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Abstract

Abnormalities of dendritic cells (DCs) and STAT proteins have been reported in Crohn’s disease (CD). Studies on JAK/STAT
signaling in DCs are, however, lacking in CD. We applied a flowcytometric single-cell-based phosphoepitope assay to
evaluate STAT1 and STAT3 pathways in DC subsets from CD patients. In addition, circulating DC counts were determined,
together with the activation-related immunophenotype. We found that IL-6- and IFN-a-induced STAT3 phosphorylation and
IFN-a-induced STAT1 phosphorylation were impaired in plasmacytoid DCs (pDCs) from CD patients (P= 0.005, P = 0.013, and
P = 0.006, respectively). In myeloid DCs (mDCs), IFN-a-induced STAT1 and STAT3 phosphorylation were attenuated (P,0.001
and P = 0.048, respectively), but IL-10-induced STAT3 phosphorylation was enhanced (P= 0.026). IFN-c-induced STAT1
signaling was intact in both DC subtypes. Elevated plasma IL-6 levels were detected in CD (P= 0.004), which strongly
correlated with disease activity (r= 0.690, P,0.001) but not with IL-6-induced STAT3 phosphorylation. The numbers of pDCs
and BDCA3+mDCs were decreased, and CD40 expression on CD1c+mDCs was increased in CD. When elucidating the effect
of IL-6 signaling on pDC function, we observed that IL-6 treatment of healthy donor pDCs affected the maturation of and
modified the T-cell priming by pDCs, favoring Th2 over Th1 type of response and the expression of IL-10 in T cells. Our
results implicate DC signaling in human CD. Reduced IL-6 responsiveness in pDCs, together with the attenuated IFN-a-
induced signaling in both DC subtypes, may contribute to the immunological dysregulation in CD patients.
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Introduction

Dendritic cells (DCs) are professional antigen-presenting cells

capable of priming and activating T cells. Since an abnormal T-

cell activation is an inherent feature of Crohn’s disease (CD) and is

also seen in several models of intestinal inflammation [1], aberrant

DC function may contribute to the disease process. Various DC

subsets have been identified in humans [2,3], of which myeloid

(mDCs) and plasmacytoid DCs (pDCs) constitute the main

categories. mDCs represent the conventional DC subtype, which,

after receiving maturation stimuli through pathogen-recognition

receptors, activate T cells for immune responses. On the other

hand, immature or semimature mDCs can induce T-cell anergy or

tolerance [4,5]. pDCs are also efficient in activating T cells for

immune responses under certain circumstances, such as in the

context of antiviral immunity [6,7], but an increasing body of

evidence also suggests a role for pDCs in the induction and

maintenance of T-cell mediated immune tolerance [8–13].

In CD, DCs have been investigated to some extent, although

functional studies on human DCs are currently scarce. Alterations

in blood, intestinal or mesenterial lymph node (MLN) DC

numbers have been reported, together with changes in maturation

marker expression [14–20].

DCs receive via cytokines guidance in accommodating the

varying requirements of homeostasis and infection appropriately.

The signals from several cytokines are delivered intracellularly by

the JAK-STAT pathway. After the ligation of the cytokine

receptor on the cell surface, Janus kinases (JAK) are recruited to

phosphorylate Signal Transducers and Activators of Transcription

(STAT) family of proteins with a certain specificity. STAT

proteins then dimerize, translocate to the nucleus, and function as

transcription factors. In CD, alterations in the expression and

phosphorylation of STAT proteins have been reported [21–26],

especially those involving STAT3, but no studies have focused on

DCs. The role of STAT3 signaling in the pathogenesis is also

implicated by the association of a STAT3 polymorphism with CD

[27]. STAT3 activity is considered necessary to keep DC

maturation under control [28,29], whereas STAT1 signaling is

indispensable for normal maturation [30].

To assess whether cytokine-induced JAK-STAT signaling in

DCs is altered in CD patients, we further developed flow

cytometry-based methodology [31] to enable single-cell level

examination of STAT1 and STAT3 phosphorylation in blood-

derived mDCs and pDCs. We found impaired interleukin (IL)-6-

and interferon (IFN)-a- but not IL-10-induced signaling in pDCs

of CD patients. In mDCs, IFN-a-induced signaling was similarly
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attenuated, while IL-10-induced STAT3 phosphorylation was

enhanced. The functional in vitro experiments revealed that IL-6-

treated pDCs promoted IL-4 and IL-10 expression in co-cultured

T cells, which suggests that the impaired IL-6/STAT3 signaling in

pDCs may affect T-cell regulation.

Materials and Methods

Patients and Control Subjects
A total of 22 patients with CD (mean age 40.4, 13 males;

detailed characteristics are specified in Table 1) came to the clinic

for endoscopic follow-up and were consequently enrolled for DC

enumeration, surface marker expression and STAT phosphoryla-

tion studies. The control group (mean age 37.4, eight males)

comprised 21 volunteers without autoimmune diseases or acute

infection. The expression of selected cytokines in isolated pDCs

was studied in a separate series of patients (n = 11, mean age 28.1,

six males) and control subjects (n = 11, mean age 31.6, five males).

