
PHYSICAL REVIEW E 95, 062115 (2017)

Critical behavior of a two-step contagion model with multiple seeds
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A two-step contagion model with a single seed serves as a cornerstone for understanding the critical behaviors
and underlying mechanism of discontinuous percolation transitions induced by cascade dynamics. When the
contagion spreads from a single seed, a cluster of infected and recovered nodes grows without any cluster
merging process. However, when the contagion starts from multiple seeds of O(N ) where N is the system size,
a node weakened by a seed can be infected more easily when it is in contact with another node infected by
a different pathogen seed. This contagion process can be viewed as a cluster merging process in a percolation
model. Here we show analytically and numerically that when the density of infectious seeds is relatively small but
O(1), the epidemic transition is hybrid, exhibiting both continuous and discontinuous behavior, whereas when it
is sufficiently large and reaches a critical point, the transition becomes continuous. We determine the full set of
critical exponents describing the hybrid and the continuous transitions. Their critical behaviors differ from those
in the single-seed case.
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I. INTRODUCTION

Nonequilibrium dynamic transitions driven by cascade
dynamics on complex networks have attracted considerable
attention recently [1–3]. The spreading of epidemic disease on
complex networks [4–23] is an instance, in which a pathogen
is transmitted from an infected node (e.g., a person) to a
susceptible neighbor, who then becomes infected with a certain
probability. If the transmission probability is sufficiently
large (small), the pathogen spreads out to a macroscopic
scale (remains local). An epidemic transition occurs between
these two limits. The extent of spreading also depends on
the structure of an underlying network [1,24]. When the
degree distribution of a network is highly heterogeneous,
diseases can spread out massively even for a small transmission
probability, so that an epidemic transition point can be zero
[25]. Information spreading in social media from one page to
others may be modeled in a similar manner [5,6].

Among the several epidemic models, one of the simple con-
tagion models is the so-called susceptible-infected-recovered
(SIR) model [26,27], in which each node has one of three
states, susceptible (denoted as S), infected (I ), or recovered
(R). Initially, all the nodes are in state S except for one seed
node in state I . The contagion process starts from a single
node in state I . Each node in state I transmits pathogens to its
neighbors in state S and infects each of them with probability
κ; then it changes its state to R with a unit probability.
This contact process is repeated until the system reaches
an absorbing state in which no infected node is left in the
system. When the probability κ is sufficiently small (large),
the order parameter defined as the density of nodes in state R

after the system falls into the absorbing state becomes o(N )
[O(N )]; i.e., the system falls into a subcritical (supercritical)
state. In between, an epidemic transition occurs at κc, and
the system exhibits critical behavior. It is known that when
the dynamics starts from a single seed on Erdős-Rényi (ER)
random networks [28], the SIR model undergoes a continuous
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percolation transition following the universal behavior of
ordinary percolation.

The SIR model with multiple seeds has been considered
[29], in which two percolation transitions occur successively
at κc1 and κc2 as κ is increased. The density of nodes in state
R is finite for κ > κc1, whereas the density of nodes in state S

disappears for κ > κc2. Thus, there exists a state of coexisting
nodes in states R and S between κc1 and κc2.

The SIR model was extended to a two-step contagion
model, in which a weakened state (W ) can exist between
the S and I states. Accordingly, this model is called the
SWIR model [7,20]. Nodes in state W are involved in the
reactions S + I → W + I and W + I → 2I , which occur in
addition to the reactions S + I → 2I and I → R in the SIR
model. The properties of the epidemic transition in the SWIR
model were extensively investigated for the single-seed case
[7,10,15,20–22]. The order parameter, defined as the density
of nodes in state R after an absorbing state is reached, displays
a discontinuous transition, whereas other physical quantities
such as the outbreak size distribution exhibit critical behaviors.
Thus, the phase transition occurring in the SWIR model with
a single seed is regarded as a mixed-order phase transition
[22]. The dynamic rule of the SWIR model is so simple
that its underlying mechanism for the discontinuous behavior
of the order parameter was disclosed [30]. Moreover, the
mechanism turned out to be universal in other models such
as k-core percolation [31–34], the cascading failure model
on interdependent networks [35–39], and epidemic-related
models [5,6,8,10,12–14,16,17].

