

Chinese Pharmaceutical Association
Institute of Materia Medica, Chinese Academy of Medical Sciences

Acta Pharmaceutica Sinica B

www.elsevier.com/locate/apsb www.sciencedirect.com

REVIEW

Towards understandings of serine/arginine-rich splicing factors

Dianyang Li^a, Wenying Yu^{b,*}, Maode Lai^{a,c,*}

^aSchool of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China ^bState Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China ^cDepartment of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China

Received 13 January 2023; received in revised form 13 April 2023; accepted 6 May 2023

KEY WORDS

Alternative splicing; RNA metabolism; Cancer therapy; Tauopathy; Autoimmune diseases; Small molecule inhibitor **Abstract** Serine/arginine-rich splicing factors (SRSFs) refer to twelve RNA-binding proteins which regulate splice site recognition and spliceosome assembly during precursor messenger RNA splicing. SRSFs also participate in other RNA metabolic events, such as transcription, translation and nonsensemediated decay, during their shuttling between nucleus and cytoplasm, making them indispensable for genome diversity and cellular activity. Of note, aberrant SRSF expression and/or mutations elicit fallacies in gene splicing, leading to the generation of pathogenic gene and protein isoforms, which highlights the therapeutic potential of targeting SRSF to treat diseases. In this review, we updated current understanding of SRSF structures and functions in RNA metabolism. Next, we analyzed SRSF-induced aberrant gene expression and their pathogenic outcomes in cancers and non-tumor diseases. The development of some well-characterized SRSF inhibitors was discussed in detail. We hope this review will contribute to future studies of SRSF functions and drug development targeting SRSFs.

© 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under the responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

^{*}Corresponding authors. Tel./fax: +86 571 88208200.

E-mail addresses: ywy@cpu.edu.cn (Wenying Yu), lmd@zju.edu.cn (Maode Lai).

1. Introduction

Precursor messenger RNAs (pre-mRNAs) are immediate products of transcription and composed of non-coding introns residing amongst discreet exons and require modifications to obtain mature mRNAs. In higher eukaryotes, gene splicing, which excises introns and ligates exons, is an indispensable process for mRNA maturation. In contrast to constitutive splicing which removes introns and ligates remaining exons unbiasedly, alternative splicing (AS) selectively determines exon inclusion or exclusion, engendering multiple mRNA isoforms according to one premRNA¹. It is estimated the expression of over 95% human genes are prone to AS and different AS modes have been identified, including exons skipping (ES), alternative 5' splice site (A5' SS), alternative 3' splice sites (A3'SS), intron retention (IR) and mutually exclusive exons (MXE) (Fig. 1A)².

Serine/arginine-rich splicing factors (SRSFs) are important *trans*-acting factors which regulate nearly every step of AS^{3,4}. SRSFs are classified as RNA-binding proteins (RBPs) featured by a unique serine/arginine-rich domain (RS domain) in the C-terminus. SRSF1 was the first member discovered in 1990 as an SV40 pre-mRNA splicing regulator^{5–7}. To date, twelve SRSFs have been disclosed and most of them comprise one or two N-terminal RNA recognition motifs (RRMs) and a C-terminal RS domain, except for SRSF7 which contains an additional zinc-binding domain in the middle⁸.

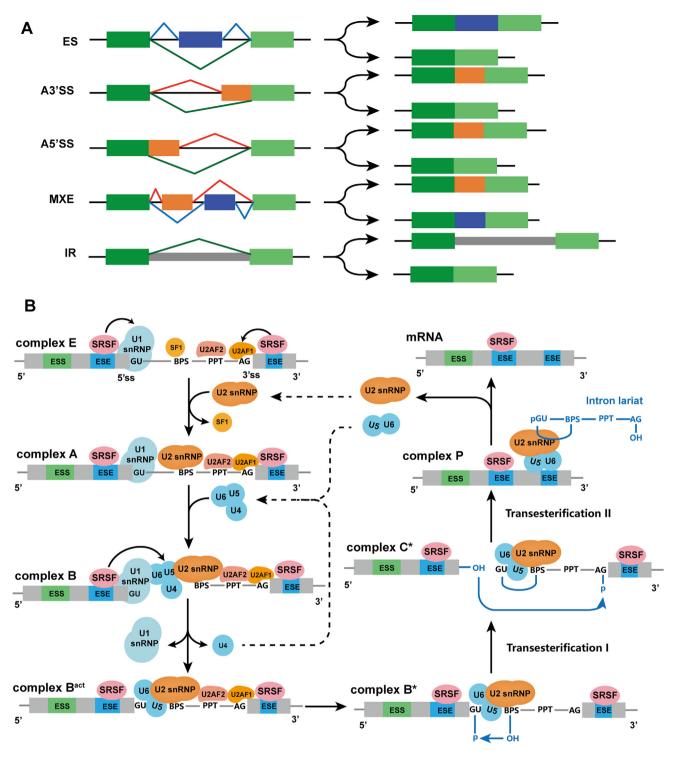
Functional defects of SRSFs disrupt normal splicing leading to generation of pathogenic gene and protein isoforms^{2,9–12}. Strikingly, the relationships between SRSF dysregulation and cancer progressions have been demonstrated in recent years. Most studies pointed out promotive effects on cancer development by SRSF overexpression or hyper-activation. Meanwhile, deficiencies in SRSF functions have been found in autoimmune and neurodegenerative diseases and SRSFs also mediate the transcription and propagation of viral genes. Based on these findings, targeting aberrant SRSF activity to rectify erroneous RNA metabolism can be of significant therapeutic benefits, whereas the development of SRSF modulators is still in the preliminary stage. In this review, we summarize the current researches concerning the structure and biological functions of SRSFs, giving an analysis of up-to-date structural biology studies of SRSFs and their modulations on gene splicing and other RNA metabolism events. We also focused on the implications of SRSF dysregulations in cancer phenotypes, autoimmune diseases, neurodegenerative diseases, viral infections, fatty liver diseases and so no. Finally, therapeutic potentials of targeting SRSFs and development of SRSF modulators were discussed in detail.

2. Structures and functions of SRSFs

SRSFs function as *trans*-acting factors to facilitate pre-mRNA splicing. In general, *cis*-acting factors of pre-mRNAs, including exonic or intronic splicing enhancers (ESEs or ISEs) or silencers (ESSs or ISSs), can be recognized and bound by SRSFs, through which SRSFs facilitate the definition of exon-intron boundaries and the stepwise assembly of the splicing machinery, spliceosome (Fig. 1B). Spliceosome is a multi-subunit RNA/protein complex composed of five small nuclear ribonucleoproteins (U1, U2, U4, U5 and U6 snRNPs) and nearly 150 additional splicing proteins ¹³. During the initial stage of spliceosome assembly, SRSFs bind ESEs at the 5' or 3' of exon to recruit U1 snRNP and U2AF1, promoting pre-spliceosome (complex E) assembly and exon

definition. Then SRSFs recruit U2 snRNP to substitute SF1 at the branch point site (BPS), which forms complex A^{1,3,14}. Recent studies also indicated that SRSFs could be recruited to U1 snRNP stem-loop 3 to promote 5' splice site (5'SS) selection in an exonindependent manner¹⁵. Subsequent recruitment of U4/U6/U5 trisnRNP can be promoted by SRSF binding as well¹⁶, which leads to the formation of an activated spliceosome (complex B^{act}) with release of U1 and U4 snRNP. Then, complex B^{act} remodels into a catalytically active spliceosome and the first transesterification reaction occurs. The second reaction to ligate exons takes place in the resulting complex C* that undergoes similar conformational change after the first splicing reaction. Spliced mRNAs coupled with SRSFs are released from the post-catalytic spliceosome that sheds an intron lariat and associated snRNPs¹⁷.

SRSFs target an extensive range of pre-mRNAs. Based on the results of cross-linking immunoprecipitation and high throughout sequencing (CLIP-seq) experiments, 23,635 binding sites, among which mostly were purine-rich consensus motifs, in the transcriptome of human embryonic kidney cells were targeted by SRSF1 19. SRSFs also inhibit splicing in a sequence-dependent manner. For example, exon-bound SRSFs act as enhancers but intron-bound SRSFs mostly function as suppressors²⁰. Phosphorvlation states of SRSFs also determines their modes of action. For instance, SRSF10 and SRSF12 act as global repressors of splicing, depending on their phosphorylation states²¹. Compared with protein-coding genes, whose splicing is essential for gene expression, long non-coding RNAs (lncRNAs) undergo less splicing before maturation. An analysis of intergenic lncRNAs demonstrated a positive correlation between the strength of 5'SS and polypyrimidine tract and splicing efficiency. SRSFs bound intergenic lncRNAs to a much lower extent than protein-coding genes due to the lack of major binding motifs in lincRNAs. Therefore, spliceosome components have to identify splice sites without the help of splicing enhancers, underscoring dependence on the optimality of splice sites²².


2.1. SRSF structures

SRSFs are composed of one or two RRMs at the C-terminal and an RS domain at the N-terminal. RRMs serve as surfaces interacting with RNA substrates. Differences in RRM sequences contribute to substrate selectivity of each SRSF. The RS domains serve as protein—protein interacting surfaces. They are also the major sites subjective to post-translational modifications (PTMs), which is essential for well-organized functions of SRSFs.

