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Update on lyssaviruses and rabies: will past progress play as 
prologue in the near term towards future elimination?
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Abstract

Rabies is an ancient, much-feared, and neglected infectious disease. Caused by pathogens in the family Rhabdoviridae, genus 
Lyssavirus, and distributed globally, this viral zoonosis results in tens of thousands of human fatalities and millions of exposures 
annually. All mammals are believed susceptible, but only certain taxa act as reservoirs. Dependence upon direct routing to, 
replication within, and passage from the central nervous system serves as a basic viral strategy for perpetuation. By a combination 
of stealth and subversion, lyssaviruses are quintessential neurotropic agents and cause an acute, progressive encephalitis. No 
treatment exists, so prevention is the key. Although not a disease considered for eradication, something of a modern rebirth 
has been occurring within the field as of late with regard to detection, prevention, and management as well as applied research. 
For example, within the past decade, new lyssaviruses have been characterized; sensitive and specific diagnostics have been 
optimized; pure, potent, safe, and efficacious human biologics have improved human prophylaxis; regional efforts have controlled 
canine rabies by mass immunization; wildlife rabies has been controlled by oral rabies vaccination over large geographic areas 
in Europe and North America; and debate has resumed over the controversial topic of therapy. Based upon such progress to date, 
there are certain expectations for the next 10 years. These include pathogen discovery, to uncover additional lyssaviruses in 
the Old World; laboratory-based surveillance enhancement by simplified, rapid testing; anti-viral drug appearance, based upon 
an improved appreciation of viral pathobiology and host response; and improvements to canine rabies elimination regionally 
throughout Africa, Asia, and the Americas by application of the best technical, organizational, economic, and socio-political 
practices. Significantly, anticipated Gavi support will enable improved access of human rabies vaccines in lesser developed 
countries at a national level, with integrated bite management, dose-sparing regimens, and a 1 week vaccination schedule.
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Introduction
As reflected by the recent emergence of the novel coronavirus, 
SARS-CoV-2, such pathogens continue to pose substantial 
yet somewhat predictable concerns to human health and wel-
fare at a global level. In contrast to more newly appreciated 
threats, rabies is one of the oldest described infectious  
diseases, likely with a more ancient pedigree, pre-dating most 
historical accounts1. Rabies and related lyssaviruses continue to 
cause major mortality in countless mammalian species, includ-
ing Homo sapiens, domestic animals, and wildlife2. Although  
lyssavirus-related mortalities remain uncommon in humans 
within developed countries, these viruses, and the burden posed in 
lesser developed countries (LDCs), have captured the attention of  
scientific, agricultural, and public health communities because 
of their extreme fatality rate, the highest for any conventional 
agents, with an estimated human death every 10–15 minutes3.  
Having the capacity to cause severe disease with serious health 
and economic implications, without efficient treatment yet avail-
able, rabies is considered a major neglected viral zoonosis. 
As a vaccine-preventable disease, the Food and Agriculture  
Organization (FAO), the World Organization for Animal 
Health (OIE), and the World Health Organization (WHO) have 
focused upon an ambitious plan for the global elimination of 
human rabies mediated via dogs (GEHRD) or ‘Zero by Thirty’  
(ZBT) by 2030 (https://www.who.int/news-room/detail/28-09-
2019-united-against-rabies-collaboration-celebrates-one-year-of-
progress-towards-zero-human-rabies-deaths-by-2030). This plan 
was perhaps the singular galvanizing event of the early 21st cen-
tury, in a sea of other notable examples over the past 10 years, 

that has reset the underpinnings for challenges and success in 
the field, as currently appreciated4–19 (Table 1). The objective  
of this brief commentary is to provide an update on the  
recent progress and extant dilemmas related to rabies and to 
highlight evidence-based opinions on the evolving scenarios 
forecast to arise over the next “ZBT decade”, illustrated objec-
tively by data provided through the contemporary, peer-reviewed  
literature, exemplified primarily during the last few years1–201.

Viral characteristics
Taxonomically, the etiological agents reside in the order  
Mononegavirales, family Rhabdovirus, genus Lyssavirus. Rabies 
virus is the type-species and most important member of this 
mono-phyletic genus. Since the 1950s, at least 17 other recog-
nized and proposed lyssavirus species have been described from  
Africa, Australia, and Eurasia, all of which can be differenti-
ated antigenically and genetically yet cause a clinically indistin-
guishable encephalitis and not a so-called ‘rabies-like’ disease  
(https://talk.ictvonline.org/ictv-reports/ictv_online_report/nega-
tive-sense-rna-viruses/mononegavirales/w/rhabdoviridae/795/
genus-lyssavirus).

The basic viral structure consists of a characteristic bullet-shape 
and helical symmetry by transmission electron microscopy  
(https://apps.who.int/iris/bitstream/handle/10665/310836/ 
9789241515153-eng.pdf?ua=1). Ultrastructurally, lyssaviruses 
may be distinguished from other rhabdoviruses, but not 
from one another. Virions have a length of about 180 nm 
(130–300 nm) and a diameter ranging from 45 to 100 nm 

Table 1. Highly notable events in the applied rabies field related to detection, prevention, and control over the past decade.

Item Reference

Discovery of new lyssavirus species 4

Suggestion of rabies virus adaptation beyond carnivores and bats to other mammals, such as non-human primates 5

Greater appreciation of wildlife reservoirs in previously considered “rabies-free” areas 6

Recognition of additional antigen detection, serological, and molecular tests for very sensitive and specific 
lyssavirus diagnosis

7

Recognizable shifts from animal culling to mass dog vaccination as a proven management strategy 8

Planning for the global elimination of human rabies mediated via dogs by 2030 9

Greater focus upon local infiltration of wounds with scarce rabies immunoglobulins 10

Availability of human monoclonal antibodies as an alternative to polyclonal rabies immunoglobulin 11

Recommendations on dose-sparing and shorter 1 week human prophylaxis regimens 12

Expansion of the distribution of vampire bats and rabies virus spread 13,197

Support for pre-exposure vaccination for those in remote settings, such as children in communities with a high 
exposure rate to canine rabies virus and those at risk of vampire bat depredation

14

In vitro alternatives to animal testing in the determination of vaccine potency 15

Demonstration of compounds with repeatable in vitro anti-rabies virus activity 16

Renewal of interest for the oral vaccination of free-ranging dogs against rabies 17