Here we investigate the phase transitions of the SWIR
model with multiple seeds. The model with multiple seeds
has been investigated in Refs. [15,20,40]: The authors of
Refs. [15,40] used the mean-field approach and performed
numerical simulations, obtaining the phase diagram as a
function of the reaction rates. The order parameter exhibits
either a discontinuous or continuous transition depending on
the density of the infectious seeds and mean degree of a given
network [15,40]. In Ref. [20] the discontinuous transition
is regarded as a spinodal transition, because there is no
coexistence phase in the system while the order parameter
jumps. Even though such results were obtained, the properties

2470-0045/2017/95(6)/062115(9) 062115-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.062115


WONJUN CHOI, DEOKJAE LEE, AND B. KAHNG PHYSICAL REVIEW E 95, 062115 (2017)

FIG. 1. Schematic illustration of epidemic spreading processes in
the SWIR model with multiple seeds. (a) Epidemic spreading begins
from each infectious node. (b) These nodes can infect susceptible
neighbor nodes and change their state to either I or W . (c) A node in
state I contacts a node in state W from a different root. (d) Then the
node in state I infects the node in state W and changes its state to I .
The two clusters merge.

of the phase transitions and critical behaviors were not deeply
investigated yet.

Here we reveal that the spread of contagion in the SWIR
model with multiple seeds proceeds differently from that in the
SWIR model with a single seed: in the multiple-seed case, the
reactions W + I → 2I often occur even in early time steps,
because nodes in states W and I involved in that reaction
can originate from different seeds (see Fig. 1). We note that
the number of multiple seeds was taken as O(N ). On the
contrary, in the single-seed case, such reactions rarely occur
until the system reaches a characteristic dynamic step nc(N ) ∼
N1/3: When dynamic step n is less than nc(N ), the reactions

S + I → 2I and I → R are dominant, but the number of
nodes in R still remains as o(N ). The contagion spreads in the
form of a branching tree. When the dynamics reaches nc(N ),
the branching tree forms long-range loops due to finite-size
effect. Once such loops form, the reaction W + I → 2I occurs
massively, in which the nodes in state W were generated in
early time steps. Thus, the density of nodes in state R increases
drastically as many as O(N ) in short time steps. Due to these
different contagion mechanisms, the properties of epidemic
transitions in the multiple seed case become different from
those in the single-seed case. We will determine the full set
of critical exponents describing the phase transitions in the
multiple seed case, and compare them with those obtained in
the single-seed case [22].

This paper is organized as follows: In Sec. II we present
the rules of the SWIR model in detail. In Sec. III we set up
the self-consistency equation to derive the mean-field solution
using the local tree approximation of the order parameter for
the epidemic transition on the ER networks. We show that,
depending on the initial density of infectious nodes, different
types of phase transition can occur. In Sec. IV we report
numerical results for the epidemic transitions. In the final
section, a summary and discussion are presented.

II. THE SWIR MODEL

The SWIR model with multiple seeds is simulated on ER
networks with N nodes. Initially, Nρ0 nodes are selected
randomly from among those N nodes and assigned to state
I ; the other nodes are assigned to state S. At each time step
n, the following processes are performed: (1) All the nodes
in state I are listed in random order. (2) The states of the
neighbors of each node in the list are updated sequentially
as follows: If a neighbor is in state S, it changes its state in
one of the two ways: either to I with probability κ or to W

with probability μ. If a neighbor is in the state W , it changes
to I with probability η, where κ , μ, and η are the contagion
probabilities for the respective reactions. (3) All nodes in the
list change their states to R. This completes the time step,
and we repeat the above processes until the system reaches
an absorbing state in which no infectious node is left in the
system. The reactions are summarized as follows:

S + I
κ−→ I + I, (1)

S + I
μ−→ W + I, (2)

W + I
η−→ I + I, (3)

I
1−→ R. (4)

The order parameter exhibits a discontinuous transition at a
transition point κc when ρ0 is less than a critical value ρc, and
it shows a continuous transition at κc when ρ0 = ρc for given
parameter values z, μ, and η, where z is the mean degree of a
given ER network.