2.1.1. RNA recognition motif

For SRSFs containing two RRMs, the RRMs work in tandem to bind pre-mRNAs, both representing the canonical $\beta_1\alpha_1\beta_2\beta_3\alpha_2\beta_4$ fold²³. SRSF1 RRM1 showed a binding preference to cytosine via the β -sheet surface, and CG dinucleotides exhibited highest binding affinity compared with CT, CA and CC. According to the complex structure of SRSF1 with 5'-AACAAA-3' RNA (PDB code: 6HPJ), Arg17 and Lys48 were important residues for A₄ binding, and Glu87 interacted with C₃ via a hydrogen bond. The stacking of C₃/A₄ on Tyr19/Phe58 was observed as well. MD simulations revealed that Arg8 Asn14 and Phe88 also participated in the recognition of C₃ and A₄ via forming hydrogen bonds (Fig. 2A)²⁴.

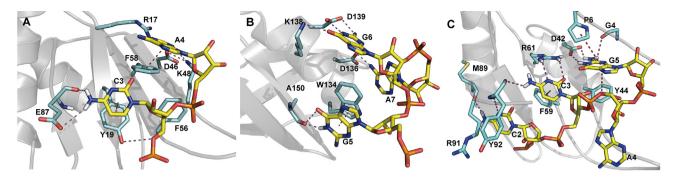

RRM2 differs from RRM1 in the sequence and is not conforming to the standard homology search as RNA binding domain. Therefore, it is also named as pseudo-RRM²⁵. The binding mode

Figure 1 Illustration of the regulatory effects of SRSFs on alternative splicing. (A) Schematic depiction of constitutive splicing and five modes of alternative splicing: exons skipping (ES), alternative 5' splice site (A5'SS), alternative 3' splice sites (A3'SS), intron retention (IR) and mutually exclusive exons (MXE)¹⁸. (B) Illustration of each stage of alternative splicing. SRSFs bind to ESEs to promote the recruitment of U1 snRNP and U2AF1, U2 snRNP and U4/U6/U5 tri-snRNP, which facilitates the formation of complex E, A and B, respectively.

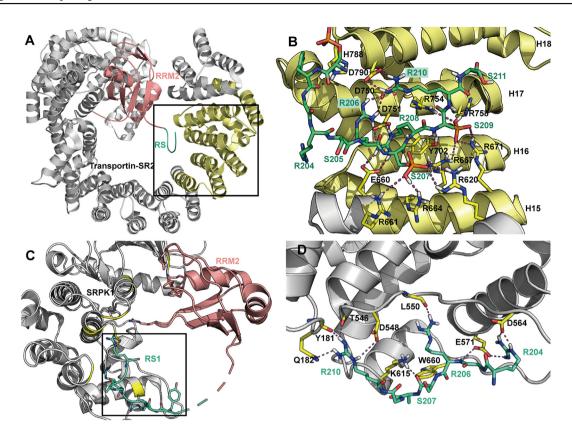
of RRM2 with RNA is unusual because the binding site is centered on α -helix 1 regardless of β -sheet surface. According to the structure of SRSF1 RRM2 and 5'-UGAAGGAC-3' RNA (PDB code: 2M8D), RRM2 preferentially recognized 5'-GGA-3' sequence via highly conserved S₁₃₃WQDLKD₁₃₉ sequence within α -helix 1. Of note, Ser133, Trp134, and Gln135 constituted an

ideal surface for recognition of the three nucleotides. Ala150 (in the β 2-strand) and the sidechains of Lys138 and Asp139 (in the α -helix 1) also contributed to sequence specificity through forming hydrogen bonds with G_5 and G_6 , respectively (Fig. 2B)²⁶. Further studies showed that SRSF1 RRMs in tandem could utilize a bimodal mode of RNA binding: RRM1 bound pre-mRNAs equally

Figure 2 Overview of structures of SRSF RRMs in complex with RNA substrates. (A) represents the mode of interactions between SRSF1 RRM1 and 5'-AACAAA-3' (PDB code: 6HPJ). The protein backbone is shown in cyan as cartoon and heavy atoms are shown in red (O atoms), blue (N atoms), cyan (C atoms of protein), yellow (C atoms of RNA), orange (P atoms) and H atoms involved in non-bonded interactions are shown in gray. CA dinucleotides and protein residues involved in contacts with RNA are represented as sticks. Intermolecular interactions are represented by magenta and red dashes. (B) depicts the mode of interactions of SRSF1 RRM2 with 5'-UGAAGGAC-3' (PDB code: 2M8D). Only highly ordered RNA sequences are shown (5'-GGA-3'). Color schemes are as in (A). (C) shows the mode of interaction of SRSF2 RRM with 5'-UCCAGU-3' (PDB code: 2LEB). Only highly ordered RNA sequences are shown (5'-CCAG-3'). Color schemes are as in (A).

optimal when the cytosine was located in -4 and +6 of the edges of the 5'-GGA-3' RRM2 binding site²⁴. To this end, the two RRMs must function together to realize highest affinity with RNA substrates and optimal substrate specificity, which underscored the flexible nature of the glycine-rich linker between the two RRMs. The flanking basic regions of the linker communicated with each other to bring the RRMs in proximity for an optimal interaction with RNAs. This semi-conservative binding mode between RNAs and SRSFs also contributes to a broader range of substrates²⁷.

SRSFs with single RRM interact with RNA substrates in a manner distinct from those with double RRMs. For instance, SRSF2 preferentially bound a 5'-SSNG-3' (S=C/G) motif. According to the structure of SRSF2 RRM with 5'-UCCAGU-3' (PDB code: 2LEB), C2, C3 and G5 were specifically recognized by the residues on the β -sheet surface, forming hydrogen bonds with Arg61, Met89, Arg91, Tyr92, Asp42 and Gly4 (Fig. 2C). Due to the lack of another RRM and glycine-rich linker that bring about the flexibility of substrate recognition, SRSF2 with a single RRM accommodates altered RNA sequences dependent on the conformation changes of nucleotides. Mutating the first two cytosines to guanines resulted in a higher affinity, whereas the conformations of G2 and G3 turn into syn from cis^{28} .


2.1.2. RS domains

According to the crystal structure of SRSF1 in complex with transportin-SR2 (PDB code: 4C0O), a major modulator of SRSF mobilization²⁹, the RS domain (residues 201-211) formed a complicated interacting network with a concave surface comprised of inner helixes of HEAT repeats 15-18 of transportin-SR2. Arg206, Arg208 and Arg210 were three major anchor points in contact with transportin-SR2 via hydrogen bonds, while phospho-serine 207/209 were bridged to the arginine side chains on the surface of inner helix of H15 (Fig. 3A and B). Besides, Ser/ Arg dipeptides can be phosphorylated by serine/arginine-rich protein kinases (SPRKs) in the cytoplasm. Based on the complex structure of SRSF1 and SRPK1 (PDB code: 3BEG), N'-RS1 (residues 201-210 of SRSF1) was accommodated in the docking groove site of SRPK1. This interaction was oriented electrostatically: Arg204, Arg206 and Arg210 formed ion pairs and/or hydrogen bonds with residues of SRPK1. SRPK1 recognition also included sporadic contacts with residues in RRM2 of SRSF1, indicating that RRMs contributed to protein interaction as well (Fig. 3C and D)³⁰.

SRSFs were classified as intrinsically disordered proteins according to the prediction from charge-hydropathy measure and the cumulative distribution function of the disorder scores. This result could be largely attributed to the disordered nature of the RS domain where over 80% residues were classified as disorderpromoting residues. The disorder nature was significant considering the broad binding specificity of proteins or RNAs and susceptibility to multiple phosphorylation of the RS domain³¹, which also accounted for the modularity and functional dispensability of the RS domains: they were interchangeable and functionally independent to some degrees. For instance, introduction of a second RRM to SRSF2 resulted in altered substrate specificity³². The RS domain was dispensable for splicing activity since its deletion, although impaired the overall splicing activity, had no effect on the RRMs-mediated alternative splicing 5' splice site selection³³. Nevertheless, some splicing processes, like the IgM pre-mRNA splicing, indeed relies on the integrity of RS domain. However, such dependence could be relieved through deletion of 11 N-terminus residues, which increased the splicing activity of SRSF1 proteins deprived of RS domain and enhanced its pre-mRNAs binding potency³⁴. SRSFs also had exon-independent functions on gene splicing, since RNA substrates with only one nucleotide of 5' exon also formed lariat and underwent the first step of splicing in the presence of SRSFs. In this case, the RS domain alone was sufficient to elicit low levels of splicing and likely to promote spliceosome assembly within the intron considering its critical roles in mediating protein-protein interactions. However, the efficiency of lariat formation increased by 50-fold when a functional RRM was appended, indicating RNA binding was essential for efficient splicing activity within the intron³⁵.