Elimination of canine rabies in Mexico 18

Expectations of Gavi support for human rabies vaccination 19
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(with one rounded and a flattened end). The bacilliform  
or rod-like particles appear hemi-spherical at both ends when 
mature. Lyssavirus plane projection imagery reveals surface spi-
cules, a host cell-derived envelope, and a nucleocapsid with 
helical symmetry. This thin fringe of spicules, about 8 nm  
thick, does not cover the surface of the plane end of the virus. 
The genome, approximately 12 kb in size, is composed of a  
negative-sense, single-stranded, non-segmented RNA and con-
tains five transcription units encoding five viral structural proteins 
(3′-N-P-M-G-L-5′), separated by short noncoding introns, except 
for a longer, noncoding intergenic G-L region (https://apps.who.
int/iris/bitstream/handle/10665/310837/9789241515306-eng.
pdf?ua=1). The viral structural proteins include the nucleopro-
tein (N, ~400 aa), the phosphoprotein (P, ~300 aa, as a cofactor 
of the polymerase), the matrix protein (M, ~200 aa), the outer 
surface glycoprotein (G, ~500 aa), and the RNA-dependent  
RNA polymerase (L, ~2,000 aa). Besides their classically rec-
ognized role in structure, receptor binding, membrane fusion, 
endosome formation, uncoating, encapsidation, transcription, 
translation, replication, assembly, and release, the viral proteins 
are also involved in subtle immune evasion and overt disease  
progression20,21. Improving upon much earlier ultrastructural 
accounts, recent studies using high-resolution imaging, cryo-
electron microscopy, crystal structural and functional analyses, 
proteomic profiling, and molecular modeling have provided 
unique insights into a finer understanding of dynamic viral and 
host protein interactions, neurotropism, the underlying regu-
lation of replication and transcription, intracellular transport, 
and the future development of more rapid diagnostics, novel  
biologics, and rational anti-viral drug design22–32.

Pathogenesis
In a rabid animal, virions are shed intermittently in the saliva,  
usually transmitted via a bite and deposited deeply within a 
wound, eventually access the peripheral nervous system, travel in  
retrograde fashion, replicate primarily in the central nervous  
system, and transit gradually to the salivary glands and other  
tissues, in a well-known, generalizable productive infectious 
cycle model33. Lyssaviruses display a high degree of neurotro-
pism, with a preference for neurons, but non-neuronal cells may  
also be targeted34. For entry, the viral G protein can recognize 
not just one but several host cell receptors that are highly con-
served among a diversity of avian, marsupial, and placental  
species, albeit at apparently different relative efficiencies and 
outcomes. For example, the wide-ranging ability to infect  
neuronal, muscle, and epithelial cells and fibroblasts suggests 
a rather ubiquitous expression of entry receptors in different  
tissues33. In contrast to some other rhabdoviruses, lyssaviruses 
are not lymphotropic. Besides neurons, some lyssaviruses can 
infect specialized neuro-epithelial cells35. Nevertheless, viral dis-
semination within the infected host is facilitated primarily via  
attachment to, transport by, and replication within neurons33. As 
a quintessential neurotropic pathogen, rabies virus continues to 
be used experimentally as an anatomical transneuronal tracer,  
to better understand connectivity within the nervous system189.

Viral replication and assembly occur in compartmentalized, 
sequestered intracytoplasmic “factories”, historically termed 

Negri bodies, a histopathological hallmark of infection for over 
a century, although not always detected readily, which limited 
their diagnostic utility in the face of improved tests29. Despite  
the virulence of rabies, gross and microscopic injuries may 
appear rather minor and principle pathogenic mechanisms remain 
unclear. For example, lyssavirus infection of neurons may result 
in mitochondrial dysfunction, producing oxidative stress and 
acute degenerative changes of neuronal processes36. In addition, 
one potential host-mediated response implicates a role for the 
SARM1 gene in axonal “self-destruction”, impeding viral spread 
but also with subsequent pathological impacts of neuronal and  
dendritic cell loss37.

Operationally, exposure is defined as transdermal or mucosal 
contamination with saliva, brain tissue, or other virus-containing 
substances2. Human cases continue to be documented follow-
ing exposure via these well-recognized routes38–40. Incubation  
periods range from less than a week to greater than a year (i.e. 
typically shorter, after bites to the head and neck), with most 
cases presenting within 4–6 weeks of exposure41. The few docu-
mented occurrences of exceptionally long incubation periods 
(i.e. exceeding several years) remain poorly understood regard-
ing mechanism, localization, recognition, etc., or whether much 
delayed prophylaxis would be effective after the initial infection  
process2. Initial illness is characterized by non-specific onset, 
including fever, headache, dizziness, vomiting, and myalgia. 
Later, subjects may experience severe encephalitis, including  
hydrophobia, aerophobia, and photophobia. Patients succumb 
from cardio-pulmonary dysfunction and complications related 
to multiple organ failure42. Delayed innate immune responses  
may contribute to pathology43. The very few survivors from  
infection frequently have long-term neurological sequelae44,190. 
Clinical suspicion is heightened after documentation of 
rabid animal exposure and the onset of compatible signs, but  
conflicts in adequate laboratory confirmation may confound  
interpretations45.

Immune responses
Innate immunity plays a critical first-line role in anti-viral  
host defense and modulation of infection after lyssavirus  
exposure. Toll-like receptors (TLRs), cytoplasmic ds-RNA, and  
triphosphate-RNA sensors (among others) are part of the host 
pattern recognition system, activated after sensing of viral RNA  
post-infection186,187. Activation of TLR3, TLR7, etc., results in a 
cascade of events, including the production of interferons (IFNs) 
and interleukins and the induction of initial adaptive immune 
responses, including the recruitment of B cells and facilita-
tion of germinal center formation46. If, after inoculation into a 
peripheral lesion, local lyssavirus infection is followed by the  
production of viral RNA, sensed by TLRs and other pathways, 
leading to the activation of IFN-stimulated genes, induction 
of IFN, and the incitement of subsequent anti-viral signaling,  
then how does a productive infection actually ensue? Suppression 
of anti-viral defense signals, such as for IFN production, could 
lead to a promotion of viral spread by disrupting both innate and 
adaptive immunity. Several mechanisms have been described  
in which viral structural proteins were found to be involved 
in the blocking of cytokine signaling pathways47. In addition,  
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lyssaviruses may restrict G protein expression and reduce its 
incorporation into mature virions, subverting the activation of  
antigen-presenting dendritic cells48. Such mechanisms consti-
tute a combined viral immune evasion and suppression strat-
egy, supporting overall a more efficient host invasion. Although  
somewhat ignored, immunity as defined by the induction of 
virus-neutralizing antibodies (VNAs) against lyssaviruses can be  
operative and protective in naïve (i.e. unvaccinated human or 
other animal) hosts49. Administration of attenuated, recombinant, 
and adjuvanted veterinary biologics or high-potency, multi-dose,  
prime-boosting applications of inactivated human vaccines pro-
mote both innate and humoral immunity via antigen-presenting 
cells, T cell differentiation, the induction of VNA-secreting plasma  
cells, and long-lived memory B cells50.