III. SELF-CONSISTENCY EQUATION AND
PHYSICAL SOLUTIONS

In an absorbing state, each node is in one of three states: the
susceptible S, weakened W , and recovered R states. The order
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parameter m(κ), the density of nodes in state R in an absorbing
state, is written using the local tree approximation as

m(κ) = ρ0 + (1 − ρ0)
∞∑

k=1

Pd (k)
k∑

�=1

(
k

�

)
q�(1 − q)k−�PR(�).

(5)
The first term in Eq. (5), ρ0, is the initial density of infected
nodes. In the second term, the factor (1 − ρ0) represents
the probability that a node is originally in state S. Pd (k)
is the probability that a randomly selected node has degree
k; q is the probability that an arbitrarily chosen edge leads to
a node that is in state R but not infected through the chosen
edge in the absorbing state. Thus, Pd (k)

(
k

�

)
q�(1 − q)k−� is the

probability that a node has degree k and � of them are in state R

in the absorbing state. PR(�) is the conditional probability that
a node is finally in state R, provided that it was originally in
state S and its � neighbors are in state R in the absorbing state.

Similarly to PR(�), we define PS(�) as the conditional
probability that a node remains in state S in the absorbing state,
provided that it has � neighbors in state R and was originally
in state S. PW (�) is defined similarly. We note that for a certain
node to have � neighbors in state R in the absorbing state means
that the node receives � attempts to infect it when the recovered
neighbors are in state I . Thus, a node still remaining in state
S with � neighbors in state R has to be unchanged from �

infection attempts through the entire process. Thus, we obtain

PS(�) = (1 − κ − μ)�. (6)

Next, the probability PW (�) is given as

PW (�) =
�−1∑
j=0

(1 − κ − μ)jμ(1 − η)�−j−1, (7)

where j denotes the number of attacks that a node sustains
before it changes to state W . Using the relation PS(�) +
PW (�) + PR(�) = 1, one can determine PR(�) in terms of PS

and PW .
The local tree approximation allows us to define qn similarly

to q but now at the tree level n. The probability qn+1 can be
derived from qn as follows:

qn+1 = ρ0 + (1 − ρ0)
∞∑

k=1

kPd (k)

z

k−1∑
�=1

(
k − 1

�

)

× q�
n(1 − qn)k−1−�PR(�) ≡ ρ0 + (1 − ρ0)f (qn), (8)

where the factor kPd (k)/z is the probability that a node
connected to a randomly chosen edge has degree k. As a
particular case, when the network is an ER network with
Pd (k) = zkez/k!, f (qn) becomes

f (qn) = 1 −
(

1 + μ

η − κ − μ

)

× e−(κ+μ)qnz + μ

η − κ − μ
e−ηqnz. (9)

Equation (8) reduces to a self-consistency equation for q

for given epidemic parameter values in the limit n → ∞. Once
we obtain the solution of q, we can obtain the outbreak size
m(κ) using Eq. (5). For ER networks, however, m(κ) becomes
equivalent to q, thus the solution of the self-consistency

FIG. 2. Schematic plot of F (m,ρ0) versus m for 0 < ρ0 < ρc.
Curves represent F (m,ρ0) for different κ . md , mm, and mu are
the solutions of F (m,ρ0) = 0, where md < mm < mu. m±

0 are the
solutions of F (m,ρ0) = dF (m,ρ0)/dm = 0 with m−

0 < m+
0 .

equation (8) yields the order parameter. We remark that
the methodology we used here is similar to those used in
previous studies of epidemic spreading on complex networks
[6,10,15,20,21].