One patient and two controls were common to both series at

separate time points. In vitro function of pDCs was studied using

blood samples from healthy volunteers. T cells were obtained from

general population blood donor buffy coats (Finnish Red Cross).

All participants gave written informed consent, and the study was

approved by the ethics committee of the Helsinki University

Central Hospital. Research was conducted in accordance with the

Declaration of Helsinki.

Evaluation of Endoscopic Disease Activity
Colonoscopies were performed by experienced gastroenterolo-

gists who evaluated the disease activity using the Simple

Endoscopic Score for Crohn’s Disease (SES-CD) [32]. Venous

blood samples for DC analyses were taken within three days of

colonoscopy (except in three cases within ten days).

Staining of Cells for Phenotyping and Counting
200 ml of heparinized blood was added to monoclonal

antibodies (mAbs, specified in Table S1) for 20 minutes, and

erythrocytes were then lysed with FACS Lysing Solution (BD

Biosciences, San Jose, CA). After two washes with washing buffer

consisting of 5% fetal bovine serum (FBS) and 0.02% (w/v) sodium

azide in phosphate-buffered saline (PBS), cells were suspended in

Figure 1. Gating strategy for flow cytometry. DC subtypes were identified for cell surface molecule analyses as shown. An example of the
leukocyte gating first applied for all DC subsets is shown in the upper left corner (A). In pSTAT measurements, CD11c and CD123 were utilized as
additional markers for CD1c+ mDCs (B) and pDCs (C), respectively; otherwise, a gating strategy similar to the cell surface marker protocol was used. A
representative example of a healthy control is shown.
doi:10.1371/journal.pone.0070738.g001

STAT1 and STAT3 Signaling in DCs from CD Patients
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1% (w/v) paraformaldehyde (PFA) in PBS and stored overnight at

4uC. For isolated and cultured cells, the lysing step and PFA were

omitted, and cells were stained and analyzed in washing buffer on

the same day. 7-amino-actinomycin D (7-AAD, eBioscience, San

Diego, CA) was used with isolated pDCs to exclude dead cells.

Cytokine Stimulation and Staining of Cells for
Measurement of Phosphorylated STATs
250 ml of heparinized blood was preincubated for 30 minutes at

37uC in a CO2 incubator, and pre-mixed cocktails of mAbs

against cell-surface markers (specified in Table S1) were quickly

pipetted to the tubes to enable DC identification. After additional

10 minutes at 37uC in a CO2 incubator, the following

recombinant human cytokines were added: 1000 IU/ml IFN-a-
2a, (Ropheron-A, Roche), 1000 IU/ml IFN-c (Peprotech, Rocky

Hill, NJ), 250 ng/ml IL-10 (Peprotech) or 50 ng/ml IL-6

(Peprotech). Samples were stimulated for 10 minutes at 37uC in

a CO2 incubator, and 2 ml of FACS Lysing Solution was then

added for 10 minutes at room temperature. The fixation was

completed by adding 2 ml 3% (w/v) PFA in PBS for additional 10

minutes, and cells were then permeabilized with 220uC methanol

at a final concentration of 80% (v/v) for 10 minutes on ice (no

washing steps up to this point). Cells were spun down, washed

twice with washing buffer (see above) now containing 10% FBS,

and mAbs recognizing the tyrosine-phosphorylated forms of

STAT1 (pY701; pSTAT1) or STAT3 (pY705; pSTAT3) mole-

cules, or an isotype control mAb, were added for 30 minutes in

washing buffer (10% FBS). Cells were then washed twice (5% FBS

in the washing buffer), suspended in 1% PFA in PBS, and stored

overnight at 4uC. STAT3 phosphorylation studies using peripheral

blood mononuclear cells (PBMCs) isolated by density-gradient

centrifugation were conducted in the same manner in RPMI 1640

culture medium (Gibco/Invitrogen, Carlsbad, CA) +2 mM L-

glutamin, omitting the erythrocyte-lysing step.

Flow Cytometry
Samples were analyzed with FACSCalibur flow cytometer (BD

Biosciences). Gating strategy for DC analyses is shown in Fig. 1.

For the determination of pDC numbers, BDCA2+CD123 double

staining was used for gating. Cell doublets were excluded based on

light scatter, except for DC enumeration. The absolute DC

numbers were calculated by multiplying the relative DC counts by

the absolute leukocyte count (determined in a routine hematology

laboratory). Cell surface molecule expression was quantified as

median fluorescence intensity (MFI) in arbitrary units (AU) with

isotype control intensity subtracted. The magnitude of pSTAT1

and pSTAT3 responses following stimulation was calculated as a

fold increase over the unstimulated sample. FlowJo software (Tree

Star, Inc., Ashland, OR) was used to analyze flow cytometry data.