2.1.3. Post-translational modifications

SRSFs undergo a series of post-translational modifications (PTMs) including phosphorylation, acetylation, methylation and ubiquitination, which affects the RNA-binding, subcellular distribution and expression levels. In the cytoplasm, SRSFs are phosphorylated by SRPKs and migrate into the nucleus *via* interaction with transportin-SRs^{36–38}. In the nucleus, SRSFs can be phosphorylated by Cdc-like kinases (CLKs). SRPK1

Figure 3 Structural overview of SRSF1 in complex with SRPK1 (PDB code: 3BEG) and transportin-SR2 (PDB code: 4C0O). (A) indicates the overall representation of SRSF1 in complex with transportin-SR2. Protein backbone is shown in cartoon and SRSF1 RRM2 is represented in salmon and RS domain is shown in green cyan. Transportin-SR2 helixes in contact with RS are shown in pale yellow. (B) shows the mode of interactions between RS domain and inner helixes of H15-18 repeats. RS domain (residues 201–210) and important residues in contact with RS are represented as sticks. Heavy atoms are shown in green cyan (C atoms of RS), yellow (C atoms of transportin-SR2), blue (N atoms), red (O atoms), orange (P atoms) and H atoms are shown in white. Non-bonded contacts are shown in magenta dashes. (C) represents the structure of SRSF1 in complex with SRPK1. Key residues of SRSF1 are shown in sticks and the surface of SRPK1 contacts is colored by yellow. (D) suggests the mode of interactions of SRSF1 RS1 and SRPK1. Color schemes are as in (B).

preferentially phosphorylates approximate 10 serines on the N-terminal of RS domain (RS1 domain) in a semi-processive and directional manner ^{39,40}. This process initiates from the C-terminal of RS1 domain and advances in a C-to-N-terminal direction to phosphorylate the serine/arginine dipeptides in the RS1 domain ⁴⁰. SRPK2 shares similar sequence identity, substrate preference and kinase activity with SRPK1 but possesses a unique proline-rich sequence in the N-terminal and different tissue-specific expression pattern ⁴¹.

CLK family includes CLK1, CLK2, CLK3 and CLK4, all of which are featured by a C-terminal kinase domain and a disordered N-terminal RS-rich domain 42. Cytoplasmic CLK1 mobilizes into the nucleus through a ternary complex of SRSF1/transportin-SR/CLK1, interacting with the RS domain of hypophosphorylated SRSF1 in a 'piggyback' mechanism 43. In the nucleus, CLK1 phosphorylated serine/arginine, serine/lysine and serine/proline dipeptides of the whole RS domain unbiasedly in a processive manner to produce hyper-phosphorylated SRSFs 44,45. Phosphorylation of three proline/serine dipeptides enlarged the conformational ensembles of the RS domain and triggered the disassociation of SRSF1 from the nuclear speckles 46. Besides, CKL1 could form complex with nuclear SRPK1 via the N-terminal sequence, which promoted the dissociation of hyper-

phosphorylated SRSFs from CLK1^{47,48}. During splicing, SRSF dephosphorylation induced conformation changes, enabling the formation of fully active spliceosome, which is catalyzed by phosphatase PP1 (Fig. 4)^{49,50}.

Acetyltransferase Tip60 acetylated SRSF2 at Lys52 and led to SRSF2 proteasomal degradation. Tip60 also inhibited SRSF2 phosphorylation by reducing the nuclear accumulation of SRPK1 and SRPK2, while histone deacetylase 6 antagonized the Tip60 activity to induce SRSF2 acetylation⁵¹. Global proteomic analysis of arginine methylation indicated that SRSF1 could be methylated at Arg93, Arg97 and Arg109, which controlled the subcellular localization of SRSF1⁵². Likewise, arginine methylation induced by protein arginine methyltransferase 4/5 was important for SRSF2 shuttling and functions⁵³. Ubiquitination is an important protein degradation mechanism which removes aberrant or misfolded proteins and generates peptides and amino acids for recycling. In particular, T cells of systemic lupus erythematosus (SLE) patients showed increased ubiquitination of SRSF1 when compared with those from heathy individuals, indicating the prompting effects of SRSF1 degradation on SLE progress⁵⁴ SRSF5 could be ubiquitylated by smad ubiquitination regulatory factor 1, which was antagonized by Tip60-mediated acetylation on $K125^{55}$.

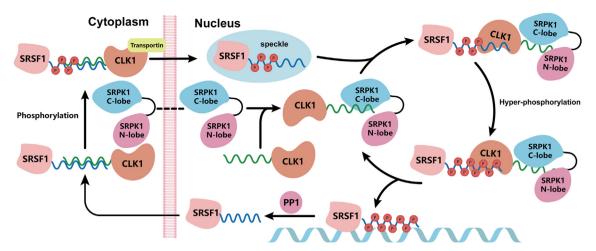


Figure 4 CLKs, SRPKs and PP1 modulate the phosphorylation states of SRSF1, which determines the subcellular distribution and functions of SRSF1.

2.2. Modulations on RNA metabolism

Nuclear SRSFs not only serve as splicing regulator but also maintain genome stability, regulate polyadenylation and promote transcription elongation. Besides, some SRSFs shuttle between the nucleus and cytoplasm⁵⁶, which confers them extensive involvements in cytoplasmic RNA metabolism (Fig. 5)⁵⁷.

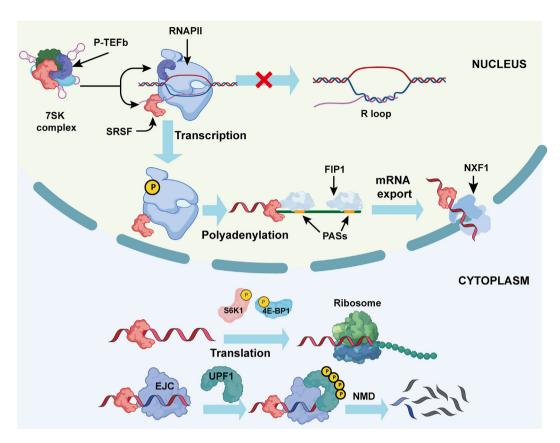
2.2.1. Genome stability

SRSFs are crucial factors to maintain genome stability, which can be attributed to their direct interactions with nascent RNA transcripts during transcription. For example, the formation of R loops results from rehybridization between nascent transcripts and the template DNA strands, being the hallmark of DNA double-strand breaks. SRSF1 can occupy nascent transcripts with high affinity during transcription to preclude the formation of R loops^{58,59}. SRSF3 also inhibits R loop formation during transcription yet with a lower potency compared with SRSF1⁵⁹.

SRSFs also modulate the expression of genes related to DNA damage and repair. SRSF3 was involved in homologous recombination-mediated DNA repair pathway in context of neoplastic transformation. Deletion of SRSF3 resulted in the downregulation of homology-dependent recombination repair genes⁶⁰. SRSF6 was revealed to regulate the AS of a set of genes enriched in DNA damage response pathway through transcriptomic analysis⁶¹. SRSF6 also controlled the inclusion of exon11 of *BRCA1*, another gene responsible for DNA repair, by interacting with a splicing regulatory motif in exon11⁶².

2.2.2. Polyadenylation

Polyadenylation is an essential step before mRNA maturation, which results in endonucleolytic cleavage and introduces a non-template poly(A) tail of ~150 nt at polyadenylation sites (PASs)⁶³. Mammalian genes contain several PASs and differential usage of PASs generating transcript isoforms refers to alternative polyadenylation (APA) which affects the length of 3' untranslated region (3'-UTR) or the potential of mRNAs to be regulated ^{64,65}. SRSF3 and SRSF7 recognized the upstream of proximal PASs (pPASs) while exerting opposite effects on polyadenylation. SRSF7 enhanced pPAS usage *via* the recruitment of FIP1. FIP1 in turns escorted PAP and promoted endonucleolytic cleavage and


polyadenylation and generation of short 3'-UTRs. SRSF3 similarly bound the upstream of pPAS but could not recruit FIP1, therefore impairing the enhancing effects of SRSF7 on pPAS usage. Besides, SRSF3 was essential to *Cpsf6* splicing and maintained the expression of CFIm that bound the upstream of dPASs to recruit FIP1, favoring the generation of long 3'-UTRs. Therefore, high SRSF3 expression was positive to distal PASs (dPASs) usage. The differences in the regulation of polyadenylation between SRSF3 and SRSF7 could be due to their discrepancies in structural domains⁶⁶.

2.2.3. Transcription elongation

SRSF2 was involved in transcription elongation via triggering the release of positive elongation factor b (P-TEFb). Following transcription initiation, RNA polymerase II (RNAPII) promoter proximal pause occurs near the transcription start site with Ser5 in the heptapeptide repeat of the C-terminal domain being phosphorylated. Productive elongation requires phosphorylation on Ser2 in C-terminal domain⁶⁷, which requires P-TEFb. P-TEFb are sequestered in an inhibitory multi-subunit ribonucleoprotein particle 7SK complex⁶⁸. SRSF2 serves as a component of 7SK complex and after transcription pause, it dissociates from the inhibitory complex for RNA binding, which leads to the release of P-TEFb, RNAPII phosphorylation and finally transcription elongation⁶⁹. SRSF2 knockdown induced RNAPII accumulation near the nascent transcripts and impaired transcription elongation, accompanied with defective P-TEFb and reduced Ser2 phosphorylation⁷⁰.