Hereafter, we set μ = κ for convenience and define a
function:

F (m,ρ0) ≡ f (m) − m

1 − ρ0
+ ρ0

1 − ρ0
. (10)

Using formula (9), we approximate F (m,ρ0) in the limit m →
0 as

F (m,ρ0) = ρ0

1 − ρ0
+ am + bm2 + cm3 + O(m4), (11)

where

a = κz − [1/(1 − ρ0)], (12)

b = 1
2κ(η − 2κ)z2, (13)

c = 1
6κ(4κ2 − 2ηκ − η2)z3. (14)

For convenience, we neglect the higher-order terms and
redefine F (m,ρ0) as

F (m,ρ0) ≡ ρ0

1 − ρ0
+ am + bm2 + cm3. (15)

Depending on the relative magnitudes of a and b, various
solutions of the self-consistency equation F (m,ρ0) = 0 can be
obtained. However, we need to check whether these solutions
are indeed physically relevant in the steady state when we
start epidemic dynamics from a certain initial condition.
The stability criterion was established in a previous work
[22]: The solution F (m0,ρ0) = 0 is stable if and only if
∂F (m,ρ0)/∂m|m=m0 < 0.

The equation of state in the steady state can be obtained
using F (m,ρ0) = 0. We notice that F (m = 0,ρ0) = ρ0/(1 −
ρ0) > 0 and F (m = ∞,ρ0) = −∞ because c < 0, as shown
in Fig. 2. We examine the solutions of dF (m,ρ0)/dm = 0,
which are obtained as

m± = − b

3c
±

√
b2

9c2
− a

3c
, (16)

062115-3



WONJUN CHOI, DEOKJAE LEE, AND B. KAHNG PHYSICAL REVIEW E 95, 062115 (2017)

FIG. 3. Schematic plot of F (m,ρc) versus m for ρ0 = ρc.
There exists a solution m0 at which the self-consistency equations
F (m0,ρc) = 0 and d2F (m,ρc)/d2m|m=m0 = 0 hold.

where a, b, and c are given in formulas (12)–(14). Note that
a depends on ρ0. At these extreme points m±, F (m,ρ0) has
either a local maximum or a local minimum. For a given ρ0,
z, and η, both m± values exist, and they are positive in the
range of κd < κ < κa , where b2/9c2 − a/3c = 0 at κ = κd ,
and a = 0 at κ = κa . For a given z and η, diverse types of
phase transitions occur depending on ρ0. When ρ0 is less than
a certain value ρc, the order parameter jumps at a transition
point. On the other hand, when ρ0 � ρc, the order parameter
increases continuously with κ . At ρ0 = ρc, m+ = m− = m0

and F (m0,ρc) = 0 at κ = κd = κc, as schematically shown in
the blue (lower) curve in Fig. 3.

A. When ρ0 < ρc

When ρ0 < ρc, there exists a range of κ in which
F (m,ρ0) = 0 has more than one solution, as shown in Fig. 2.
The order parameter m versus κ is shown in Fig. 4(a) and 4(b).
In particular, when κ has a certain value κ−

c , m− obtained
using Eq. (16) satisfies F (m−,ρ0) = 0. The m− value at κ−

c is
denoted as m−

0 . We also define κ+
c and m+

0 similarly to m+ in
Eq. (16). We note that κ+

c < κ−
c . Depending on the magnitude

of the reaction probability κ relative to κ+
c and κ−

c , the order
parameter behaves differently, as follows:

(1) For κ < κ+
c , there exists one stable solution m =

md (κ), which increases slowly with κ . It is obtained that
md ≈ ρ0/(1 − κz) + O(ρ2

0 ).
(2) At κ = κ+

c , there exist two solutions, md and m+
0 (md <

m+
0 ). However, m+

0 is not accessible because md is stable.
(3) When κ+

c < κ < κ−
c , there exist three solutions, md ,

mm, and mu, with relative magnitudes md < mm < mu; how-
ever, the solution mm is unstable. Thus, only md is accessible
from the initial density ρ0 < md . The order parameter behaves
as m−

0 − md (κ) ∼ (κ−
c − κ)1/2 for κ < κ−

c . Thus, the critical
exponent of the order parameter is obtained as β = 1/2.