Diagnostic applications
Often overlooked, rabies diagnosis has undergone a seeming ren-
aissance of late2,7,51–53. Infection is confirmed by the finding of 
viral antigens, antibodies, amplicons, nucleic acids, or biomark-
ers in subjects with signs compatible with an encephalitis. When 
a case of rabies is suspected, management decisions are made 
that run the gamut from an individual, exposed patient to a pro-
grammatic intervention54. Hence, laboratory evaluation is criti-
cal. Although most testing occurs postmortem in animals, the  
diagnosis of rabies in humans prior to death (i.e. antemortem)  
provides definitive diagnosis for infection control, closure for 
families, identification of others who may have been exposed to 
the same source, appropriate patient palliation or rare hope, and 
the opportunity to attempt experimental therapeutic approaches55.  
Prior traditional methods for antemortem and postmortem rabies 
diagnosis had multiple limitations. Advances in “best fit” tech-
nology and understanding of basic viral pathobiology have led 
to the improvement or design of many more diagnostic options, 
beyond the 20th century detection of Negri bodies. Such newer 
assays, augmented by traditional methods, have begun to revo-
lutionize lyssavirus diagnosis across the global landscape.  
Unfortunately, while there are antemortem methods for con-
firmation concomitant with encephalitis, there are still no sen-
sible diagnostic tests available for lyssavirus detection prior 
to onset of clinical disease. Moreover, assay choice, sample 
selection, protocol adherence, and post-analytical interpreta-
tion issues are not unique to lyssavirus diagnostic challenges, as 
described in detail in the latest WHO monograph of laboratory  
methods7.

Historically, conventional testing included (1) direct micro-
scopic detection of intracytoplasmic inclusions (i.e. Negri bod-
ies) in infected neurons (no longer recommended for routine 
primary diagnosis); (2) direct fluorescent microscopy (direct 
fluorescent antibody [DFA]) during postmortem diagnosis  
(i.e. widely used in animals and humans as a standard test), with 
direct staining of viral antigens in touch impressions of brain  
tissues, including portions of the brainstem (i.e. needed for 
a definitive diagnosis), the cerebellum, or the hippocampus;  
(3) virus isolation (i.e. usually reserved in research settings or for 
confirmatory diagnosis when the DFA test gives a weak or uncer-
tain result) with two primary tests being the mouse inoculation  
test and the rapid tissue culture infection test in MNA cells; 

(4) rapid rabies enzyme immune diagnosis, an enzyme-linked 
immunosorbent assay (ELISA)-based technique which detects  
the viral N antigen; (5) antibody demonstration in the serum (in 
the absence of a history of vaccination) or in CSF, offering indi-
rect evidence of infection by demonstration of anti-N antibod-
ies or anti-G VNA (i.e. via virus neutralization), including the 
mouse neutralization test (no longer recommended), the rapid 
fluorescent focus inhibition test (RFFIT), and the fluorescent  
antibody virus neutralization test (FAVN).

Over the past decade, a variety of molecular methods, many 
based on PCR modalities, are increasingly applied to various 
sample types for human antemortem diagnosis and as a con-
firmatory test for other samples7. Likewise, immunohistochemi-
cal methods traditionally applied for rabies diagnosis of fixed,  
paraffin-embedded tissues are now being leveraged as tools 
explore for more rapid applications. These tests, many now  
automated, include (1) the direct rapid immunohistochemical test 
(dRIT), which is an approximately 1 hour test based on detecting 
viral N protein in brain tissue; (2) the indirect rapid immunohis-
tochemistry test (iRIT), offering the detection and differentiation 
of virus variants via traditional light microscopy; (3) the reverse 
transcriptase polymerase chain reaction (RT-PCR) assay, the 
most frequently employed molecular method that seeks to detect 
rabies virus and related lyssavirus RNA; (4) the qPCR-based  
assays (with varying chemistry and detection kits), allowing 
for the “real-time” detection and quantification of genome  
copies, with the advantage of a closed-tube assay for a significant 
reduction in cross contamination; (5) the Qiagen QIAsymphony  
SP/AS, in conjunction with quantitative reverse transcription-PCR  
(qRTPCR); (6) the rapid immunodiagnostic test (RIDT), detect-
ing antigens from postmortem samples and utilized without 
the need for more sophisticated laboratory equipment, which is 
based on a lateral flow strip assay in a one-step test that facili-
tates low-cost, rapid identification of viral antigens; (7) nucleic 
acid sequence-based amplification (NASBA), which allows the  
utilization of three enzymes to produce multiple copies of RNA 
in isothermal conditions; (8) and several other updated assays 
(e.g. Platelia Rabies II ELISA, a rapid antibody detection test 
(RAPINA) based on immunochromatography, latex agglutina-
tion tests for rabies virus-specific antibodies, proteomics, metabo-
lomics, etc.). These provide multiple options for laboratorians in  
both developed countries and LDCs.

One additional method, the LN34 pan-lyssavirus RT-PCR assay, 
represents an idealized candidate test for postmortem diagnos-
tics, owing to its ability to detect RNA across the diversity of 
the viral genus, high sensitivity, potential for use with deterio-
rated tissues, and user-friendly design56. Providing data from a 
multi-site evaluation of the LN34 assay in 14 laboratories using 
2,978 samples (1,049 DFA-positive) from Africa, the Americas, 
Eurasia, and the Middle East, high diagnostic specificity (i.e.  
99.7%) and sensitivity (i.e. 99.9%) were shown when compared 
to the DFA test (i.e. no DFA-positive samples were negative by 
the LN34). The LN34 assay exhibited low variability in repeat-
ability and reproducibility studies, suggesting a new gold standard  
for centralized laboratories. Once quality control is optimized, 
utilization of more directed, improved point-of-care diagnostics 
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should range from enhanced surveillance activities in the field  
to better assessment of exposed patients in the clinic under more 
real-time conditions in support of better understanding of the  
underlying disease epidemiology for timely responses2,7,57,58.

Epizootiological insights
As a representative disease of nature, any presumption that 
rabies is “rare” is a simple fallacy, dependent upon epidemiolo-
cal context and the public/professional reference frame (http://
outbreaknewstoday.com/rabies-signs-and-symptoms-exposure-
transmission-and-diagnostics-81094/). As lyssaviruses are RNA  
viruses, an expectation of reasonably high mutation rates in 
the face of strong purifying selection is the rule for anticipated 
fixation, adaptation, emergence, and extinctions in the short 
term and over longer historical periods. Lyssaviruses exist as  
“ecological ensembles”, metapopulations of distinct species 
and variants, residing within multi-reservoir mammalian com-
munities in often rapidly changing environments59. Such host  
population–viral assemblages are perpetuated in ecologically 
diverse urban, rural, and wilderness ecosystems, from the Trop-
ics to the Arctic60–64. Despite this broad host spectrum and wide  
geographic distribution, from a public health perspective, 
based upon laboratory-based surveillance and epidemiological  
analyses, today the overwhelming number of human fatali-
ties are still due to rabid domestic dogs, primarily in LDCs65,66. 
By comparison, transmission to humans by rabid wildlife, in 
both developed countries and LDCs, is much less common67–76  
(Table 2).