2.2.4. mRNA export

Nuclear RNA export factor 1 (NXF1) and its adapter proteins cooperate to export mature mRNA from nucleus to the cytoplasm. Shuttling SRSFs can substitute adaptor proteins to mediate mRNA export *via* NXF1 pathway⁷¹. Through a combination of cellular fractionation and RNA sequencing, over 1000 transcripts were identified as export targets of SRSF1-7, among which SRSF3 presented the most potential NXF1 adaptor⁷². Overexpression of SRSF1 induced nuclear accumulation of NXF1, indicating an increase of mRNA transport activity⁷³. LncRNA export was also regulated by SRSFs. SRSF1 and SRSF7 enhanced *NKILA* export by binding to its cytoplasmic accumulation region to facilitate the

Figure 5 Schematic representation of SRSF-regulated RNA metabolism. SRSFs bind to nascent transcripts to prevent R loop formation, contributing to the maintenance of genome stability. When transcription pause occurs, SRSFs dissociate from 7SK complex to extract P-TEFb into RNA polymerase II (RNAPII). P-TEFb phosphorylates RNAPII to induce transcription elongation. SRSF3 and SRSF7 are involved in polyadenylation. SRSFs are associated with mRNAs after transcription and promote mRNA export *via* nuclear RNA export factor 1 (NXF1). SRSFs promote eIF4E-binding protein 1 (4E-BP1) and S6 kinase 1 (S6K1) phosphorylation to increase translation in an mTOR-dependent manner. Moreover, SRSFs can interact with exon junction complex (EJC) to recruit RNA helicase UPF1, facilitating the degradation of PTC-containing transcripts *via* NMD pathway.

recruitment of NXF1⁷⁴. Otherwise, SRSF7 facilitated mRNA export by enhancing the translation of constitutive transport element-containing RNA⁷⁵. These results suggest shuttling SRSFs can remain coupled with mRNA even when transcription and splicing are completed to promote mRNA export, thereby stretching their modulations on RNA metabolism from nuclear to cytoplasmic events.

2.2.5. Translation

SRSFs exert promotive and/or inhibitory effects on mRNA translation. Approximate 1500 mRNAs involved in cell cycle regulation were identified as translation targets of SRSF1⁷⁶. Mechanistically, SRSF1 enhanced mRNA translation by recruiting phosphatase PP2A and mammalian target of rapamycin (mTOR) to phosphorylate eIF4E-binding protein 1 (4E-BP1), which inhibited the suppression of eIF4E-mediated translation initiation⁷⁷. SRSF1 overexpression also enhanced the phosphorylation of another mTOR complex substrate, S6 kinase 1 (S6K1), and activated mTOR signaling pathway to promote translation⁷⁸. In contrast, SRSF3 was shown to suppress translation of programmed cell death 4 (PDCD4) by binding its 5' untranslated region, which delivered PDCD4 to P-bodies where translationally silenced mRNAs were deposited⁷⁹. SRSF3 regulated the translation of innate immune genes by binding to putative binding sites in

3'-UTRs of these genes. SRSF3 silence led to an increase of expression of immune mediators, suggesting SRSF3-mediated translation regulation was involved in innate immunity⁸⁰.

2.2.6. Nonsense-mediated mRNA decay

Nonsense-mediated mRNA decay (NMD) is a transcriptome quality surveillance mechanism which eliminates abnormal and nonfunctional mRNAs to preclude the generation of potentially deleterious truncated proteins⁸¹. Transcripts with premature termination codons (PTCs) are targeted by NMD for degradation⁸². NMD canonically depends on the recruitment of exon junction complexes (EJCs) and NMD factors such as RNA helicase UPF1, UPF2 and UPF3B. Phosphorylated UPF1 precludes further round of translation and signals PTC-containing mRNA degradation carried out by endo- and exo-nucleases^{83,84}. SRSF1 interacted with EJC components and enhanced the binding of UPF1 to the PTC-containing transcripts, bypassing the need for UPF2, an essential NMD factor. Besides, SRSF1 promoted the dephosphorylation of p-UPF1, which accelerated UPF1 recycling and improved NMD efficiency⁸⁵. SRSF2 mutants could also enhance NMD efficiency. Mutant SRSF2 with altered substrate consensus motifs enhanced the inclusion PTCs and the generation of NMD targets. Binding of mutant SRSF2 to PTC-containing RNAs also enhanced the deposition of EJCs to a greater extent

than wide type SRSF2, resulting in enhanced association with key NMD factors to augment mRNA decay⁸⁶.

3. SRSFs and cancers

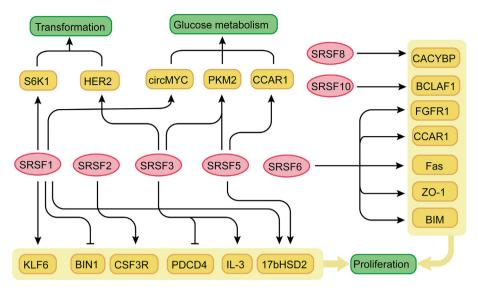
Abnormal RNA metabolism, ranging from alternative splicing, transcription and translation to RNA degradation, gives rise to aberrant productions of oncologic genes and proteins which finally promote the progress of cancers. SRSFs comprehensively regulate various aspects of RNA metabolism and balance the expression of different gene isoforms. Aberrant SRSF expression has been observed in cancer cells and clinical samples. Various cancer phenotypes have been found originated from aberrant SRSF functions. Besides, non-coding RNAs (ncRNAs) also exert stimulative or suppressive effects on tumor progression *via* modulating SRSF expression. While some SRSFs have been validated as promising targets for cancer treatment, SRSFs conversely exhibited anti-tumor activity in some cases, suggesting that more studies are required to entangle the relationships between SRSFs and tumor progression.

3.1. Expression and mutations

Overexpression of SRSFs has been observed in a large group of cancer cell lines and clinical samples. In most cases, higher SRSF level preordained tumor progression, short overall survival and poor prognosis. For instance, SRSF3 was highly expressed in colorectal cancer (CRC) and enhanced B7-H3 exon4 inclusion. High expression of either B7-H3 or SRSF3 was correlated with poor prognosis of the patients⁸⁷. Overexpression of SRSF3 was also associated with relevant clinical and molecular parameters of aggressiveness in prostate cancer samples while SRSF3 downregulation predicted good prognosis in patients with head and neck cancer (HNC)88. SRSF1/2 and SRPK1/2 were overexpressed in lung adenocarcinoma and squamous cell lung carcinoma, and partially responsible for proliferation, metastasis and drug resistance of non-small cell lung cancer (NSCLC)⁸⁹. Upregulation of SRSF6 was observed in colon and colorectal cancer, lung cancer and melanoma⁹⁰⁻⁹². The expression level of SRSF5-7 was markedly up-regulated in lung cancer samples especially small cell lung cancer (SCLC)⁹³. SRSF10 upregulation was found in HNC patient samples in comparison to paired normal tissues⁹⁴. In contrast, higher expression of SRSFs could be tumor-protective as well. For instance, reasons accounting for SRSF3 overexpression in hepatocellular carcinoma (HCC) may be an attempt to maintain hepatocyte metabolism⁹⁵, since SRSF3 could protect from hepatic carcinogenesis via suppressing fibrosis, mitogenic splicing and epithelial-mesenchymal transition (EMT). Depletion of SRSF3 predisposed mice to spontaneous HCC with aging⁹⁶.

SRSF2 mutations have been extensively identified in chronic myelomonocytic leukemia^{97–99}, acute myeloid leukemia¹⁰⁰, chronic neutrophilic leukemia¹⁰¹ and myelodysplasia syndromes^{102,103}. Mutant SRSF2 presaged poor prognosis and shorter overall survival than those without the mutation and was correlated with disease progression and clinical outcomes of pharmacological therapies^{100,104,105}. Mechanistically, disease-related mutations altered the RNA-binding capacity of SRSF2 with cognate RNA sites in target transcripts, leading to dysfunction of exon inclusion¹⁰⁶. SRSF2 mutants also elicited the formation of R-loops, enhanced replication stress and activation of ATR—Chk1 pathway¹⁰⁷.

3.2. Cell transformation


Cell transformation describes the changes associated with loss of normal homeostatic control, particularly of cell division, which ultimately results in the development of a neoplastic phenotype. SRSF1 regulated the AS of S6K1 which coded S6K1, an important substrate of mTORC1 and implicated in the regulation of cell size and transformation. Slight SRSF1 overexpression transformed immortal rodent fibroblasts and promoted sarcoma formation by favoring the expression of short isoform of S6K1, which resulted in mTORC1 activation and 4E-BP1 phosphorylation 108. Overexpression of SRSF1 in MCF-10A acini also promoted the generation of S6K1 short isoform to transform mammary epithelial cells¹⁰⁹. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) transformed hepatocytes via up-regulation of SRSF1 and S6K1 short isoform as well¹¹⁰. Human epidermal growth factor receptor 2 (HER2) overexpression was associated with many aggressive tumors and a poor prognosis. $\Delta 16HER2$ is a highly tumorigenic isoform of HER2 increasing malignant transformation of breast cancer cells, whereas p100 isoform is involved in the inhibition of tumor cell proliferation and oncogenic signals. Overexpression of SRSF3 in tumors switched splicing variants of HER2 mRNA from p100 to $\Delta 16$ HER2, leading to tumor progression (Fig. 6)¹¹¹.