(4) At κ = κ−
c , there exist two stable solutions, m−

0 and
mu. Thus, the order parameter jumps between the two values,
exhibiting discontinuous behavior. Hence, a hybrid phase
transition occurs at the point (κ−

c ,m−
0 ).

(5) For κ > κ−
c , there exists one solution, denoted as

mu(κ), which increases with κ as mu(κ) − mu(κ−
c ) ∼ (κ −

κ−
c ).

FIG. 4. (a) Schematic plot of the order parameter m(κ) versus κ

for ρ0 < ρc. Thick solid (dashed) curves represent stable (unstable)
solutions of the self-consistency equation. Dashed-dotted lines
represent the pandemic probability P∞(κ). (b) Plot of m(κ) versus κ

for ER networks with mean degree z = 8 and ρ0 = 2 × 10−3. Solid
curve represents analytic solution of the self-consistency equation.
Red dots (blue squares) represent averaged values of mu (md )
obtained by numerical simulations on ER networks of system size
N = 4.096 × 107. (c) Plot of P∞,N versus κ for various system sizes
N . Data are obtained for ER networks with mean degree z = 8 and
ρ0 = 2 × 10−3. At κ = κ−

c ≈ 0.11495, dP∞,N/dκ ∼ N 1/2, which
implies that P∞(κ) behaves like a step function in the limit N → ∞,
as depicted schematically in (a) with dashed-dotted lines.

B. When ρ0 = ρc

When ρ0 = ρc, there exists a reaction probability κc that
satisfies the relation F (m0,ρc) = dF (m,ρc)/dm|m=m0 = 0,
and b2 − 3ac = 0. Thus, the two solutions, m−

0 and m+
0 , reduce
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FIG. 5. Plot of m(κ) versus κ for ER networks with mean
degree z = 8 and ρ0 = ρc ≈ 0.00747762. Solid curve represents
analytic solution of the self-consistency equation. Red dots (blue
squares) represent average values of mu (md ) obtained by numerical
simulations on ER networks of the system size N = 1.024 × 107.

to the same one, which is denoted as m0. The function F (m,ρc)
versus m is shown in Fig. 3, and the order parameter m

versus κ is shown with the analytic solution and simulation
data in Fig. 5. At κc, singular behavior occurs, and the
order parameter m behaves as m − m0 ∼ |κ − κc|1/3 on both
sides. The derivation of this exponent 1/3 is presented in the
Appendix.

IV. NUMERICAL RESULTS

To estimate various critical exponents, we perform ex-
tensive numerical simulations on ER networks with mean
degree z = 8. For simplicity, the reaction probability μ is
set equal to κ , and η = 1/2. With these parameter values,
we numerically solve Eq. (8) and determine ρc ≈ 0.00747762
and κc ≈ 0.108021. Specifically, we increase the value ρ0 from
zero until the values m−

0 and m+
0 become the same. Then ρc

is determined. Moreover, at that point, the values κ−
c and κ+

c

also become the same as κc ≈ 0.108021. The values ρc and κc

will be used in numerical analysis later. For ρ0 < ρc, we take
ρ0 = 2 × 10−3 in the simulations. We take the average over
50 different dynamics samples for each of 1600–4000 network
configurations. Thus, 80 000–200 000 configuration averages
were taken to obtain each data point.

A. When ρ0 < ρc

Analytically we obtained that the order parameter behaves
as m−

0 − md (κ) ∼ (�κ)β with β = 1/2 in the thermodynamic
limit, where �κ ≡ κ−

c − κ .
The dashed curve in the inset of Fig. 6 are obtained from

the analytical solution Eq. (8) by taking the limit n → ∞.
This means that the solution is relevant in the thermodynamic
limit. This dashed curve follows a solid red line in the region
�κ < �κ∗ ≈ 10−4.2 (this point was estimated and indicated
by an arrow), whereas it is deviated from the red line for
�κ > �κ∗. This means that the critical behavior m−

0 − md ∼
(�κ)1/2 appears in the region �κ < �κ∗. On the other hand,
the data points in the main panel were obtained by simulations