Evolutionarily, bats are recognized as the ultimate reservoir  
of the lyssaviruses1,2,77. Despite more than 17 conspecific mem-
bers, rabies virus appears to be the only lyssavirus with clear  
reservoir representation among multiple orders of mammals1,2,78. 
Unique to the region, independent rabies virus lineages may be 
found among multiple bat species throughout the Americas64,79–81.  
Host shifts from engagement of bat rabies viruses to other  
mammals are suggested by derived variants in raccoons, skunks, 

and marmosets in the New World1,2,5,82,83. Additionally, multi-
ple mesocarnivore variants (much more distantly descended 
originally from ancestral bat rabies viruses) are now repre-
sented by dogs, other wild canids, mustelids, mongoose, etc. in 
both the Old and the New Worlds84. Although most rabies virus 
variant transmission patterns are intrinsically intraspecific (e.g.  
dog-to-dog, bat-to-bat, etc.), interspecific spillover infection 
may occur to practically any bitten mammal, from a veritable 
alphabet soup of armadillos to zebras85. While some spillovers 
may be amplified by short transmission chains, the majority of 
these are ultimately dead-end infections, such as to domes-
tic or wild hoofed stock. Perhaps the most extreme example 
of the latter is the case of dog-jackal-kudu rabies in southern  
Africa86. Transmission of rabies viruses from domestic animals 
or wildlife to humans is almost always a single term event 
(i.e. the person dies without a secondary case), except for 
the rarity of human-to-human infection from tissue/organ  
transplants87. Such instances are examples of the devastating 
amplifying consequences when rabies is unsuspected, ignored, or  
mis-diagnosed.

Early to end-stage clinical manifestations of encephalitis are 
generally recognized as key supportive factors in viral trans-
mission, along the lines of mania88. However, even “normal”,  
daily social behaviors, involving mucosal or transdermal expo-
sures, may also be operative towards routine perpetuation, 
as viral excretion in the saliva occurs days before the onset  
of abnormal signs. Morphologically, mammalian heterodont teeth 
have several different shapes and multiple functions, to bite, rip, 
grind, crush, groom, nip, shear, stab, suckle, etc. Beyond primary 
use in prey capture, killing, and feeding or for established  
specialized behaviors, the effectiveness of mammalian trans-
mission of lyssaviruses via a bite may be better appreciated by  
cursorial examination of such teeth from a representative canid  
(Figure 1A), felid (Figure 1B), vampire bat (Figure 1C), and 
insectivorous bat (Figure 1D), designed for many different  
functions but secondarily repurposed as highly effective  
“pathogen delivery devices” into peripheral tissues. This feature 
is enhanced by inter-related characteristics, such as local mus-
cular strength, bite force, physical dexterity, chewing capacities, 
etc., as basic life history attributes of most predators, in stark 
contrast to the feeding apparatus of a typical mammalian herbiv-
ore (Figure 1E). Such ultimate outcomes for highly successful 
intraspecific viral perpetuation appear obvious (e.g. rabid fox to 
fox, raccoon to raccoon, bat to bat, etc.), as well as for spillover 
opportunities to different species (e.g. rabid fox to deer, raccoon 
to woodchuck, bat to cow, etc.), with relevant public health, agri-
cultural, and environmental ramifications89–91. For example, some 
of the highest case fatalities have occurred after human expo-
sure to rabid wolves (likely infected originally by interactions 
with rabid dogs), given the risk for severe cranio-facial bites92. 
Also, while felids do not serve as typical reservoirs, they are 
highly efficient predators/vectors, presumably infected primarily  
during aggressive encounters with a bat, or via another meso-
carnivore, such as a rabid dog, fox, raccoon, skunk, mongoose,  
ferret badger, etc., before a human or other species encounter93.  
In contrast to carnivores, vampire bats, as obligate vertebrate  
parasites, are the only mammals involved in natural viral exposures 

Table 2. Documented examples of recent reports of human 
rabies cases transmitted by wildlife.

Mammal Locality Reference

Insectivorous bat USA 67

Vampire bats Latin America 68

Wolf Russian Federation 69

Fox China 70

Jackals Bangladesh 41

Raccoon dogs South Korea 71

Ferret badgers China 72

Skunk Mexico 73

Raccoon (or spillover to cat?) USA 74

Mongoose Puerto Rico 75

Non-human primates India 76

http://outbreaknewstoday.com/rabies-signs-and-symptoms-exposure-transmission-and-diagnostics-81094/
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to other taxa directly because of their hematophagous nature, 
due to preying upon much larger livestock, humans, or other  
mammals94. For nearly all other, non-vampire bat–human 
encounters, individuals may not receive prophylaxis because of 
ignorance of the risk or because they may not realize they were  
exposed95. Although human infections with bat lyssaviruses 

have been documented on all continents, outside the Americas 
and Europe, this risk may not be appreciated more widely in 
Africa and Asia, where few human cases receive laboratory 
confirmation or characterization and the current epidemiologi-
cal introspection is well focused upon the task of canine rabies  
remediation1,2,4,77.

Fundamentally, as nearly all rabies cases occur after a bite, 
applied epidemiological data collection on the incidence of 
animal bite by age, sex, season, locality, species, etc., can be 
highly informative to public health policy creation in mitigat-
ing risks of disease occurrence by preventing and responding to  
exposures2,41,58,74,86,91,92,95,191. Applied appropriately with mass 
dog vaccination and human prophylaxis in a local, national, or 
regional One Health context saves lives and healthcare costs2,96. 
For example, one multi-variate regression study in seven Latin 
American countries from 1995–2005 found that an increase in 
dog vaccinations decreased canine rabies cases, reported human 
exposures, and human deaths8. Within the Middle East, research 
incorporating proven epidemiological methods with phylogeo-
graphic approaches has shown the impact of environmental fac-
tors upon canine rabies virus dispersal97. Such anthropogenic 
facets have undoubtedly played a critical part since canine 
domestication to the present, given historical interdependence, 
translocations, and close animal–human bonds1,2,84. This increas-
ing integration of classical epidemiological methodology with  
modern diagnostics, molecular techniques, health economics, or  
modeling approaches has provided key insights into applied rabies 
dynamics, improved prophylaxis, cost-effective prevention, and  
multi-species control strategies2,59,98–110 (Table 3).