Isolation and Culture of pDCs
For cell-culture studies, PBMCs were obtained by density-

gradient centrifugation, and non-pDCs were magnetically deplet-

ed using Plasmacytoid Dendritic Cell Isolation Kit and LS

Figure 2. Patients with Crohn’s disease have reduced numbers of pDCs and BDCA3+ mDCs in the peripheral blood. Both absolute (A)
and relative (B) pDC and BDCA3+ mDC counts are decreased in CD. The major blood myeloid DC population expressing CD1c is not significantly
different from controls in size. Horizontal lines indicate median levels. Statistically significant negative correlations between the total SES-CD score
and relative pDC and BDCA3+ mDC counts are observed in CD patients (C).
doi:10.1371/journal.pone.0070738.g002

STAT1 and STAT3 Signaling in DCs from CD Patients
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Figure 3. Expression of maturation markers on DCs. pDCs and CD1c+ mDCs were identified as shown in Fig. 1, and the expression of
maturation markers was assessed by flow cytometry. The expression of CD123 or CD11c is shown to demonstrate the specificity of DC subtype
identification. Light-colored histograms represent isotype controls. A representative example of a healthy control is shown (A). pDCs from CD patients

STAT1 and STAT3 Signaling in DCs from CD Patients
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columns (Miltenyi Biotec, Gladbach, Germany), according to the

manufacturer’s instructions. Median purity of the pDC fraction

was 93.8%, as determined by flow cytometry (data not shown).

pDCs were washed and plated at a density of 1.256105 cells/ml

on U-bottom 96-well plates (Nunc, Roskilde, Denmark) in culture

medium consisting of RPMI 1640, supplemented with 10% FBS,

2 mM L-glutamine, 50 mM 2-mercaptoethanol, antibiotics, and

10 ng/ml of recombinant human IL-3 (R&D Systems, Minnea-

polis, MN). The concentration of recombinant human IL-6

(Peprotech) was 50 ng/ml and type B (ODN 2006) CpG

(InvivoGen, San Diego, CA) were used at 2 mM. pDCs were

cultured at 37uC in a CO2 incubator for two days and harvested

for flowcytometric analysis or for T-cell stimulation experiments

after careful washing and counting of viable cells with Trypan Blue

exclusion. Alternatively, pDCs were harvested for quantitative

real-time PCR (RT-qPCR) analysis after 16 h of incubation. To

obtain highly purified cells (.99%) for mRNA expression studies,

pDCs were isolated from frozen and thawed PBMC fractions by

combined depletion of non-pDCs and positive selection of

BDCA4+ cells using Diamond Plasmacytoid Dendritic Cell

Isolation Kit II with LD and MS columns (Miltenyi Biotec).

Stimulation of Naive T Cells
PBMCs were isolated by density-gradient centrifugation, and

naive T cells were negatively enriched using Naive CD4+ T Cell

Isolation Kit II (Miltenyi Biotec) and LS columns, according to the

manufacturer’s instructions. The purity of the CD4+CD45RA+

fraction thus obtained was routinely 96% or higher, as assessed by

flow cytometry (data not shown). Cells were then stimulated with

allogeneic pDCs as previously described [5], with some modifica-

tions. Briefly, naive T cells (20 000 cells per well in 200 ml) were
activated for six days with the 2d cultured pDCs at a pDC-T cell

ratio of 1:5 in culture medium without IL-3 on U-bottom 96-well

plates. Cells were harvested, washed, and viable cells were

counted. At d6, T-cell proliferation was readily detectable by light

microscopy. Because viable cells at d6 of co-culture consisted

mainly of T cells, as assessed by flow cytometry (Fig. S1), no pDC

depletion step prior to T-cell restimulation was included in the

protocol. T cells were restimulated at a density of 56105 cells/ml

on flat-bottom 96-well plates with plate-bound anti-CD3 (wells

were coated with 5 mg/ml of anti-CD3) and 1 mg/ml of soluble

anti-CD28 mAb (clones UCHT1 and CD28.2, respectively, both

from BD Biosciences) for 16 hours, and supernatants were then

collected and cells were lysed for RT-qPCR analyses.

Extraction of RNA and RT-qPCR Analyses
Extraction of total RNA with RNeasy Micro Kit (Qiagen,

Hilden, Germany) and RT-qPCR using Stepone plus real-time

PCR systems sequence detector (Applied Biosystems, Foster City,

CA) were performed as previously described [33]. The following

gene products were measured: IFN-c (Applied Biosystems’ assay

Hs00174143_m1), IL-4 (Hs00174122_m1), IL-10

(Hs00961622_m1), FOXP3 (Hs00203958_m1), ICOS-L

(Hs00323621_m1), PD-L1 (Hs01125299_m1), IDO

(Hs00984151_m1), IL-6 (Hs00174131_m1), and IFN-a2
(Hs00265051_s1). Ribosomal 18S RNA (Hs99999901_s1 or

Hs03928985_g1) was used as an endogenous control. Target gene

expression was analyzed by the 22DDCt method. For ratios, DCt
between the target mRNAs was used (22DCt).