3.3. Glucose metabolism

Reprogrammed glucose metabolism with enhanced aerobic glycolysis is known as Warburg effect, representing a hallmark of cancer. SRSFs were key modulators tumor glucose metabolism and contributed to enhanced glycolysis in cancers. For instance, MALAT1 enhanced translation of transcription factor 7-like 2 (TCF7L2) to upregulate the expression of glycolytic genes and inhibit gluconeogenic enzymes in HCC. This effect was mediated by SRSF1 upregulation-induced mTORC1-4EBP1 activation 112. Besides, c-Myc/SRSF1 axis activation promoted circMYC overexpression, which induced higher glycolysis and lactate production via sponging miR-1236 in Mel-CV cells 113. Pyruvate kinase (PK) is one of the important rate-limiting enzymes in glycolysis. Two isoforms of PK, PKM1 and PKM2, are encoded by the same PKM gene while PKM2 dominantly promotes aerobic glycolysis of cancer cells. SRSFs promoted PKM2 expression via favoring PKM exon9 exclusion, and played a positive role in cancerspecific energy metabolism. For instance, SRSF3 switched PKM splicing into PKM2 isoform. Loss of SRSF3 in human colon cancer cells induced an increasing in the ratio of PKM1/PKM2, leading to a metabolic shift from glycolysis toward oxidative phosphorylation¹¹⁴. SRSF5 also facilitated PKM2 expression. Knockdown of SRSF5 repressed glycolysis in NSCLC cells via reducing PKM2 level¹¹⁵. Tip60-mediated acetylation induced SRSF5 overexpression, which switched the AS of cell division cycle and apoptosis regulator protein 1 (CCARI) to CCARIS. CCAR1S enhanced glucose consumption and promoted tumor growth (Fig. 6)⁵⁵.

3.4. Proliferation and apoptosis

Unqualified proliferation represents the most predominant characteristic of cancer cells. SRSFs increase proliferation and reduce apoptosis of cancer cells through reprogrammed AS of oncogenic genes. For instance, SRSF1 inhibited the tumor suppressive activity of promoted bridging integrator 1 (BIN1) in NSCLC *via*

Figure 6 SRSFs are involved in cancer cell transformation, reprogrammed glucose metabolism and proliferation by regulating the functions of diverse genes and proteins.

promoting BIN exon12A inclusion which generated BIN1+12A isoform 116 . In bladder cancer, 17β -hydroxysteroid dehydrogenase type 2 (HSD17B2) decreased potent androgen production and its overexpression suppressed androgen-induced cell proliferation and xenograft growth. However, its tumor suppressive activity could be abrogated by SRSF1 and SRSF5 that induced the generation of two catalytic-deficient M and S isoforms of HSD17B2¹¹⁷. The truncated M/S isoforms could promote wildtype HSD17B2 degradation by forming a heterodimer with the long isoform. Production of the long isoform of Bcl-x, Bcl-xL, was promoted by SRSF1. Bcl-xL disrupted the interaction of beclin-PIK3C3 complex, leading to inhibition of autophagy in lung cancer¹¹⁸. SRSF2 mutation targeted colony stimulating factor 3 receptor (CSF3R) splicing and promoted the expression of CSF3R-V3 mRNA which brought about a hypo-proliferative phenotype associated with defective JAK-STAT3 activation in acute myeloid leukemia 119. Increased SRSF3 expression in cancer cells favored the production of interleukin enhancer binding factor 3 (ILF3) isoform-1 and isoform-2, two critical factors for tumor proliferation and transformation 120. SRSF3 was also found to repress the export and translation of programmed cell death 4 (PDCD4) mRNA and SRSF3 silencing increased the expression of all isoforms of PDCD4 which was a tumor suppressor involved in apoptosis 121.

SRSF6 promoted the exon15–22 skipping of *CCAR1* and engendered CCAR1S protein with anti-apoptosis activity in T-cell acute lymphoblastic leukemia¹²². Overexpression of SRSF6 also reduced the most potent apoptotic isoform of *Bim* gene, *BimS*, by promoting exon3/4 inclusion in HEK293 cells¹²³. In addition, SRSF6 regulated zona occludens 1 (*ZO-1*) exon23 splicing and promoted its exclusion, which was associated with proliferation and metastasis of CRC *in vivo*⁹⁰. SRSF10 was found to promote proliferation in colon cancer cells by favoring the Bcl-2-associated transcription factor 1 (*BCLAF1*) exon5a inclusion¹²⁴. SRSF7 was recently revealed to be a novel m⁶A regulator of tumorigenic genes. SRSF8 promoted multiple myeloma (MM) cell proliferation *via* regulating the AS of calcyclin binding protein (*CACYBP*). *CACYBP* isoform 2 was elevated by SRSF8 and reduced the ubiquitination degradation of β-catenin to promote MM

progression. Therefore, SRSF8/CACYBP/ β -catenin axis might be a novel target for MM treatment ¹²⁵.

Ferroptosis is a newly discovered iron-dependent form of cell death, accompanied by the damage of membrane lipid peroxide and repression of lipid repair enzyme glutathione peroxidase 4 (GPX4)¹²⁶. In CRC, SRSF9 inhibited ferroptosis *via* upregulating GPX4 level and SRSF9 overexpression significantly promoted cell viability and colony formation of CRC cells and tumor growth *in vivo*. Consistently, SRSF9 inhibition increased erastin-induced ferroptosis by downregulating GPX4 level¹²⁷. An AS-induced isoform of GPX4, iGPX4, could enhance ferroptosis and deteriorated metabolic-associated fatty liver disease through transforming GPX4 into inactive oligomers¹²⁸. Considering the inhibitory effects of SRSF9 on ferroptosis, it will be interesting to reveal whether SRSF9 regulates AS of *GPX4* and how SRSF9 affects ferroptosis in metabolic-associated fatty liver disease.

Although above-mentioned data correlated SRSF hyperactivation with enhanced proliferation of cancer cells, some studies conversely demonstrated that SRSF defects also contributed to cancer progression. For example, SRSF1 was essential for the splicing of kruppel-like factor 6 (KLF6) which suppressed tumor proliferation of HepG2 cell¹²⁹. In bladder cancer cells, SRSF6 mediated the tumor-suppression effects of fibroblast growth factor receptor 1 (FGFR1), and SRSF6 knockdown increased the level of $FGFR1\beta$ that was predominantly expressed in cancer¹³⁰. SRSF6 was also implicated in the splicing of cell surface death receptor Fas, promoting cassette exon inclusion to generated a pro-apoptotic isoform (Fig. 6)¹³¹. These results supported the tumor suppressive effects of SRSF on cancer proliferation and progression, yet these tumor suppressive effects could be overwhelmed by the predominant oncogenic effects of SRSF overexpression.

3.5. Cell senescence

Activation of oncogenes activates p53-mediated tumorsuppressive barriers, leading to cell-cycle arrest and the onset of premature cellular senescence¹³². Ubiquitin ligase MDM2 is an

endogenous p53 regulator which promote p53 ubiquitylation and degradation. In particular, the interaction of p53 with MDM2 is modulated by a subset of ribosomal proteins which bind to MDM2 and block its p53 ubiquitylating function. SRSFs are regulators of p53-dependent cell senescence¹³³. SRSF1 stabilized the interaction between ubiquitin ligase MDM2 and ribosomal protein L5, which blocked the p53 ubiquitylating function of MDM2 and increased p53 activity¹³⁴. Besides, SRSF1 promoted MDM2 exon11 skipping, engendering an MDM2 isoform MDM2-ALT1¹³⁵. MDM2-ALT1 impairs the proper localization of fulllength MDM2, thereby increasing p53 activity. In contrast, SRSF2 played an antagonistic role in MDM2 AS by facilitating the inclusion of exon11. SRSF2 inhibition was positive to MDM2-ALTI expression and induced p53 activation and apoptosis 136. Likewise, SRSF3 promoted MDM4 exon6 inclusion to produce p53-suppressive full-length MDM4. SRSF3 knockdown led to MDM4 downregulation, resulting in the activation of p53mediated tumor suppression¹³⁷. Downregulation of SRSF3 was also associated with elevated expression of p53 β , an alternatively spliced isoform of p53 that promoted p53-mediated senescence ¹³⁸. Suppression of SRSF4 and SRSF7 via Sp1 depletion also effectively facilitated cell senescence 139. Targeting the differential effects of SRs on cell senescence could be a novel approach to restore tumor-suppression effect of p53, which has been a challenging target for drug development (Fig. 7).

3.6. Migration, invasion and EMT

Aberrant SRSF activities are implicated with enhanced metastasis, migration, invasion and EMT in cancer development. SRSF overexpression was observed in highly metastatic cancer cells and tissues ^{140,141}. SRSFs regulated the expression of genes and proteins involved in cancer metastasis. In HCC, overexpression of SRSF1 and steroid receptor RNA activator 1 long isoform induced migration and invasion by increasing CD44, p-AKT and p-ERK levels ¹⁴². High expression of defective in cullin neddylation 1

domain containing 5 (DCUN1D5) was identified in metastatic MDA-MB-231 cell and predicted poor overall and relapse-free survival of breast cancer patients. Of note, SRSF1 increased DCUN1D5 expression by NMD inhibition 143. Truncated isoform of coiled-coil domain containing 50 genes (CCDC50S) was highly expressed in HCC patients. SRSF3 stabilized CCDC50S mRNA via direct interaction, which resulted in HCC growth and metastasis via activation of Ras/Foxo4 signaling 144. In triple negative breast cancer, SRSF3 promoted the expression of α isoform of glucocorticoid receptor ($GR\alpha$) gene, which induced enhanced transcription of receptor for activated C kinase 1 to promote cancer cell migration and invasion¹⁴⁵. In pancreatic cancer, CLK1 was up-regulated to enhance SRSF5 phosphoryla-Enhanced SRSF5 phosphorylation tion. methyltransferase-like 14 (METTL14) exon10 skipping, which afterwards enhanced metastasis of pancreatic cancer cells via increasing m⁶A modification 146. Likewise, overexpression of SRSF9 enhanced m⁶A modifications of *DSN1* mRNA and was correlated with lymph node metastasis in CRC¹⁴⁷.