Modern strategies to prevent, control, and selectively 
eliminate rabies
Before the 20th century, most global rabies prevention and  
control efforts focused upon a gamut of responses, including 
denial, avoiding exposures, quackery, quarantine, isolation, dog 
killing, collaring or muzzling, and wildlife culling, with vary-
ing levels of success. Thereafter, although some of these earlier 
strategies are still employed, a century of development has now 
resulted in pure, potent, safe, and effective rabies vaccines for 
administration to humans, domestic animals, and wildlife2,111–113.  
Somewhat unique for viral diseases, these vaccines may be used 
routinely for either pre-exposure prophylaxis (PrEP) or post-
exposure prophylaxis (PEP) to minimize the opportunity for a 
productive lyssavirus infection (Table 4). Updated recommenda-
tions for human prophylaxis have been forthcoming, built upon 
epidemiological insights and clinical studies of biologics first 
licensed during the latter part of the 20th century, focused upon  
greater dose-sparing use of the intradermal route of vaccine 
administration, shorter regimens, infiltration of rabies immu-
noglobulins (RIGs) or monoclonal antibodies, and relevant 
applications of PrEP to those at risk2,10–12,14,19,98,114. Greater har-
monization of these guidelines is expected to follow suit in both  
LDCs and developed countries115. Unfortunately, despite 
highly effective PrEP and PEP, humans will still succumb to 
rabies because they receive no prophylaxis, a lack of RIGs or  
infiltration, inadequate vaccination, or a delay in PEP of several  
days or more, especially after a severe exposure. Historical 

Figure 1. Lyssavirus virions are effectively transmitted 
transdermally via the saliva into peripheral tissues of a 
prospective host by the bites of infected mammals, as  
exemplified by representative mesocarnivores and bats (and 
in contrast to herbivores). 1A. Close-up of the canines and  
carnassial teeth of a canid apex predator, the North American 
gray wolf, Canis lupus. 1B. Close up of the canines and carnassial 
teeth of the most common rabid wild felid diagnosed within North  
America, the bobcat, Lynx rufus. 1C. Close up of the specialized 
incisors and canines of the common vampire bat, Desmodus 
rotundus. 1D. Example of an insectivorous bat bite. A. Demonstration 
of a typical small lesion to a finger from an insectivorous bat 
(bar inset approximately 1 cm). B. Comparison of the skull of an 
insectivorous bat to a human digit. This figure was reprinted with 
permission from Elsevier (Jackson AC, Fenton MB. Human rabies 
and bat bites. The Lancet. 2001. 357:1714)201. 1E. Lateral view of 
the skull of a representative mammalian herbivore, demonstrating 
the distinct operational differences in the dentition (i.e. incisors, 
canines, and cheek teeth) between those taxa serving largely as 
“dead-end rabies victims” in contrast to typical lyssavirus reservoirs 
and vectors, depicted in 1A–D (This figure was adapted from  
Smalette, specimen 12092010, Wikimedia Commons, the free 
media repository, licensed under the terms of Creative Commons 
Attribution-Share Alike 3.0 Unported license https://commons.
wikimedia.org/wiki/File:12092010_Right_View.JPG#filelinks).

https://commons.wikimedia.org/wiki/File:12092010_Right_View.JPG#filelinks
https://commons.wikimedia.org/wiki/File:12092010_Right_View.JPG#filelinks
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Table 3. Selective illustration of a diversity of recent epidemiological applications in humans, domestic animals, and wildlife 
for improved detection, prevention, and control on a global basis.

Example Citations

Informatics for policy making on human prophylaxis recommendations at a global level 98

Predictive modeling of potential spatial spread in a canine rabies-free continent 99

Annual animal rabies laboratory-based surveillance summary for North America 74

Emergency department syndrome-based surveillance 100

Meta-analysis of animal bite statistics in Iran 92

Using ecological insights to overcome barriers for improved canine vaccination 101

Geographic information system use for wildlife rabies outbreak response 102

Health economics comparison of canine rabies control demonstration sites in Africa and Asia 103

Public health investigation of mass human exposure events from bats in the USA 104

Cohort assessment of the risk of rabies in biting Haitian dogs 105

Retrospective, multi-hospital analysis of the relative adequacy of rabies immunoglobulin administration to patients 106

Prospective, spatiotemporal study of human exposure risk factors in Ethiopia 107

Cross-sectional household survey on dog populations, bite incidence, and rabies knowledge in an African community 
at risk

108

Case series of rare human rabies survivors in India 109

Human case report, after substantial patient contact with bats in the home, but without prophylaxis, demonstrating 
the need for continued education

110

Table 4. Use of prophylaxis before or after lyssavirus exposure in humans, domestic animals, and wildlife2,11,112.

Group Pre-exposure prophylaxis Post-exposure prophylaxis

Humans Parenteral vaccine doses administered to any persons at 
risk of viral exposure, with serological surveillance of certain 
occupational groups (i.e. laboratory workers, veterinarians, etc.) 
for determination of a routine booster when immunity wanes, 
based upon virus neutralization antibody detection

Thorough wound cleansing, infiltration of rabies 
immunoglobulin into wounds, and parenteral 
administration of several doses of rabies vaccine (for the 
previously vaccinated person, only rabies vaccine is 
administered)

Domestic 
animals

Ideally, all domestic animals (but especially dogs and cats) at risk 
of exposure should receive a single parenteral vaccine at around 
3 months of age, a booster at about 1 year of age, and periodic 
annual or triennial boosters dependent upon label indications and 
local regulations

Immediate, single, parenteral re-vaccination upon known 
exposure to invoke an anamnestic response

Wildlife Mesocarnivore reservoirs (e.g. coyotes, ferret badgers, foxes, 
jackals, mongoose, raccoons, raccoon dogs, etc.) may be 
targeted for oral vaccination by well-designed programs for which 
vaccine safety and efficacy have been determined (in addition, 
parenteral vaccination may occur for mammals maintained in 
zoological collections or by trap-vaccinate-release of free-ranging 
wild mammals)

Primarily occurs naturally when a previously vaccinated 
animal develops an anamnestic response upon 
consumption of another dose of oral vaccine

and recent work highlights the importance of humoral immune 
responses and the role of VNAs directed against the viral G  
protein113. Although the development of new biologics is ongoing 
and the scrutiny to obtain vaccines directed against disparate lys-
saviruses continues, the only approved products on the market are 
directed against rabies virus. Several new vaccine development 
concepts have been studied in animal models, including novel  
adjuvants, virus-like particles, and nucleic acid-, chimeric rabies 

virus-, simian adenovirus-, and epitope-based vaccines50,192,193.  
These approaches could expand the spectrum of coverage 
and may require even fewer vaccine doses or less-expensive  
applications for either human PrEP or PEP. Regardless of future 
innovations, rabies virus is the predominant lyssavirus of impor-
tance. As such, human survival is virtually assured by the 
prompt and proper use of today’s biologics after rabies virus  
exposure.
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Equally impressive to the progress in the use of human prophy-
laxis is the success also demonstrated for animals116–124 (Table 5).  
All developed countries eliminated canine rabies. Increasingly, 
LDCs repeated the model, starting with the regional program 
in the Latin American countries, despite large numbers of  
free-ranging dogs in urban centers and rural communities. While  
the GEHRD can be accomplished via the combination of human 
prophylaxis and domestic animal control by vaccination, with-
out the elimination of canine rabies virus circulation, the long-
term effectiveness of such a strategy equates to the “incurable 
wound”. Rather, by removing the underlying problem, a primary 
rationale for most of the more-costly human prophylaxis is mini-
mized. Such a vision is feasible, as the accumulated data from 
disease modeling studies indicate that the basic reproduction  
number, R

0
, is less than 2, control through mass canine vac-

cination is highly effective in reducing cases in dogs and  
subsequently in humans owing to a reduced animal burden, and 
~70% annual coverage is a sound target for prevention125,126.  
Concerns about the estimated population of dogs to vacci-
nate, actual determination of vaccine coverage, relative density, 
age and birth rates, levels needed to prevent re-establishment 
from endemic areas, and more efficient methods of reaching  
free-ranging animals are identified as some of the crucial factors 
influencing the effectiveness of such interventions125–128,194.