Measurements from Plasma and Culture Supernatant
Samples
FlowCytomix Multiplex Technology kits (Bender MedSystems,

Vienna, Austria, and eBioscience) were used according to the

manufacturer’s instructions to measure cytokine concentrations.

Data was acquired with FACSCalibur flow cytometer and

analyzed using FlowCytomixPro software (v2.3, eBioscience) and

Prism 5 software (GraphPad Software Inc., La Jolla, CA).

Concentrations of the DC growth factor FLT3 ligand in plasma

samples were determined using a component from MilliplexH
MAG Human cytokine/chemokine kit (HFLT3L-MAG, Millipore

Corporation, Billerica, MA) according to the manufacturer’s

instructions, and the analysis was done with Magpix system and

xPonent software (Luminex Corporation, Austin, TX), and with

Prism 5 software.

exhibit lower expression of HLA-DR, whereas in CD1c+ mDCs no difference between the groups is observed. Low expression of CD40 is seen on both
DC subtypes, the levels on CD1c+mDCs being, however, higher in CD patients. Values represent median fluorescence intensity (MFI) after subtraction
of isotype control fluorescence. Horizontal lines indicate medians for each group (B).
doi:10.1371/journal.pone.0070738.g003

Figure 4. IL-6 is systemically elevated in CD and correlates with the endoscopic disease activity. IL-6 levels in plasma were measured in
CD patients and control subjects using a bead-based immunoassay. Measurable quantities (.1.2 pg/ml) of IL-6 were detected in 10 out of 22 CD
patients, while IL-6 concentration exceeded the detection limit in only one out of 21 control subjects (A). In CD, levels of IL-6 show a strong positive
correlation with the endoscopic disease activity measured by the SES-CD score (B). The dotted line represents the detection limit.
doi:10.1371/journal.pone.0070738.g004
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Statistical Analyses
Statistical analyses were performed using PASW Statistics

(v18.0, SPSS Inc., Chicago, IL) or Prism 5 software. Unpaired t-

test was used for comparisons between two groups when

appropriate; otherwise, Mann-Whitney U test was used. Multiple

groups were compared with Kruskal-Wallis test. Dichotomous

data were analyzed with Fisher’s exact test. In cell culture

experiments, paired t-test or Wilcoxon matched pairs test was used

to compare the effects of IL-6 treatment. Spearman’s rank

correlation was utilized to examine the correlation between two

parameters. A P value ,0.05 was considered statistically

significant.

Figure 5. DCs from CD patients exhibit altered levels of phosphorylated STATs after cytokine stimulation. Heparinized whole blood
was stimulated with human recombinant cytokines for 10 minutes, and cells were then immediately fixed, permeabilized, and stained for
phosphorylated STATs. CD1c+ mDCs and pDCs were identified as shown in Fig. 1B and 1C, respectively. Light-colored histograms represent
unstimulated samples. A representative example of pSTAT staining patterns after cytokine stimulation is shown in a healthy control (A). pDCs from
patients exhibit a decreased response to IL-6, whereas IL-10 induces similar levels of pSTAT3 in both groups. In CD1c+mDCs, pSTAT3 levels after IL-10
stimulation are higher in patients, and no difference is seen in the IL-6 response. IFN-a stimulation results in a lower levels of pSTAT1 and pSTAT3 in
both DC subsets in CD, but pSTAT1 responses to IFN-c stimulation are similar with the healthy controls. Values represent fold increase of median
fluorescence intensity over unstimulated control. Infliximab-treated patients are indicated by open circles. Horizontal lines indicate median levels (B).
doi:10.1371/journal.pone.0070738.g005
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Results

CD Patients have Decreased Numbers of Circulating
pDCs and BDCA3+ mDCs
Both absolute and relative numbers of pDCs were decreased in

CD (median 4.76 vs. 9.93 cells/ml, P,0.001; 0.0915 vs. 0.182% of

leukocytes, P=0.004), as demonstrated in Fig. 2A and 2B. The

numbers of CD1c+ mDCs did not significantly differ between the

groups, although a trend existed for somewhat lower absolute and

relative counts in patients (8.58 vs. 10.8 cells/ml, P=0.085; 0.170

vs. 0.193%, P=0.149, Fig. 2A and 2B). The subpopulation of

mDCs expressing BDCA3 was, however, reduced in CD (0.348 vs.

0.724 cells/ml, P=0.002; 0.00750 vs. 0.0128%, P=0.004, Fig. 2A

and 2B). No difference in the plasma levels of the DC-growth

factor FLT3 ligand was seen between the patients and controls

(data not shown).