EMT normally occurs in a few physiological conditions such as wound healing and tissue regeneration, during which epithelial cells are deprived of their distinguishing features to acquire typical mesenchymal traits. EMT is also utilized by cancer cells to obtain migratory and invasive properties¹⁴⁸. SRSF1 overexpression promoted EMT in breast and colon cancer via elevating the expression of ΔRon , a constitutively active isoform of Ron with exon 11 excluded 149 . SRSF1 inhibition counteracted ΔRon generation and the invasive phenotypes of cancer cells¹⁵⁰. Compared with SRSF1, SRSF2 played an opposite role in Ron AS. SRSF2 recognized the CGAG motif in Ron exon11 to promote exon inclusion, and SRSF2 knockdown increased the constitutively active ΔRon^{151} . Otherwise, SRSF2 inhibited cancer invasion by favoring the antimetastatic isoform of methyl-CpG binding domain protein 2 (MBD2), MBD2c. In breast cancer, hypoxia-induced hypoxiainducible factor 1 (HIF1) activation promoted the MBD2a expression via suppressing the effects of SRSF2 on MBD2, which

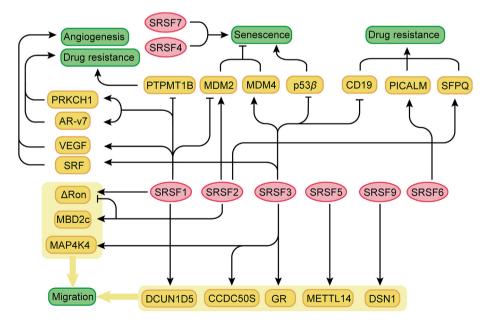


Figure 7 SRSFs are associated with the processing of genes relative to tumor migration, EMT, senescence, angiogenesis and drug resistance.

enhanced metastasis and EMT by activating expression of frizzled class receptor 1¹⁵². Therefore, SRSF2 could demonstrate a protective role against EMT. In CRC, SRSF3 favored the inclusion of mitogen-activated protein 4 kinase 4 (*MAP4K4*) exon16, inducing yields of *MAP4K4* iso2 and iso5 to promote EMT in HCT-8 cells¹⁵³. The pro-metastasis activity of SRSFs resulting from the modulation of a series genes and proteins related to cell mobility or EMT confers them with great significance of cancer treatment, since metastasis of cancer has been a major cause of death in cancer patients (Fig. 7).

3.7. Angiogenesis

Angiogenesis is a fundamental requirement for embryonic development, wound healing and other physiological processes process during which new vessels form from the existing ones. Tumor growth also requires new vessel formation, which is predominantly driven by vascular endothelial growth factors (VEGFs). VEGFs are the most potent angiogenic molecules and SRSFs have been discovered as major regulators of VEGF alternative splicing, which generates two families of isoforms: proangiogenic $VEGF_{xxx}$ and anti-angiogenic $VEGF_{xxx}b^{154}$. SRSF1 was a promoter of VEGF_{xxx} and SRSF1 up-regulation facilitated angiogenesis in many types of cancer. For instance, the Wilms' tumor suppressor (WT1) is a major regulator of tumor angiogenesis¹⁵⁵. WT1 mutation resulted in enhanced SRSF1 phosphorylation, which in turn lowered the expression of VEGF₁₆₅b and rendered the WT1-mutated cancer cells angiogenic 155. In tumor endothelium, knockdown of WT1, SRPK1 and SRSF1 promoted the anti-angiogenic $VEGF_{120}$ isoform expression ¹⁵⁶. Analysis of 17 neuroblastoma clinical samples demonstrated that the SRSF1-mediated alternative splicing of VEGF was regulated by extracellular matrix (ECM) stiffness. In particular, high ECM stiffness inhibited the expression of YAP and RUNX2, leading to reduced SRSF1 and VEGF₁₆₅ expression¹⁵⁷.

Other angiogenesis-related genes have been found regulated by SRSFs as well, contributing to the angiogenic phenotype of cancer. SRSF3 regulated the splicing pattern of pro-angiogenic gene, serum response factor (SRF), by binding to the CAUC motif in exon6 to induce intron exclusion. SRSF3 knockdown inhibited VEGF secretions from CRC cells and induced a significant reduction of tube formation in human umbilical vein endothelial cells¹⁵⁸. SRSF1 overexpression caused by hypoxia switched the splicing of HIF- 1α into HIF- $1\alpha^{-ex14}$, which is more potent in activating vascular endothelial growth factor receptor 2 transcription, thereby enhancing angiogenesis in lung cancer¹⁵⁹. Conversely, some SRSFs favored the anti-angiogenesis VEGF isoforms and inhibited tumorous neovascularization. SRSF6 could bind a 35-nucleotide motif in exon8 and promoted the usage of distal acceptor site and VEGF165b expression¹⁵⁴. SRSF2 cooperated with transcription factor E2F1 to increase VEGF165b/ VEGF ratio, leading to reduction of neovascularization in lung tumor xenografts (Fig. 7)160. Therefore, SRSFs' modulation on angiogenesis can be bivalent and it is necessary to distinguish their unique roles in different cancer types.

3.8. Drug resistance

Resistance against chemical agents and radiotherapy frequently occurs during cancer treatment and presents an intractable obstacle onto anti-cancer drug development. Altered AS events have been implicated in the genesis of multidrug resistance (Fig. 7). For

instance, the reduction of CDK6, CDK4 or PI3K $110\alpha/110\beta$ level induced high frequency of AS and reduced drug resistance caused by ATP-binding cassette subfamily B member 1¹⁶¹. SRSF expression altered upon chemistry or radiation therapy, which in turn changed the expression of genes related to drug resistance and induced the insensitivity of cancer cells. In H1299 and A549 cells, SRSF1 expression was elevated upon ionizing radiation treatment, whereas decreased SRSF1 favored higher rate of apoptosis. Depletion of SRSF1 switched protein tyrosine phosphatase mitochondrial 1 (PTPMT1) into the short isoform PTPMT1B, which in turn markedly up-regulated p-AMPK level and induced DNA double-strand breaks, leading to sensitization of NSCLC cells 162. In CML, SRSF1 overexpression increased PRKCH1 and PLCH1 levels and decreased the sensitivity to imatinib 163. In castrationresistance prostate cancer, SRSF1 was responsible for the expression of an androgen receptor splice variant, AR-v7, which led to resistance to androgen deprivation therapy 164. In epithelial ovarian cancer, splicing factor proline- and glutamine-rich protein (SFPO) was highly expressed and correlated with platinum resistance. Mechanistically, SFPQ in complex with p54 bond to SRSF2 and decreased SRSF2's binding to caspase-9 mRNA, which promoted the expression of its anti-apoptotic isoform. As a consequence, SFPQ/p54/SRSF2 protected cells from platinum-induced death, leading to chemoresistance 165. SRSF3 was essential for exon2 retention of CD19. SRSF3 downregulation was observed in relapsed B-cell acute lymphoblastic leukemia, which promoted CD19 exon2 skipping to generate N-terminally truncated CD19 variant. Compared with full-length CD19, the variant failed to trigger cell death by CART-19 in B-ALL cells 166. In gastric cancer, SRSF6 was related to the resistance of gastric cancer cells to oxaliplatin and 5-FU. Mechanistically, SRSF6 promoted phosphatidylinositolbinding clathrin assembly protein (PICALM) exon14 inclusion to produce a full-length PICALM, which caused autophagy-induced resistance of gastric cancer cells to oxaliplatin and 5-FU (Fig. 7)¹⁶⁷. These results indicate an important aspect of SRSFs in eliciting drug resistance and targeting SRSF-related splicing events could be a promising approach to overcome drug resistance in cancer treatment.

3.9. Cancer immunology

In tumor microenvironment, tumor cells negatively impact cytotoxic T lymphocytes through associating with immunosuppressive cells which secret cytokines to stimulate the expression of immune check point molecules, leading to T cell exhaustion and immune escape. SRSFs promoted the immune escape of cancer by elevating the levels of check point molecules. For instance, SRSF2 was overexpressed in exhausted T cells and involved in exhaustion of tumor-infiltrating lymphocytes (TILs). Transcription of check point immune genes was upregulated by SRSF2 and acetyltransferases P300/CPB complex, which altered the H3K27Ac level near these genes and recruitment of signal transducer and activator of transcription 3. Therefore, SRSF2 could be a target for reversing the exhaustion of TILs¹⁶⁸. Other researches also indicated involvements of aberrant SRSF activation in cancer-specific immune environment. In pan-cancer SRSF3 expression was positively correlated with immune cell infiltration, tumor mutation burden, microsatellite instability 169. Dysfunction in T-cell antitumor activity resulting from high expression of programmed cell death-1 contributes to progression of clear cell renal carcinoma. Mechanistically, TGF β 1 promoted the expression of SRSF3 which

coordinated with NXF1 to induce *PD-1* mRNA extranuclear transport, inhibiting the antitumor activity of T cells¹⁷⁰.