FIG. 6. Plot of m−
0 − md versus �κ = κ−

c − κ in a double
logarithmic scale. Data are obtained for ER networks with mean
degree z = 8 with ρ0 = 2 × 10−3. The black dashed curve both in
the main panel and in the inset represents the analytical solution.
For N = 1.6384 × 108 (�), crossover behavior is likely to occur at
�κ ≈ 10−4.2, which is roughly close to the point from which the
analytical solution (black dashed curve in the inset) of m−

0 − md

deviates from the straight red line with a slope of 0.5.

for different system sizes. The dashed curve was the same
drawn in the inset. A particular point on the dashed curve at
�κ∗ is indicated by an arrow, which locates at the same �κ∗
in the inset. As we may see, the data points obtained from
N = 1.6384 × 108 begin to deviate from the dashed curve at
this �κ∗. This means that the data points obtained from the
system of size N = 1.6384 × 108 for �κ < �κ∗ belong to the
critical region, whereas other data points do to the noncritical
region. This means that finite-size scaling behavior of the order
parameter that appears in the form of plateaus in Fig. 6 has to
be checked with the data points for the systems of sizes N �
(108). However, it would be impractical to perform simulations
with such huge system sizes.

Following the conventional finite-size scaling theory,

m−
0 (∞) − 〈m−

0 (N )〉 ∼ N−β/ν̄ (17)

at κ−
c . We check this relation in Fig. 7. For small system sizes

N , β/ν̄ seems to be about 0.2, whereas it is estimated to be
≈ 0.24 for large N . Again the crossover occurs between the
system sizes N = 107 and 108. We could obtain a more reliable
value for the exponent ratio β/ν̄ for somewhat larger system
sizes, but that is impractical.

The fluctuation of the order parameter χ (κ) ≡ N (〈m2
d〉 −

〈md〉2) diverges as ∼ (κ−
c − κ)−γ . For finite systems of size N ,

it is expected that χ ∼ Nγ/ν̄ at κ = κ−
c . From the simulation

data, we obtain γ /ν̄ ≈ 0.5, as shown in Fig. 8.
With the measured values β/ν̄ ≈ 0.24 and γ /ν̄ ≈ 0.5 and

the analytic result β = 1/2, we guess ν̄ = 2 and then γ = 1. If
we use those values, then the hyperscaling relation 2β + γ = ν̄

would hold.
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FIG. 7. Plot of m−
0 − 〈m−

0 (N )〉 versus N at κ = κ−
c in a double

logarithmic scale. Data are obtained for ER networks with mean
degree z = 8. ρ0 = 2 × 10−3 is used. The slope of the data point
corresponds to β/ν̄. As the system size is increased, crossover
behavior appears in the slope from −0.2 to −0.24, which indicates
that β/ν̄ ≈ 0.24 in the limit N → ∞.

B. When ρ0 = ρc

At ρ0 = ρc, the jump in the order parameter does not
appear, and m+

0 = m−
0 at κ = κc in the thermodynamic limit.

In finite systems, however, the order parameter can still exhibit
a jump in some samples. Thus, the order parameter distribution
p(m) accumulated over different samples exhibits two separate
peaks, as shown in Fig. 9. We regard the data points of
p(m) in the region m < m0 (m > m0), where m0 has the
theoretical value 0.171405 . . . , as those obtained from m−

0 (N )
[m+

0 (N )] for different samples. At κ = κc, in finite systems,
we obtain the power-law behaviors m0 − 〈m−

0 (N )〉 ∼ N−β/ν̄

with β/ν̄ ≈ 0.153 (Fig. 10) and 〈m+
0 (N )〉 − m0 ∼ N−β ′/ν̄ ′

with β ′/ν̄ ′ ≈ 0.164 (Fig. 11).
For κ < κc, the fluctuation of the order parameter χ ≡

N (〈m2
d〉 − 〈md〉2) behaves as ∼ Nγ/ν̄G[(κc − κ)N1/ν̄] with

a certain scaling function G. On the other hand, for κ >

κc, we obtain that χ ′ ≡ N (〈m2
u〉 − 〈mu〉2) behaves as ∼

Nγ ′/ν̄ ′
G′[(κ − κc)N1/ν̄ ′

] with a certain scaling function G′.

