundamental plant growth regulators involved
in all life cycles of plants. Current studies associated with nanosensors of phytohormones
include strigolactone, ethylene, jasmonic acid, abscisic acid and methyl salicylate (a ramifi-
cation of salicylic acid) [99,106–109]. Researchers have developed a fluorescence turn-on
probe named Yoshimulactone Green (YLG). YLG competes with synthetic or natural strigo-
lactone to bind with the receptor of strigolactone, and these reactions produce detectable
fluorescent products [99]. Chemical signals in plants, such as volatile organic compounds
(VOCs), are always connected to food quality or plant abiotic/biotic stresses [110,111].
Sensing of these chemical signals is useful for predicting shelf life, decreasing loss and en-
hancing stress tolerance. As a basic fruit ripening indicator, malic acid has great potential as
a target of nanosensors. A recent study showed that NADP-malate dehydrogenase (malic
enzyme) is covalently immobilized on MWCNTs, and differential pulse voltammetry (DPV)
is used to detect the concentration of malic acid in tomatoes. The malic acid nanosensor is
rapid, reliable and sensitive in tests [110]. In addition, near-infrared fluorescent SWCNTs
are selective sensors of hydrogen peroxide, which is a basic stress-related plant signaling
molecule; thus, hydrogen peroxide nanosensors could help monitor remote and localized
plant situations [96].

Sucrose and glucose are basic energy resources for plant growth, and detection meth-
ods for these chemicals have been upgraded in recent decades. The FRET technique is used
frequently in monitoring the flux of sucrose and glucose [112,113]. Moreover, wearable
nanosensors for use in people’s daily lives have developed rapidly and plentifully. Plant
wearable nanosensors have also emerged for monitoring plant growth parameters. Wa-
ter transportation and distribution are significant biological progresses in plant growth
and development. A flexible electronic sensing device was developed to continuously
monitor water transportation, sap flow and nutrient distribution. The application of this
nanosensor to watermelon revealed a day/night shift in water distribution between fruits
and leaves [114]. Before this nanosensor was reported, wearable nanosnesors made of
vapor-printed polymer electrodes reliably detected deep tissue damage induced by de-
hydration and ultraviolet A radiation [115]. Another significant wearable nanosenor is a
polyaniline (PANI)-coated MWCNTs ammonia sensor with high sensitivity, reliability and
a fast response time in ammonia detection [116].

Nanosensors for plant disease diagnosis are significant for monitoring plant health
and taking immediate defensive actions [117]. The accuracy, convenience and detection
conditions of traditional detection tools limit their development [14]. Portable, economical
and accurate nanosensors assist researchers in recognizing plant pathogens in a timely man-
ner [117,118]. Targets of plant disease recognized by nanosensors include DNA, protein and
VOCs [119]. For example, compared with the normal polymerase chain reaction method,
the SERS-recombinase polymerase amplification (RPA) method was more sensitive and had
a lower limit of detection in recognizing three important plant pathogens, Botrytis cinerea,
Pseudomonas syringae and Fusarium oxysporum [120]. The mechanism of binding between
antigens and antibodies is widely used in nanosensors to detect plant pathogens. The
fluorescence of cadmium-telluride quantum dots (CdTe-QDs) conjugated with an antibody
against Citrus tristeza virus (CTV) was activated by binding with CTV, and the fluorescence
was quenched by competitive binding with the coat protein of CTV [121]. p-Ethylguaiacol
is a typical VOC of strawberry that is produced due to infection by Phytophthora cactorum. A
recent study showed that metal oxide NPs such as TiO2 or stannic oxide (SnO2) on screen-
printed carbon (SP) electrodes detect p-ethylguaiacol sensitively and accurately [122]. In
conclusion, nanosensors help administrators monitor plant health at the molecular level,
which dramatically increases efficiency of plant management. However, the stability of
these nanosensors still needs to be considered more when leveraged in agricultural systems.
Moreover, are the sensitivity and reliability of nanosensors sufficient for use in agricultural
production? We have confidence that these problems will be resolved in the future.
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7. Nanobiotechnology in Genome Modification