We observed a negative correlation between the endoscopic

disease activity (measured by the total SES-CD score) and the

relative pDC (r=20.499, P=0.035, Fig. 2C) and BDCA3+ mDC

counts (r=20.564, P=0.018, Fig. 2C), and the relative BDCA3+
mDC counts also negatively correlated with C-reactive protein

levels (r=20.533, P= 0.041).

Expression of DC Surface Markers
Circulating pDCs from CD patients showed lower levels of

HLA-DR expression (median 430 vs. 531 AU, P=0.024, Fig. 3B),

whereas no difference was detected for CD86 or CD40. Although

the expression of CD40 was low on both DC subtypes (Fig. 3A),

somewhat increased levels were observed on CD1c+ mDCs from

CD patients (median 0.625 vs. 0.435 AU, P=0.047, Fig. 3B).

HLA-DR or CD86 expression on CD1c+ mDCs did not differ

between the groups (Fig. 3B). CD80 staining intensity remained at

the isotype control level on both DC subtypes (Fig. 3A). Due to the

low numbers of BDCA3+ mDCs in the circulation, these cells

could only be studied for HLA-DR expression, in which patients

did not differ from healthy controls (data not shown). None of the

activation/maturation markers correlated with endoscopic disease

activity (data not shown).

IL-6 Levels are Systemically Elevated in CD
To elucidate the relationship between systemic cytokine levels

and the findings in DC analyses, plasma concentrations of selected

cytokines were measured. IL-6 was present at detectable

concentrations (.1.2 pg/ml) in 10 out of 22 CD patients, whereas

it could only be measured in one out of 21 control subjects

(P=0.004, Fisher’s exact test, Fig. 4A). IL-6 levels in patients

strongly correlated with the disease activity measured by the SES-

CD score (r=0.690, P,0.001, Fig. 4B). IL-17A was detectable

(.13.7 pg/ml) in approximately half of the individuals in both

groups (total mean of patients 19.4 pg/ml vs. 23.6 pg/ml in

controls), whereas concentrations of IFN-c, IFN-a, IL-10, and IL-

22 were below the limit for a reliable quantitation in most

individuals in both groups (data not shown).

pDCs from CD Patients Show Decreased STAT3
Responses to IL-6 Stimulation
IL-6-induced STAT3 phosphorylation was attenuated in pDCs

from CD patients (median MFI fold increase 1.83 vs. 2.56,

P=0.005, Fig. 5), whereas no difference was observed in mDCs

(1.94 vs. 2.24, NS, Fig. 5). The levels of phosphorylated STAT3

induced by the IL-6 treatment did not correlate with disease

activity or plasma IL-6 concentration in either DC subtype in

patients (data not shown), which suggests that the attenuated

response to IL-6 in pDCs was not due to the elevated systemic IL-

6.

As many cell types lack IL-6 receptor a chain (IL-6Ra) and thus

rely on soluble IL-6 receptor (which is present, e.g., in serum) for

IL-6 signaling [34], we compared the expression of IL-6Ra
between the DC subtypes in healthy donors. The flowcytometric

analysis revealed that both mDCs and pDCs expressed IL-6Ra,
but the levels were lower on the latter (Fig. 6A). However, IL-6-

induced STAT3 signaling in pDCs was not dependent on the

presence of serum components (Fig. 6B).

STAT Responses to IL-10 and IFN-a in DCs are Altered in
CD
In pDCs, IL-10 stimulation led to a similar induction of

pSTAT3 in both groups (median MFI fold increase 2.61 vs. 2.64,

NS, Fig. 5). However, patients’ mDCs responded to IL-10 with a

higher level of STAT3 phosphorylation (3.66 vs. 3.29, P=0.026,

Fig. 5).

pSTAT1 response to IFN-a stimulation was reduced in pDCs

(4.01 vs. 5.74, P=0.006, Fig. 5) and mDCs in CD (3.61 vs. 5.27,

P,0.001, Fig. 5), and the IFN-a-induced pSTAT3 level was also

decreased in both pDCs (1.92 vs. 2.44, P = 0.013, Fig. 5) and

mDCs (1.71 vs. 2.13, P=0.048, Fig. 5). A positive correlation

between the endoscopic disease activity (SES-CD score) and INF-

a-induced pSTAT3 (r=0.698, P=0.003) in pDCs was seen in

CD. In mDCs, the cytokine-induced pSTAT levels did not

correlate with the disease activity (data not shown). No association

was found between any of the pSTAT responses and disease

phenotype (data not shown). pSTAT1 and pSTAT3 intensities in

unstimulated samples (after subtraction of isotype control MFI) did

not significantly differ between the groups (data not shown).