FIG. 8. Plot of the susceptibility χ versus N at κ = κ−
c in a

double logarithmic scale. Data are obtained for ER networks with
mean degree z = 8. ρ0 = 2 × 10−3. Here the slope of the data points
corresponds to γ /ν̄, which is estimated to be ≈ 0.5 ± 0.01.

FIG. 9. Plot of the histogram of the order parameter p(m) at κc ≈
0.108021. Data are obtained for ER networks of N = 2.048 × 107

with mean degree z = 8 and ρ0 = ρc ≈ 0.00747762. Even though
simulations were performed at κc and ρc, the distribution of the
order parameter exhibits two peaks, a prototypical pattern of a
discontinuous transition due to the finite size effect. As N is increased,
we expect that the two peaks converge and become a single peak.

FIG. 10. Plot of m0 − 〈m−
0 (N )〉 versus N at κc ≈ 0.108021. Data

are obtained for ER networks with mean degree z = 8. ρ0 = ρc is
taken as ≈ 0.00747762. β/ν̄ is estimated to be ≈ 0.153 ± 0.003.

FIG. 11. Plot of 〈m+
0 (N )〉 − m0 versus N at κc ≈ 0.108021. Data

are obtained for ER networks with mean degree z = 8. ρ0 = ρc is
taken as ≈ 0.00747762. β ′/ν̄ ′ is estimated to be ≈ 0.164 ± 0.005.
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FIG. 12. Plot of the susceptibility χ , the fluctuation of the order
parameter md , as a function of the system size N at κc ≈ 0.108021.
γ /ν̄ is estimated to be ≈ 0.69 ± 0.005. Data are obtained for ER
networks with z = 8. ρ0 is taken as ρc ≈ 0.00747762.

We numerically obtain γ /ν̄ ≈ 0.69 (Fig. 12) and γ ′/ν̄ ′ ≈ 0.6
(Fig. 13).

On the basis of the numerically obtained values β/ν̄ ≈
0.53 and γ /ν̄ ≈ 0.69, and the theoretical value β = 1/3, we
estimate ν̄ ≈ 2.179 and γ ≈ 1.5. Those values are confirmed
in Fig. 14 for χN−γ /ν̄ versus (κc − κ)N1/ν̄ , in which the
data collapse well with the choices of ν̄ ≈ 2.13 ± 0.1 and
γ /ν̄ ≈ 0.69. The measured values of the exponents satisfy
the hyperscaling relation (2β + γ )/ν̄ ≈ 0.996 well. Similarly,
for κ > κc, on the basis of the numerical values β ′/ν̄ ′ ≈ 0.164
and γ ′/ν̄ ′ ≈ 0.6, and the theoretical value β ′ = 1/3, we obtain
ν̄ ′ ≈ 2.03 and γ ′ ≈ 1.218. Data for χ ′ for different system
sizes collapse well into a single curve with the choices of
ν̄ ′ = 2.13 ± 0.1 and γ ′/ν̄ ′ = 0.6 (Fig. 15). These values yield
(2β ′ + γ ′)/ν̄ ′ ≈ 0.91 − 0.93, which deviates slightly from the
expected value of unity that would satisfy the hyperscaling
relation. To obtain those results, we used the numerical
values ρc ≈ 0.00747762 and κc ≈ 0.108021. We remark that
β = β ′ = 1/3 is obtained analytically.

FIG. 13. Plot of the susceptibility χ ′, the fluctuation of the order
parameter mu, as a function of the system size N at κc ≈ 0.108021.
γ ′/ν̄ ′ is estimated to be ≈ 0.6 ± 0.005. Data are obtained for ER
networks with mean degree z = 8. ρ0 = ρc is taken as ≈ 0.00747762.