In addition to widely used nanosensors, nanobiotechnology, especially nanomaterial-
assisted biomolecule (such as DNA and RNA) transfer, is a promising research field [3].
Nanomaterial-assisted biomolecule transfer is involved in transgene expression, genome
editing, gene silencing [8,123,124]. The physical and chemical properties of the plant cell
wall hinder the transformation of biomolecules into plant cells. Pollen, as a typical plant
tissue with a chemically inert cell wall, is an ideal target for transient gene expression.
Imidazolium-coated SWCNTs were used to assist the transfer of plasmid DNA encoding
green fluorescent protein (GFP) into oil palm pollen. The efficiency of both the delivery
and activity of GFP was high [123]. Moreover, using chitosan-coated SWCNTs, a DNA
plasmid was transformed into chloroplasts. This experiment comprised several plants
species including Eruca sativa, Nasturtium officinale, Nicotiana tabacum and Spinacia oleracea,
and carriers exhibited high transient expression levels [13]. In addition to transgene expres-
sion, studies associated with nanomaterial-based gene silencing and genome editing have
dramatically increased in recent years. Nanomaterial-based specific delivery of genetically
engineered plasmids provides innovative approaches for rapidly modifying the genomes
of plants [8]. For instance, a recent study showed that conjugates of DNA and CNTs were
successfully transferred into multiple plant species including tobacco, arugula, cotton and
wheat [125]. The siRNA delivery platform mediated by CNTs exhibited high silencing
efficiency in plant cells, and the NP-based delivery platform showed effective intracellular
transferable capacity [126]. Polyethylenimine-coated Au NPs (PEI-AuNPs) successfully
delivered siRNA into intact plant cells, and the target gene expression decreased by at
least 76% [124]. The increasingly popular nanobiotechnology field provides tremendous
opportunities for scientists to optimize systems for plant transformation. However, the
stability of nanobiotechnology-assisted genome modification needs more study. Moreover,
this kind of genome modification would induce problems for other species. There is still a
need for more research to complete this project.

8. Conclusions

Nanotechnology applications in agriculture exhibit great potential for improving the
environment and increasing the production and quality of crop plants [90]. In this review,
we summarize current research involved in nanotechnology applied to crop production,
which includes nanofertilizers, nanopesticides and nanomaterials used in enhancing plant
growth, seed germination and stress tolerance, nanosensors and nanobiotechnology. How-
ever, in addition to the positive aspects of nanotechnology, there are still many gaps that ex-
ist between laboratory research and agricultural production. For instance, NPs are toxic but
also beneficial when applied to crops, and various NPs concentrations need further study
in distinct crop species. Besides, we also should find an economical point of application
of nanomaterials that balance crop production and environmental protection. Moreover,
how can these nanosensors be leveraged in agricultural systems? Are the sensitivity and
reliability of nanosensors sufficient for use in agricultural production? Additionally, are
there any differences between plants transformed via NPs and plants transformed via
traditional methods? Nevertheless, the growing prospects of nanotechnology still increase
confidence in the ability to meet the food demands of humans.
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Abbreviations

Nanoparticles: NPs; Carbon: C; Nitrogen: N; Potassium: K; Phosphorus: P; Calcium: Ca; Sulfur:
S; Magnesium: Mg; Hydroxyapatite: HA; Magnesium oxide: MgO; Layered double hydroxide: LDH;
Iron: Fe; Boron: B; Manganese: Mn; Copper: Cu; Zinc: Zn; Molybdenum: Mo; Zinc oxide: ZnO;
Magnetite: Fe2O3; Manganese zinc ferrite: Mn0.5Zn0.5Fe2O4; Zinc sulfate: ZnSO4; Aluminium oxide:
Al2O3; Silver: Ag; Cobalt ferrite: CoFe2O4; Nickel ferrite: NiFe2O4; Tripolyphosphate: TPP; Tobacco
mosaic virus: TMV; Carbon nanotubes: CNTs; Tomato mosaic virus: ToMV; Potato virus Y: PVY; Total
soluble protein: TSP; Polyphenol oxidase: PPO; Silicon dioxide: SiO2; Titanium dioxide: TiO2; Gold:
Au; Multiwalled carbon nanotubes: MWCNTs; Superoxide dismutase: SOD; Catalase: CAT; BASIC
HELIX-LOOP-HELIX 38:bHLH38; ZINC TRANSPORTER 9:ZIP9; IRON-REGULATED TRANSPORTER
1: IRT1; Silicon: Si; Polyacrylic acid nanoceria: PNCs; Lead: Pb; Chitosan-polyvinyl alcohol: Cs-PVA;
Selenium: Se; Graphene nanoribbons: GNRs; PSII: Fv/Fm; Maximum photooxidizable P700: Pm;
Photosynthesis rate: Pn; Fluorescence resonance energy transfer: FRET; Surface enhanced Raman
scattering: SERS; Nitric oxide: NO; Single-walled carbon nanotubes: SWCNTs; Low-affinity red
fluorescent genetically encoded Ca2+ indicators for optical imaging: LAR-GECO; Yoshimulactone
Green: YLG; Volatile organic compounds: VOCs; NADP-malate dehydrogenase: malic enzyme;
Differential pulse voltammetry: DPV; Polyaniline: PANI; Recombinase polymerase amplification:
RPA; Cadmium-telluride quantum dots: CdTe-QDs; Citrus tristeza virus: CTV; Stannic oxide: SnO2;
Screen-printed carbon: SP; Green fluorescent protein: GFP; Polyethylenimine: PEI
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