3.10. Non-coding RNAs

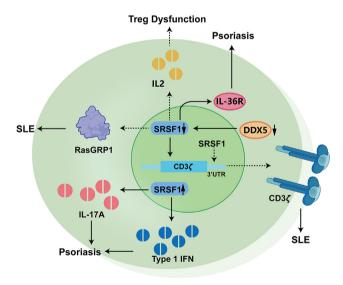
SRSFs are targeted by ncRNAs and mediate the carcinogenetic or anti-cancer effects of ncRNAs. Major findings concerning the interplays between lncRNAs, miRNAs, circRNAs and SRSFs are summarized (Table 1). Interactions between lncRNAs and SRSFs affected the stability and expression of SRSFs, which could result in altered RNA metabolism and altered tumorous progression. For instance, *LINC01123* upregulation was associated with enhanced proliferation, invasion and migration of CRC cells due to its inhibition on SRSF7 expression¹⁷¹. *AC091729.7* was upregulated in

sinonasal squamous cell carcinoma tissues and promoted proliferation and invasion. Mechanistically, *AC091729.7* bound SRSF2 directly and was positive to the expression level of SRSF2 protein. SRSF2 silencing significantly reduced the cancer cell viability and migration caused by *AC091729.7* overexpression¹⁷².

MicroRNAs regulate mRNA translation *via* binding to the 3'-UTR and leading to mRNA silence or degradation. Elevation of *miR-28* and *miR-505* levels enhanced apoptosis and senescence of mouse embryonic fibroblasts by decreasing SRSF1 translation ¹⁷³. In renal cell carcinoma, *miR-766-3p* inhibited SRSF1 translation to decrease downstream p-AKT and p-ERK levels, which suppressed A498 and 786-O cell proliferation ¹⁷⁴. *MiR-193a-5p* could interact with *SRSF6* mRNA leading to its downregulation. SRSF6 inhibited pancreatic cancer cell migration and invasion, while

Name	Class	Target	Cancer type	Effects on tumor development	Associated genes or proteins	Ref.
DGCR5	lncRNA	SRSF1	ESCC	Increase SRSF1 stability. Enhance proliferation, migration, and invasion	DGCR5/SRSF1/Mcl-1	178
MALAT1	IncRNA	SRSF1	НСС	Increase SRSF1 expression. Enhance glycolysis, and inhibit gluconeogenesis	MALAT1/SRSF1/TCF7L2	112
LINC01210	lncRNA	SRSF3	CRC	Increase SRSF1 expression. Promote proliferation, migration, and invasion	1	179
CircSMARCA5	circRNA	SRSF1, SRSF3	GBM	Decrease SRSF3 expression. Inhibit glioma cell migration	CircSMARCA5-SRSF1, SRSF3-PTB	180
circPLCE1	circRNA	SRSF2	CRC	Inhibit SRSF2-dependent splicing. Promote tumor growth <i>in vivo</i>	circPLCE1/SRSF2/PLCE1	181
miR-193a-3p	miRNA	SRSF2	BCa	Inhibit SRSF2 expression. Induce BCa growth and chemoresistance	miR-193a-3p/SRSF2, PLAU, HIC2	182
			NPC	Inhibit SRSF2 expression. Induce NPC radio-resistance	1	183
NRON	lncRNA	SRSF2	BRC	Downregulate SRSF2. Inhibit proliferation and invasion	NRON/miR-302b/SRSF2	184
MRUL	lncRNA	SRSF2	NSCLC	Increase SRSF2 expression. Promote NSCLC proliferation, invasion and migration	MRUL/miR-17-5p/SRSF2	185
CRNDE	LncRNA	SRSF6	GC	Reduce SRSF6 stability. Inhibit autophagy-mediated chemoresistance of GC	CRNDE/SRSF6/PICALM	167
miR-193a-5p	miRNA	SRSF6	PC	Contributed to the metastasis of pancreatic cancer cells bothin vitro and in vivo	miR-193a-5p/SRSF6/ECM1/OGDHL	175
PANDAR	LncRNA	SRSF7	OSCC	Downregulate SRSF7. Promote proliferation and inhibit apoptosis in OSCC	PANDAR/SRSF7/PIM1	186
circ_0006006	circRNA	SRSF7	NSCLC	Increase SRSF7 expression. Repress proliferation, cell migration and invasion, angiogenesis and promot cell apoptosis	circ_0006006/miR-924/SRSF7	187
TUG1	LncRNA	SRSF9	НСС	Increase SRSF9 expression. Promote HCC cell proliferation and migration. Enhance aggressive progression of HCC	TUG1/miR-328-3p/SRSF9	177
miR-802	miRNA	SRSF9	Cervical cancer	Suppress SRSF9 expression. Inhibit proliferation and induce apoptosis of cervical cancer cells	1	188
circ-ATXN1	circRNA	SRSF10	GBM	SRSF10 promotes circ-ATXN1 expression, which enhances cell viability, migration and tube formation of GECs	SRSF10/circ-ATXN1/miR-526b-3p	189

miR-193a-5p overexpression facilitated cancer mobility through SRSF6 depletion¹⁷⁵. However, lncRNAs could act as miRNA sponges to ameliorate the translation inhibition effects of miRNAs on SRSFs. In CRC patient tissues, ZNF561-AS1 and SRSF6 were upregulated, which promote cancer cell proliferation and survival. ZNF561-AS1 elevated SRSF6 expression via sponging miR-26a-3p and miR-128-5p, whereas SRSF6 overexpression reversed the antitumor activity of ZNF561-AS1 depletion in vivo¹⁷⁶. LncRNA TUG1 augmented SRSF9 expression via sponging miR-328-3p, which was associated with aggressive progression and prognosis of HCC patients¹⁷⁷.


4. SRSFs and non-tumorous diseases

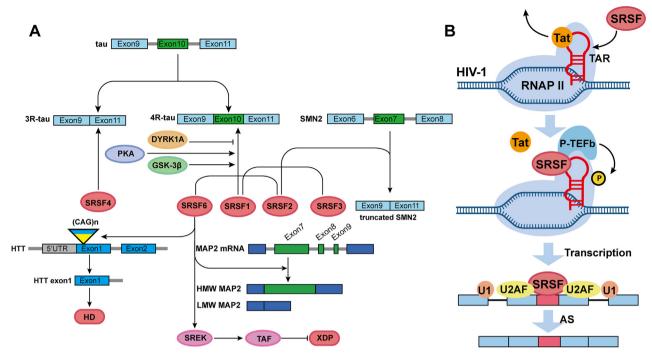
4.1. Autoimmune diseases

SRSFs regulate the AS of a series of immune-related genes responsible for controlled systemic autoimmunity. Impaired SRSF function caused aberrant cytokine production, hyperactive effector T cells and regulatory T cell dysfunction, finally leading to autoimmune disease development.

4.1.1. Systemic lupus erythematosus

Impaired SRSF1 function contributes to the development of SLE (Fig. 8). SRSF1 binds to the 3'-UTR of $CD3\zeta$ to promote wild type $CD3\zeta$ protein expression, whose down-regulation was recognized in T cells from SLE patients¹⁹⁰. Of note, reduced SRSF1 expression in SLE was caused by *has-miR-10b-5p* that reduced 3'-UTR activity of SRSF1¹⁹¹. Higher proteasomal degradation or estrogen-mediated post-transcriptional suppression

Figure 8 SRSF1 dysregulation was associated with autoimmune diseases. Decreased SRSF1 failed to bind the 3'-UTR of *CD3*ζ, reducing the expression of wide-type CD3ζ whose insufficiency was the hallmark of SLE. Decreased RasGRP1 and IL2 expression in SLE patient T cells were also caused by SRSF1 down-regulation. DDX5 downregulation resulted in decreased expression of SRSF1, leading to IL-36R at the expense of sIL-36R, which promoted inflammation in psoriasis and atopic dermatitis. In contrast, SRSF1 overexpression was positive to increased IL-17A and immune response in psoriasis. SRSF1 also formed a complex with RIG-1 to induce cytosolic DNA-triggered type-1 IFN generation and immune response in psoriasis.


of SRSF1 contributed to CD3ζ insufficiency. Reduced cytokine IL-2 level is also a hallmark in SLE T cells and leads to regulatory T cells (Tregs) dysfunction and inefficiency to attenuate immune response. SRSF1 down-regulation contributed to reduced IL-2 due to its critical role to maintain normal IL-2 expression and transcription¹⁹². In another study, SRSF1 also regulated the alternative splicing of RAS guanyl releasing protein 1 (RasGRP1) in T cells. SRSF1 inefficiency led to the generation of RasGRP1-AS isoform which was predominant in SLE T cells 193. Additionally, SRSF1 deletion resulted in T cell lymphopenia, a frequent clinical manifestation and risk factor for infections in SLE, with decreased expression of anti-apoptotic Bcl-xL¹⁹⁴. SRSF1 also played a significant role in Treg metabolism since its deletion led to Treg cell dysfunction via inducing glycolytic metabolism and proinflammatory cytokine productions¹⁹⁵. A recent study demonstrated that SRSF1 targeted the AS of 189 and 582 genes, most of which were involved in autoimmune diseases, unique to Tregs and effector T cells, respectively, further confirming the important role of SRSF1 in protecting from attack on healthy cells and tissues by the immune system¹⁹⁶.