Figure 6. pDCs express cell-surface IL-6Ra and are not
dependent on the presence of serum components for IL-6
signal transduction. Flowcytometric analysis of IL-6Ra expression on
DC subsets was performed in whole blood samples from healthy
volunteers. IL-6Ra is expressed on pDCs, although in lower levels than
on CD1c+ mDCs (A). PBMCs were isolated from fresh peripheral blood
samples from three healthy volunteers in independent experiments.
Cells were incubated at 37uC in RPMI 1640 culture medium
(supplemented with 2 mM L-glutamine) either with 1/3 vol. of
autologous serum or without serum for one hour prior to stimulation
with 50 ng/ml of recombinant IL-6 for 10 minutes (in the presence or
absence of serum), followed by flowcytometric DC identification and
pSTAT3 measurement using similar gating strategy as indicated in Fig.
1. Despite lower IL-6Ra expression on pDCs, IL-6-induced pSTAT3
response in pDCs is not impaired in the absence of autologous serum,
whereas mDCs (serving as intrinsic controls) exhibit somewhat reduced
responses when stimulated in serum-free conditions. Samples from
each donor are indicated with different symbols (B).
doi:10.1371/journal.pone.0070738.g006
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Since it is possible that CD medication could have influenced

STAT phosphorylation, we tested whether the untreated patients

differed from healthy individuals. Although the untreated group

consisted of only three individuals, the reduced induction of

pSTAT3 by IL-6 stimulation, and both pSTAT1 and pSTAT3 by

IFN-a stimulation, remained statistically significant in pDCs

(P=0.017, P=0.027, and P=0.020, respectively).

No Transcription of IL-6 or IFN-a could be Detected in
Blood-borne pDCs
To assess whether hyporesponsive IL-6- and IFN-a-induced

STAT phosphorylation in CD could be related to an autocrine

production of the respective cytokines in pDCs, highly purified

cells were subjected to RT-qPCR analysis immediately following

the isolation. No transcription of either cytokine was detected in

any of the pDC samples of patient (n = 11, 73% with active

disease, i.e., SES-CD score $4) or control subject (n = 11) origin

(data not shown).

IL-6-treated pDCs Promote Th2 Deviation
As patients with CD showed pDC-restricted IL-6 signaling

defect, we examined the influence of IL-6 on the activation of

pDCs. Using isolated cells from healthy donors, we found that

exogenous IL-6 inhibited the phenotypic maturation of pDCs

when cultured with pDC-growth factor IL-3 (Fig. 7). In contrast,

IL-6 enhanced the upregulation of CD40 expression in the

additional presence of CpG in the 2d culture (Fig. 7). No

differences were, however, observed in the expression of mRNA

transcripts for ICOS ligand, IDO, and programmed cell death 1

ligand 1 (PD-L1) at 16 h (N= 7, data not shown). IL-6 treatment

did not affect pDC viability (data not shown).

Figure 7. IL-6 modulates pDC maturation. Human pDCs from healthy volunteers were either treated with 50 ng/ml of IL-6 or cultured only in
the presence of 10 ng/ml of IL-3 (to maintain pDC viability), with or without stimulation with CpG, for two days. IL-6 inhibits the phenotypic
maturation induced by the culture with IL-3. In contrast, IL-6 further upregulates CD40 expression on pDCs when stimulated with CpG-rich
hypomethylated oligodeoxynucleotides (mimicking fragments of microbial DNA). Freshly isolated pDCs at d0 consistently had high levels of HLA-DR
expression and typically low levels of CD86 and CD40, whereas the staining intensities for CD80 and ICOS-L were at the isotype control level (data not
shown). % expression values (in the bottom right part of the figure) were calculated for each experiment ((expression in the presence of IL-6/
expression in the absence of IL-6)6100) and presented as mean 6 SD. Flow cytometry data from five independent experiments are presented. *
P,0.05; ** P,0.01.
doi:10.1371/journal.pone.0070738.g007
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We next assessed how IL-6-exposed pDCs modulate the

cytokine response of T cells. As demonstrated in Fig. 8, IL-6

treatment of pDCs from healthy donors enhanced IL-4 mRNA

upregulation in naive allogeneic CD4+ T cells, and a reduced ratio

of secreted IFN-c to IL-4, i.e., Th1/Th2 signature cytokine ratio,

was observed irrespective of the presence of CpG during the pDC

maturation. In addition, the expression of IL-10 mRNA

transcripts was also significantly increased by the IL-6 treatment

Figure 8. IL-6-treated pDCs promote Th2-type responses. pDCs were matured for two days with IL-3 and the indicated treatments (IL-6 and
CpG). Allogeneic naive CD4+ T cells were primed for six days with the pDCs and then restimulated for 16 hours with anti-CD3 and anti-CD28
antibodies. The levels of mRNA transcripts were analyzed by RT-qPCR. Induction of IL-4 is significantly enhanced by the IL-6 treatment of pDCs in the
presence of the TLR9 ligand CpG. In addition, the expression of IL-10 mRNA transcripts is higher (A). The concentrations of Th signature cytokines in
culture supernatants were determined. IFN-c to IL-4, i.e., Th1/Th2 ratio, is reduced by the IL-6 treatment of pDCs both in the presence and absence of
CpG during the pDC maturation (B).
doi:10.1371/journal.pone.0070738.g008
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of CpG-activated pDCs used for priming (Fig. 8A). No differences

in IL-10 protein were however detected in culture supernatants

(Fig. 8B), which may be explained by the relatively short culture

time. pDCs did not induce IL-17A responses from naive T cells in

any of our experimental settings (Fig. 8B), and FOXP3 mRNA

expression was not affected by the presence of exogenous IL-6 in

pDC maturation (Fig. 8A). IL-6 treatment of pDCs had no

significant effect on T-cell proliferation (data not shown).