FIG. 14. Scaling plot of the susceptibility χ for κ < κc in the
form χN−γ /ν̄ versus (κ − κc)N 1/ν̄ , where ν̄ ≈ 2.13 and γ ≈ 1.47 are
used. Data are obtained for ER networks with mean degree z = 8.
ρ0 = ρc is taken as ≈ 0.00747762.

V. SUMMARY AND DISCUSSION

We investigated the properties of phase transitions in the
SWIR model with a finite density ρ0 of initially infected seeds
[7]. A node in the state S can change its state to weakened
(W ) or infected (I ) when it comes in contact with an infected
node from the same or a different root. A weakened node
can also change its state to infected (I ) when it contacts an
infected node from the same or a different root. The reaction
probabilities κ and μ in Eqs. (1) and (2), respectively, serve as
control parameters. For convenience, we take κ = μ. We found
that for a given network, there exists a critical density of seeds
ρc such that for ρ0 < ρc, the order parameter, the density of
nodes in state R in the absorbing state, increases continuously
with the critical exponent β = 1/2 as κ is increased up to a
transition point κ−

c and then jumps to a finite value, followed
by a continuous increase. Accordingly, the order parameter
behaves as m(κ) = m−

0 − b(κ−
c − κ)1/2 for κ < κ−

c , where b is
a positive constant. At κ−

c , the order parameter is discontinuous

FIG. 15. Scaling plot of the susceptibility χ ′ for κ > κc in the
form χ ′N−γ ′/ν̄′

versus (κ − κc)N 1/ν̄′
, where ν̄ ′ ≈ 2.13 and γ ′ ≈ 1.28

are used. Data are obtained for ER networks with mean degree z = 8.
ρ0 = ρc is taken as ≈ 0.00747762.
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TABLE I. List of the critical exponents of the SWIR models with a single seed and with multiple seeds.

Type β β ′ γ γ ′ ν̄ ν̄ ′

ρ0 = 1/N Single seed 0 – – – 3 –
0 < ρ0 < ρc Multiple seeds 1/2 – 1 – 2 –
ρ0 = ρc Multiple seeds 1/3 1/3 1.47 ± 0.05 1.28 ± 0.05 2.13 ± 0.1 2.13 ± 0.1

by �m = mu(κ−
c ) − m−

0 . Thus, the order parameter itself
exhibits a hybrid phase transition. This pattern is different from
that for the single-seed case, in which the order parameter
jumps from m = 0 to a finite value, and thus β = 0. The
fluctuation of the order parameter diverges at the transition
point κ−

c according to a power law with the exponent γ . For the
correlation size exponent ν̄ measured in finite systems, we find
that the hyperscaling relation 2β + γ = ν̄ holds reasonably
well.

As ρ0 is increased, the jump shrinks and becomes zero
at ρc. For ρ0 = ρc, the transition becomes continuous. We
determined a complete set of critical exponents describing
the phase transition at κc. The critical exponents are listed in
Table I.
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APPENDIX: DERIVATION OF THE CRITICAL
EXPONENT β AT ρc

Here we introduce an analytical method to determine the
critical exponents β = 1/3 at ρ0 = ρc. It was already noted in
Sec. III B that for ρ0 = ρc,

F (κc,m0) = dF

dm

∣∣∣∣
κc,m0

= d2F

dm2

∣∣∣∣
κc,m0

= 0. (A1)

We consider a line of the solution F (κ,m) = 0 near (κc,m0)
by expanding F (κc + δκ,m0 + δm) as

F (κc + δκ,m0 + δm)

� ∂F

∂κ

∣∣∣∣
κc,m0

(δκ) + 1

6

∂3F

∂m3

∣∣∣∣
κc,m0

(δm)3 + · · · = 0 (A2)

where only nonzero terms are considered. Since δκ and (δm)3

are two lowest terms in Eq. (A2) and their coefficients have
the opposite sign to each other, δm ∼ (δκ)1/3 when δκ 
 1.
Thus for both cases of κ < (>)κc, the critical exponents β =
β ′ = 1/3.
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