Beyond prevention in humans and domestic animals, rabies is 
the only zoonosis in which wildlife vaccination, using attenu-
ated or recombinant biologics, has risen from an academic  

concept to a safe, effective, and economical long-term practice 
on a grand scale129–133. For example, after the multi-year use of 
oral rabies vaccine (ORV) distributed in edible baits, western 
Europe and large parts of southern Ontario became free of fox  
rabies124,134. Within the Republic of Korea, ORV was used for 
the elimination of rabies virus in raccoon dogs132. In the USA, 
ORV for raccoons began during 1990 and programs to date have 
prevented raccoon rabies spread beyond the eastern states as 
plans are formulated for elimination135. Locally, within the state 
of Texas, large outbreaks in coyotes and gray foxes occurred  
during the late 1980s and research began to evaluate the utility of 
ORV for these wild canids136. By the mid-1990s, large-scale ORV 
began in west-central Texas for gray foxes and southern Texas for  
coyotes (Figure 2). To date, tens of millions of baits have been 
distributed in the state over tens of millions of square kilometers. 
The last case of coyote rabies virus variant was detected during 
2004 and the last case of gray fox rabies virus variant was diag-
nosed during 2013 (in an infected cow)74. Gray fox vaccina-
tion has ceased, with the elimination of that rabies virus variant, 
but, as a precaution, annual ORV maintenance occurs in south-
ern Texas because of the threat of the re-emergence of coyote 
rabies. In concept, ORV programs could be expanded, based upon 
enhanced surveillance, particularly within Mexico and border  
locations137. Around the globe, additional species and biologics 
are under evaluation for ORV application138–144. Moreover, given 
the success of ORV in rabies suppression, other diseases are 
also being explored for prevention and control in wildlife145–148.  
Operational studies in different taxa will continue to uncover 

Table 5. Evidence of global progress in applied rabies prevention, control, and elimination.

Locality Interval Item Reference

India 2012–2016 Gradual estimated declines in human rabies cases within seven states (primarily 
because of human prophylaxis), with a need for improved surveillance at a national 
level

116

China 2007–2017 Decrease in estimated human cases from 3,300 to 516 (primarily because of 
human prophylaxis) at a national level, based on passive surveillance

117

Republic of Korea 1998 to date Classified as a notifiable disease since 1961, with a decrease of 68 animal rabies 
cases to 0 by 2014, primarily by domestic animal vaccination and oral vaccination 
of wildlife

118

Thailand 1980–2015 Human rabies cases decreased from ~370 to ~5, concomitant with decline in 
animal cases

119

Vietnam 1992–2017 Reduced human-reported deaths from 404 to 74 120

Sri Lanka 1973–2015 With a national plan for elimination, human deaths declined from 377 to 24, while 
dog vaccinations increased from <300,000 to >1.4 million

121

KwaZulu-Natal, South 
Africa

2007–2014 Using a combination of methods, including increased public education, human 
prophylaxis, and dog vaccination, canine cases fell from 473 to 37 and human 
cases were reduced from approximately 9 to 0

122

Americas (21 Latin 
American and 
Caribbean countries)

1998–2014 Consistent decline in human and canine rabies case incidence, approaching 0 123

Europe 1978–2016 Based upon the European rabies surveillance data base, only 3,982 total animal 
cases were reported (an approximately 4.3-fold decrease) and at least 12 countries 
self-declared rabies freedom, primarily because of oral vaccination of wildlife 

124



Faculty Reviews 2020 9:(9)Faculty Opinions

basic pathobiological and immunological mechanisms to improve 
upon the next generation of ORV149. Such advances stand as a 
legacy to those researchers from the 1960s who grappled with 
pragmatic ideas of how to approach the problem of wildlife  
reservoirs once canine rabies was prevented, controlled, or  
eliminated.

Experimental treatment options
In comparison to rabies vaccines and antibodies for humans, 
anti-viral strategies have also been under development, with 
renewed fervor post-2004 and documentation of the first  
survivor without a history of vaccination, yet with much less  
discernable clinical progress, in part because of the obstacle of 
safe and effective delivery of compounds to the central nervous  
system55,150,151. Fundamentally, unlike the former focus on  
biologics, designed to prevent a productive infection, the lat-
ter efforts wrestle primarily with the “post-infection treatment” 
dilemma when routine public health interventions fail, and a 
clinical case develops. Recent investigations demonstrate that 
nucleoside inhibitors and their analogs, previously identified to  
inhibit other RNA viruses, are also capable of limiting lyssavi-
rus replication. These could present potential broader-spectrum  
anti-viral candidates for future concentration. For example, 
a recent study demonstrated that favipiravir (T-705), a viral  
RNA-dependent RNA polymerase inhibitor that acts as a purine 
analog (shown previously to protect against filovirus infection), 
can limit lyssavirus infection in vitro16. Not surprisingly, 

observations of several such drug effects are not easily  
extrapolatable to in vivo data152,153. The likelihood of finding a 
lyssavirus-specific modality is predictably low, compared to the 
potential finesse of broader approaches for other “high-stakes” 
RNA virus targets among the Mononegavirales154. In the 
interim, this highly controversial aspect of the field will see-saw 
between an empirical, research-based in vitro/in vivo side and an  
emergency “hit-or-miss best guess” slant to clinical treatment of 
lyssavirus encephalitis, in which, among others, patient families, 
hospital administrators, multiple medical specialties, national 
regulators, ethicists, viral diagnosticians, and developers of novel 
biologics, as well as fit-for-purpose anti-viral drugs, will all 
play a part2,42,55,150–155. In addition, one part of the dilemma is the  
absence of relevant animal models to consider for actual clinical 
rabies treatment, particularly in a manner similar to the manage-
ment of human encephalitis. However, there is no shortage of 
domestic animals that are euthanized after rabies virus exposure 
or the onset of compatible illness. Rather than euthanasia as the 
only current tool, perhaps these naturally occurring animal cases 
might be better utilized under more ideal circumstances. For 
example, as veterinarians receive PrEP, institutional intensive 
care facilities are available to isolate and sedate suspects safely, 
and academic teaching hospitals are renown for their biomedical 
research, greater progress in the field overall might ensue if the 
profession embarked upon the more routine clinical care and 
experimental treatment of rabid domestic animal patients, based  
upon current insights.