Discussion

We demonstrate here altered cytokine-induced STAT1 and

STAT3 responses of blood-derived DCs in CD. In addition, the

numbers of pDCs and BDCA3+ mDCs were decreased.

We observed an attenuated signaling response to IFN-a in both

pDCs and CD1c+ mDCs in patients with CD. IFN-a signaling in

DCs plays an important role in their activation [35]. In its absence,

reduced antigen uptake, lower MHC II expression, and poor

CD4+ T cell priming is seen [36]. Decreased HLA-DR expression

on pDCs from CD patients was also detected in the present study,

in addition to the impaired IFN-a signaling, which could be

related to an attenuated or inappropriate function of pDCs by

affecting their antigen presentation. Of note, IFN-a signaling in

DCs is also critically involved in the cross-priming of cytotoxic T

cells [37], important for the antiviral defense, but also for the

eradication of intracellular bacteria. In addition, IFN-a is a potent

survival factor for pDCs [38].

It was recently reported that DC-specific knockout of STAT3

(in Stat3flox/flox6CD11cCre mice), which affects both mDCs and

pDCs, leads to a lifelong ileocolitis resembling CD [29], identifying

the deficient STAT3 activity in DCs as an important factor in the

development of mucosal inflammation. In this model, resistance to

IL-10-mediated suppression was seen in STAT3-deficient DCs,

whereas the role of IL-6, another cytokine with STAT3-dependent

signal transduction, was not dissected in DC regulation. In our

series of CD patients, not selected according to the STAT3

genotype, we observed deficient IL-6/STAT3 signaling in pDCs,

while DCs’ responsiveness to IL-10 was intact or even enhanced.

Thus, our results extend the concept of deficient STAT3 activity in

DCs to human CD and implicate IL-6 and pDCs.

Our observation of increased plasma IL-6 levels in CD patients

is in agreement with previous reports [39,40]. The elevated

systemic IL-6 could be a feasible explanation for the impaired IL-6

response we observed in pDCs. However, IL-6-induced STAT3

phosphorylation was not considerably affected in mDCs, and

plasma IL-6 levels did not correlate with the responses to

exogenous IL-6 in either DC subtype. Moreover, we did not find

signs of enhanced ex vivo production of IL-6 or IFN-a in pDCs

isolated from CD patients, even though increased IL-6 production

from in vitro cultured pDCs has been reported in CD [41].

Accordingly, our findings do not support the view of impaired IL-6

and IFN-a signaling being due to negative feedback mechanisms

induced by an autocrine secretion of these cytokines.

Increased maturation of liver pDCs has been demonstrated in

IL-6 knockout mice [42], but the role of IL-6 in pDC regulation

has not, to our knowledge, been previously directly assessed with

human cells. We found that exogenous IL-6 inhibited the

phenotypic maturation of healthy donor pDCs during in vitro

culture. In the presence of CpG, however, an increased CD40

induction was instead seen in IL-6-treated pDCs, so no

straightforward conclusions can be drawn. IL-6-treated pDCs

also induced a higher level of IL-4 production from in vitro

differentiated T cells, which was accompanied by a decreased

IFN-c to IL-4, i.e., Th1/Th2 signature cytokine ratio, and by an

increased expression of IL-10 transcripts. Notwithstanding this

relatively modest effect on T cells, we hypothesize that the

attenuated IL-6 signaling in CD patients’ pDCs may be of

significance, given that IFN-c expression in MLN CD4+ T cells is

enhanced in CD [14] and chronic enterocolitis is well-established

to develop in IL-10-deficient mice [43]. Even though not enough

cells could be obtained for these protocols from patients, these

experiments demonstrate a regulatory function for IL-6 on human

pDCs.

We observed decreased numbers of pDCs in CD, as reported

previously [15]. Data from a number of studies point towards

pDCs’ tolerogenic potential [8–13]. We found that pDC-primed

CD4+ T cells in all experimental conditions produced high

quantities of IL-10 upon restimulation, which may signify

importance for the reduced pDC numbers in regard to peripheral

T cell tolerance in CD. There was also a significant reduction in

the minor BDCA3+ mDC population in patients’ circulation. The

relative numbers of pDCs and BDCA3+ mDCs in the present

study inversely correlated with the disease activity, which is in line

with an earlier report [15]. Accordingly, it is also possible that their

scarcity in the peripheral circulation is related to migration to the

inflamed intestine or to the MLNs [41]. It is of interest whether the

decrease in the peripheral blood pDCs or BDCA3+ mDCs could

predict disease activation.

CD1c+ mDCs from CD patients exhibited a more activated

immunophenotype in terms of CD40 expression, as reported for

in vitro cultured CD1c+ mDCs [20], and also for intestinal mDCs

isolated from lamina propria of CD patients [16,20]. This could

contribute to the pathogenesis of CD by increasing the likelihood

of inappropriate T-cell activation. The present study demonstrates

that the IL-10 signal, which potently inhibits human DC

maturation [44], is transduced more efficiently in CD patients’

mDCs, possibly reflecting a compensatory mechanism.

We realize the limitations in the studies of blood-derived DCs

instead of intestinal cells, but there are also problems related to the

study of the latter. Most importantly, the influence of bystander

mechanisms on STAT phosphorylation would likely be more

pronounced and heavily dependent on the degree of inflammation

in a given biopsy sample. In the intestinal T cells from CD

patients, constitutively enhanced STAT3 phosphorylation has

been described [21,23], which could reflect the local environment,

and at least in part, be attributable to increased IL-6 production in

the gut/GALT. A recent study demonstrated that intestinal

epithelial cell-specific STAT3 deficiency results in altered STAT3

activation in the immune cells and the expansion of IL-17A-

secreting intestinal T cells in a colitis model [45]. Accordingly,

STAT3 activation in intestinal epithelial cells and T cells, and

evidently also in DCs, forms a complex interaction. These studies

emphasize the understanding of the cell-cell interaction in the

tissue, but also the importance of cytokine-specific and target-cell

specific dissection of the STAT3 pathway. STAT3 activation

displays cell-specific differences in function. Removal of STAT3-

mediated suppression in myeloid cells leads to enterocolitis [46]. In

contrast, STAT3 activity in T cells is critically involved in the

differentiation of the phenotype that produces IL-17A/F [47],

cytokines clearly implicated in CD [48,49], and increased IL-6-

induced STAT3 phosphorylation in peripheral blood T cells and

granulocytes has been reported [50] in children with CD-

associated genetic variant of STAT3 [27]. Inflammation-related

bystander mechanisms cannot be excluded based on our data,

either, although most findings of altered signaling were not

associated with disease activity. Moreover, the IFN-a-induced
pSTAT3 levels in pDCs, which we found to be decreased in CD,

actually showed a positive correlation with the disease activity.
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Most patients in our study were receiving medication at the time

of analysis - this could not be circumvented due to a low number of

untreated patients available. Because pDCs and BDCA3+ mDCs

were decreased also as a ratio to total leukocytes, our findings of

reduced DC counts are, however, likely not due to a drug-

mediated bone marrow suppression. Furthermore, after exclusion

of all patients receiving any treatment for CD, the results on IL-6-

and IFN-a-induced STAT responses in pDCs remained similar.

To our knowledge, this work represents the first demonstration

of an abnormal DC-related STAT signaling in human CD,

characterized by the attenuated IL-6/STAT3 axis in pDCs and

decreased IFN-a-induced signaling in both DC subtypes. These

findings provide evidence for innate immunity alterations that

could be connected to the impaired immunoregulation in CD. We

also believe that the methodology for the evaluation of cell

signaling-related phosphoproteins, optimized by us for primary

human DCs, may be of utility in other inflammatory and

autoimmune conditions.

Supporting Information

Figure S1 Mainly T cells are found within the viable cell
fraction after six days of co-culture of pDCs plus CD4+
naive T cells. pDCs were obtained by negative magnetic

selection from blood donor buffy coats, cultured for two to three

days in the presence of IL-3, with or without CpG, washed, and

used for the induction of activation and proliferation of allogeneic

naive T cells (isolated either from blood donor buffy coat or from a

regular heparinized venous blood sample) for six days, as described

in Materials and Methods. Cells were then stained for flowcyto-

metric analysis with antibodies against pDC and T-cell markers

and with 7-AAD viability dye (BDCA2 expression was not

assessed, because it is known to be downregulated in culture).

Low relative numbers of viable pDCs (CD45+7-AAD-CD3-,

CD123+/BDCA4+/HLA-DRhigh) were observed after six days of

co-culture of pDCs and CD4+ naive T cells, and thus no pDC

depletion was performed before T-cell restimulation when

analyzing T-cell cytokine production. Proliferating T cells (within

the CD3+ events) seem to exhibit variable CD123 (IL-3Ra) and
HLA-DR staining. BDCA4 intensity in T cells is at the level of

isotype control (not shown). Values in graphs indicate the

percentage of events in the corresponding gate. Data from two

independent experiments are presented.
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