Figure 2. Demonstration of the impact of the Texas oral rabies vaccination program (ORVP) in response to coyote and gray fox rabies 
outbreaks. Comparison of laboratory-diagnosed cases of coyote and gray fox rabies virus variants to the combined number of oral rabies 
vaccine doses distributed over time in west-central and southern Texas, leading to elimination.
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Remaining issues
Given the palpable enthusiasm and actual progress generated 
by the GEHRD concept to date, candor and objectivity in the 
context of current pandemic events help to color expectations 
with the approach and passage of a ZBT world. What might this 
entail? As reflected in daily headlines, interconnected compet-
ing priorities will remain a reality, in contrast to “just rabies”.  
These include recognizable emergent communicable viral  
diseases (e.g. COVID-19 and zoonoses due to henipaviruses,  
hemorrhagic filoviruses, etc.), longstanding agricultural concerns 
over high-value commodities (e.g. ASF, FMDV, H1N1, etc.), 
devastating natural calamities, particularly associated with cli-
mate change (e.g. drought, fire, floods, etc.), and strong differing 
expert opinions about the “best way” to spend limited global funds  
in LDCs156. Even under ideal circumstances, a sustainable ZBT 
business plan remains elusive given wandering variables (i.e. the 
number of dogs at risk, the quantity of vaccine doses needed,  
the determination of producers to meet rising demands, the oppor-
tunity costs of local vs. regional sources of biologics, long-term 
sources of support, etc.), as do other unresolved topics1,157,194,195.  
Nevertheless, these are just anticipated nuances of a plan well 
in motion, and, as finer-grained program plans for GEHRD 
evolve, countries will grapple with these and other broader 
debates, such as a dependence upon external sources of modern  
biologics vs. a very clear need for self-sustainability (https://www.
dawn.com/news/1526311/pakistan-to-become-self-sufficient-in-
four-antisera-by-june).

One way to envision the landscape post-ZBT may be ascertained 
in part by scenarios whence this goal has already been achieved 
locally, nationally, or regionally158. Within this forum, some 
may toy with the somewhat unimaginable concept of “eradica-
tion” (i.e. quite dependent upon flexible terminology but in stark  
contrast to the obviousness patterned by the definition as perti-
nent to smallpox and rinderpest). Concomitant with such free-
dom is the flaunting by others of long-standing rules related to  
vaccination and the improper movement of adopted animals 
from LDCs that, not surprisingly, introduce rabies to previously  
canine rabies-free territories159,160. Similarly, a primary focus 
upon the threat of canine rabies translocation is warranted from 
enzootic to “free” areas, but ignoring the reality of wildlife 
rabies altogether seems an object legend for appreciation and 
disaster, using the experience of Taiwan alone161. Canine rabies  
deserves to be at the forefront, while wildlife rabies remains  
lurking prominently in the background. Understandably, while 
reservoirs such as foxes, mongooses, raccoons, and skunks have 
been recognized historically for many decades to centuries,  
such is not the case for ferret badgers, non-human primates, or 
other potential candidate hosts, especially in localities where  
lyssavirus surveillance is much less than ideal162.

As may be obvious from a cursorial examination of the more  
specialized aspects of the inarguable progress in rabies diagnostics  
and biologics, there is a certain skewedness towards technical 
approaches in disease problem-solving, with much less of a 
focus on more anthropological, economic, political, or societal 
concerns for introspection163,195. Without the inclusion of these 
arenas beyond mere “lip service”, transdisciplinary boundaries  

persist, preventing an ultimate understanding of why a given  
program may fail164. Additionally, “vaccine hesitancy” has 
crept even into the rabies field, both human and veterinary, 
despite an abundance of need, safety data, and epidemiological  
modeling (https://www.avma.org/javma-news/2020-03-01/vaccine-
hesitancy). Unplanned exclusionary practices by discipline can 
undermine otherwise sophisticated solutions to long-term disease 
control, prevention, and elimination, unless there is a concerted 
effort to appreciate bias, conflict, distrust, xenophobia, polariza-
tion, and related administrative, community, cultural, and reli-
gious concerns165. In some situations, suppression of actionable 
healthcare priorities may not only be ignored but intentionally  
suppressed166. Besides public and political disparities, there are 
similar disconnects on continuing education needs and maintain-
ing expertise among healthcare workers, veterinary staff, and 
often-overlooked wildlife professionals167,168. Also, the expressed 
routine needs of the applied user and the academic provider 
approach to trendy, fundable high-tech solutions does appear in 
need of remedy (as opposed to the simple, practical, available, 
and inexpensive, e.g. cell-phone technology, locally produced  
coolers to maintain the cold-chain, etc.)169,188,196.

One expectation of collateral damage from an unrelenting  
supply of naïve, unsupported, and alternative “facts” about nearly 
everything during the new internet age arises in part from the 
coverage and communications about rabies survivors and the 
misuse of simple terms, such as “treatment”. Clearly, rabies is a  
vaccine-preventable disease but is not treatable, per se54. One 
suggested downside may be a public misunderstanding of the 
ability to receive an outdated misnomer of “post-exposure 
treatment” after the onset of illness and thus being somewhat  
cavalier in reception to an accepted biomedical notion of prompt 
and proper PEP. While it is one thing having a true shortage in  
supply of biologics, living far from healthcare, or being poor 
in the pocket in the affordability of what should be otherwise  
provided for free as a life-saving intervention, it is yet quite 
another to be the receiver of exaggerated, misinterpreted, or false 
news about rabies. Similarly, a perceived long “event horizon”  
towards the recognition of an actual documented therapy cou-
pled with the ongoing tragedy of human rabies that will continue  
for the foreseeable future underscore serious discussions over 
patient rights and individual options for euthanasia and a dig-
nified death in the face of an obviously fatal outcome, unless  
more attractive alternatives beckon (https://timesofindia. 
indiatimes.com/india/can-rabies-patients-opt-for-euthanasia/ 
articleshow/73164110.cms?utm_source=contentofinterest& 
utm_medium=text&utm_campaign=cppst).

Conclusions and future directions
Lyssaviruses seem to attract special concentration compared 
to other members in the Rhabdoviridae, not the least of which 
is because these agents possess a zoonotic risk associated with 
the highest case fatality rate documented for any infectious  
disease. Besides stealth by modulation of replication locally and 
within the nervous system, lyssavirus proteins can effectively 
interact with host innate immunity and disable the establishment  
of otherwise resilient anti-viral responses. A fundamental under-
standing of this basic host–pathogen relationship at both the 

https://www.dawn.com/news/1526311/pakistan-to-become-self-sufficient-in-four-antisera-by-june
https://www.dawn.com/news/1526311/pakistan-to-become-self-sufficient-in-four-antisera-by-june
https://www.dawn.com/news/1526311/pakistan-to-become-self-sufficient-in-four-antisera-by-june
https://www.avma.org/javma-news/2020-03-01/vaccine-hesitancy
https://www.avma.org/javma-news/2020-03-01/vaccine-hesitancy
https://timesofindia.indiatimes.com/india/can-rabies-patients-opt-for-euthanasia/articleshow/73164110.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst
https://timesofindia.indiatimes.com/india/can-rabies-patients-opt-for-euthanasia/articleshow/73164110.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst
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molecular and the cellular levels in multiple species and eluci-
dating how non-traditional laboratory hosts, such as bats, might 
efficiently modulate lyssavirus infection under natural circum-
stances represent exciting challenges for future research. Such 
insights may open new avenues in the development of novel 
biologics and anti-viral strategies. These studies should lead to  
human and animal clinical trials, allowing the generation of  
new licensed vaccines, antibodies, drugs, and delivery systems 
that are even more efficient in the prevention or treatment of  
lyssavirus infection. Enhanced laboratory-based surveillance 
is key for human prophylaxis, domestic animal vaccination,  
wildlife management, program monitoring, and border con-
trols. Otherwise, viral phenotypic plasticity combined with 
the broad distribution of known and suspected wild reservoirs,  
especially among mesocarnivores and bats, together with the  
likelihood of spillover to domestic animals, particularly dogs, 
raise the strong probability of enzootic perpetuation, epizootic  
spread, and translocation to “rabies-free” areas.

Over the past 10 years, substantial progress has occurred 
on a global level regarding pathogen discovery, diagnostics,  

prophylaxis, and engagement of professionals in academia,  
government, industry, and international non-governmental 
organizations. Further success requires maintaining this transdis-
ciplinary philosophy, with collaboration among virologists,  
immunologists, epidemiologists, veterinarians, physicians, pro-
ducers, regulators, economists, and social scientists within an 
updated One Health approach in a common endeavor to better 
understand, communicate, detect, prevent, control, and elimi-
nate lyssavirus infections in the next decade170–183 (Table 6). 
Supporting focus, enthusiasm, and momentum, based upon the 
evidence at hand, is critical but will not be simple, overly rapid,  
or inexpensive (https://www.who.int/neglected_diseases/news/
WHO-EB-commend-progress-against-NTDs-and-calls-road-
map-2021-2030/en/). These timely critical lessons learned about  
surveillance, diagnosis, and management, with best practices 
applied from one pathogen more than millennia-old in the mak-
ing, should also be applicable to many of tomorrow’s emerging  
zoonoses. In this regard, the ensuing pandemic of SARS-CoV-2 
presents a much-told cautionary tale as to a legacy related not  
only to rabies but also to other neglected tropical diseases as well 
(Table 7)199,200.

Table 6. Predictive scenarios for the rabies field over the next decade.

Likely events Supportive 
citations

Broadened surveillance for new lyssavirus species among bats and other mammals 170

Prediction and documentation of associated mammalian species reservoir status for 
unresolved lyssaviruses (e.g. Mokola, Shimoni, etc.)

171

Better appreciation of bat reservoirs in suggestive “rabies-free” areas, such as islands 172

Refinement of linear flow and related assays for improved “point of care” use in the rapid 
diagnosis of lyssaviruses

173

Movement beyond pilot projects towards actual national canine rabies elimination in Asia 120

Demonstration of regional elimination of human rabies mediated via dogs in Africa 174

Clinical trials of new biologics to reduce or replace the use of rabies immunoglobulins 175

Expansion of human monoclonal antibodies breadth against divergent lyssaviruses 176

Licensing of purified, serum-free rabies vaccines, with updated label claims for 
intradermal use

177

Considerations on the use of oral rabies vaccines for other species, such as bats 178

Use of a single vaccine dose for pre-exposure vaccination in remote communities at risk 179

Abandonment of animal testing in the determination of vaccine potency 180,198

Evidence in support of anti-viral drug use based upon insight to viral targets 30

Programmatic use of oral vaccination of dogs for control among free-ranging animals 181

Elimination of canine rabies in Latin America and better “south-south” engagements for 
repetition of best practices beyond technology

182

“In situ genomic surveillance” expansion within lesser developed countries 183

Protection of “free regions” by expansive elimination of canine rabies in enzootic areas 184

Utilization of Gavi support for human rabies vaccination into national health programs 185

https://www.who.int/neglected_diseases/news/WHO-EB-commend-progress-against-NTDs-and-calls-roadmap-2021-2030/en/
https://www.who.int/neglected_diseases/news/WHO-EB-commend-progress-against-NTDs-and-calls-roadmap-2021-2030/en/
https://www.who.int/neglected_diseases/news/WHO-EB-commend-progress-against-NTDs-and-calls-roadmap-2021-2030/en/


Faculty Reviews 2020 9:(9)Faculty Opinions

Acknowledgements
We thank Dr. Laura Robinson of the Texas Department of 
State Health Services, Zoonosis Control Division, for 
her kind assistance in supplying updated information on 
the oral rabies vaccination program for the creation of  
Figure 2.

Disclaimer
This article is the sole work product of the authors. The  
statements, opinions, or conclusions contained therein do not  
necessarily represent any agency or organization. The use of any  
commercial product names is for comparative purposes only 
and does not constitute endorsement by any of the authors,  
organizations, or agencies.

Table 7. Potential impacts of the COVID-19 pandemic upon rabies activities.

Benefits Limitations

Greater appreciation for diseases of nature and viral zoonoses 
specifically, such as rabies

Lessons lost, due to pandemic fatigue

Enhanced laboratory-based surveillance for lyssaviruses Pathogen discovery focused primarily upon 
coronaviruses alone

Additional scrutiny to better understand how bat populations deal 
with lyssavirus burden

Unnecessary backlash against bat 
populations in general

Broader consideration of dogs now as pets, rather than livestock 
for consumption, closure of wildlife markets, and halting use of 
bats as bushmeat

Unpopular consumptive activities driven 
ever more underground

Shelter-in-place, limiting human exposure to rabid animals Mass unemployment drives even greater 
community shifts and increases individual 
movements for resources

More animals vaccinated in aftermath of best practices, including 
use of drive-up clinics

Veterinary services not viewed as an 
essential activity compared to public health

New vaccine approaches provide insights for novel human 
prophylaxis

Unfulfilled promises and adverse events 
sour demand for novel products

Anti-viral strategies reap extension against other RNA viruses, 
such as in the Mononegavirales

No major cross-reactivity to rhabdoviruses

Broader One Health adoptive strategies Anti-public health sentiments due to 
presumption of civil liberties lost

Global elimination of human rabies mediated via dogs (GEHRD) 
achieved before 2030 owing to greater preventive focus

GEHRD setback for decades owing to 
economic global repercussions
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