4.1.2. Psoriasis

Meta-analysis from psoriasis patients demonstrated a positive correlation between SRSF1 and IL-17A production, yet SRSF1 cKO mice showed increased Il-17a and Il-17f mRNA level. The discrepancy of IL-17A and IL-17F expression on the protein and mRNA level might suggest SRSF1 regulated IL-17A production in a splicing-independent manner, such as inhibition of myeloidderived suppressor cells or stimulating translation ¹⁹⁷. Viral or bacterial infections are closely related with psoriasis and accompanied with release of cytosolic DNAs which triggers the generation of type-1 interferons (IFNs) and immune response. SRSF1 facilitated cytosolic DNA-triggered type I IFN production via directly interacting with RIG-1/RNA polymerase III complex that served as nucleic acid sensor and was responsible for IFNs production 198. Downregulation of RNA helicase DDX5 was induced by IL-17D in keratinocytes of atopic dermatitis and psoriasis. Due to the direct interaction between DDX5 and SRSF1, expression of SRSF1 was also reduced, which caused the production of IL-36R at the expense of sIL-36R. Strikingly, restoration of sIL-36R inhibited cutaneous inflammation and overexpression of SRSF1 elevated sIL-36R level (Fig. 8)¹⁹⁹. These results highlight the significance of SRSF1 in immune response and T cell metabolism. Particularly, impaired SRSF1 function is a feature of autoimmune diseases, which offers a novel approach to the treatment of these diseases.

4.2. Tauopathy

Intracellular accumulation of microtubule-associated protein tau (MAPT) is a common feature of a heterogeneous subset of neurodegenerative diseases, such as Alzheimer's disease (AD) and Huntington disease (HD) (Fig. 9A)²⁰⁰. *Tau* exon10 exclusion or inclusion generates tau with three or four microtubule-binding repeats (3R-tau or 4R-tau). In healthy brains the ratio of 3R-tau/4R-tau is about 1:1, while perturbations to this ratio are implicated with neurodegenerative diseases. SRSFs play important roles in AS of *tau* exon10. SRSF1, SRSF2 and SRSF6 promoted the inclusion of exon10 leading to 4R-tau expression, whereas SRSF4 bound to the proximal downstream intron and inhibited exon10 inclusion^{201–204}. Dysregulation of *tau* exon10 resulted from abnormal SRSF phosphorylation caused 3R/4R imbalance.

Figure 9 (A) SRSFs were implicated in neurodegenerative disorders due to their modulation on the AS of *Tau*, *HTT* and *MAP2*. Imbalanced tau exon10 splicing was vital to tauopathy, such as HD, AD and Down Syndrome. Abnormal activities of kinases including PKA, DYRK1A and GSK-3β increased SRSF phosphorylation, which resulted in overexpression of 3R-tau or 4R-tau. In HD, SRSF6 bond the CAG repeat on *HTT* exon1 and promoted the pathogenetic HTT exon1 isoform. SRSF6 was also found to regulate the AS of *MAP2* exon7-9 and the dysregulated expression of *HMW* and *LMW MAP2* was relative to the development of HD. In XDP. SRSF6 reduction was relative to the diminishment of SERK that caused low expression of TAF. Transgenic expression of SREK1 could attenuate TAF1 deficiency and striatal atrophy and motor phenotype of HD. SRSF2 and SRSF3 potently inhibited exon7 inclusion of *SMN2*, which decreased functional SMN proteins and exacerbated SMA. (B) SRSF1 competes with Tat in TAR binding and recruits P-TEFb for RNAP II phosphorylation and transcription elongation. SRSFs also participate in the AS of HIV-1 transcripts, which offered an anti-HIV approach by inhibiting SRSF function.

For instance, dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) was upregulated in Down syndrome and interfered with tau exon10 splicing by phosphorylating SRSFs. Ser227, Ser234 and Ser238 of SRSF1 was phosphorylated by DYRK1A, which precluded SRSF1 from promoting exon10 inclusion and refrained SRSF1 within the nuclear speckles²⁰⁵. Increased DYRK1A expression also inhibited exon10 inclusion by increasing SRSF2 and SRSF6 phosphorylation^{203,206}. Cyclic AMP-dependent protein kinase, PKA, induced tau exon10 inclusion via SRSF phosphorylation. Downregulation of PKA pathway in Alzheimer's brain led to neurofibrillary degeneration 207 . GSK-3 β activation induced by amyloid-beta peptide also promoted tau exon10 inclusion by SRSF2 phosphorylation²⁰⁸. SRSF2 could stabilize tau mRNA and promote tau expression²⁰⁹. In this case, aberrant expression or activation of kinases caused altered SRSF phosphorylating levels, which led to the dysregulation of tau exon10 splicing and development of neurodegenerative diseases. Targeting abnormal SRSF phosphorylation can be a novel approach to correct imbalanced tau 3R/4R ratio in tauopathy treatment.

HD is an autosomal dominant neurodegenerative disorder caused by an expanded CAG repeat in exon1 of the *HTT* gene. CAG repeat length-dependent aberrant splicing of exon1 results in a short polyadenylated mRNA that is translated into an exon1 HTT protein, which is consistently pathogenic in HD²¹⁰. SRSF6 was initially found to bind the CAG repeats in mouse *Htt*

transcripts and inhibited the splicing of exon1 to exon2. Overexpression of human SRSF6 increased the levels of incomplete splicing but lowered levels of SRSF6 led to significantly reduced levels of HTT exon1²¹¹. Although SRSF6 has been bioinformatically predicted and biochemically confirmed to bind CAG repeats and promoted incomplete splicing, recent studies failed to observe the effects of SRSF6 knockdown on incomplete splicing in mouse model²¹². Therefore, more researches are still needed to verify the roles in the aberrant splicing of HTT. The imbalance of tau isoforms was also discovered with rod-like tau deposits in the brains of HD patient. The attenuated motor phenotype of HTT transgenic mice with genetic tau reduction demonstrated a role of tau in HD pathogenesis. Alterations in SRSF6 activity led to imbalance of tau isoforms since SRSF6 could increase the inclusion of tau exon 10 leading to pathogenic increase in 4R-tau isoforms²¹³. SRSF6 dysregulation was also correlated with aberrant splicing of microtubule-associated protein 2 (MAP2) exon7-9 in HD²¹⁴. Splicing regulatory glutamine/lysine-rich protein 1 (SREK1) was reduced in the HD mouse models upon SRSF6 downregulation. Decrease of SREK1 in turn caused decreased level of TATA-box binding protein associated factor 1 (TAF1), whose loss of function was related to X-linked dystonia parkinsonism (XDP). In particular, neuronal transgenic expression of SREK1 could attenuate TAF1 deficiency and striatal atrophy and motor phenotype of HD mice²¹⁵.

4.3. Spinal muscular atrophy

Spinal muscular atrophy (SMA) is an inherited neurodegenerative disorder that results in weakness of voluntary muscles in the limbs and affects motor neurons, causing pediatric mortality worldwide. SMA results from mutation or deletion of SMN1 gene, which generates insufficient SMN proteins. The patients also possess the centromeric SMN2 gene which, due to a C > T in the exon7, mostly codes an alternatively spliced transcript without exon7 and the truncated unstable isoform of SMN protein. Increasing the inclusion of SMN2 exon7 is of therapeutic significance to increase the abundance of functional SMN proteins. SRSFs inhibited exon7 inclusion. In particular, knockdown of SRSF2 and SRSF3, two most potent inhibitor of exon7 inclusion, increased SMN protein abundance in SMA patient-derived fibroblasts (Fig. 9A) 216 .

4.4. Viral infections

The transcription and splicing of viral genes require modulations from splicing factors. For instance, SRSFs are important modulators of the splicing and transcription of human papilloma virus 16 (HPV-16). SA3358 is a major splice site of HPV-16 genome and utilized to produce the majority of HPV-16 mRNAs including E4, E6 and E7 mRNAs. An SRSF1 binding site was found on the exonic sequence downstream SA3358 and was essential for SA3358-related alternative splicing and HPV-16 propagation^{217,218}. HPV-16 infection led to SRSF1/2/3 accumulation and enhanced SRSF1 phosphorylation, and siRNA-mediated SRSF1 knockdown induced a significant reduction in spliced HPV-16 mRNA^{219,220}. Besides, upon HPV-16 infection, SRPK1 upregulation was observed to enhance SRSF1 phosphorylation²¹⁹. SRSF1, SRSF3 and SRSF9 could likewise regulate HPV-16 late L1 mRNA splicing, an essential step to establish persistent infections in cervical cancer development²²¹.

The transcription of HIV-1 genome required the binding of Tat to TAR, an RNA stem-loop structure on the nascent viral transcripts. Such interaction recruited P-TEFb and other nucleoplasmic complexes to phosphorylate RNAPII, which was required for transcription elongation. Besides, approximately half the HIV-1 transcripts entering the cytoplasm undergo complex splicing processes to generate over 40 mRNA isoforms²²². SRSF1 could impact both transcription and splicing processes of HIV-1 propagation. SRSF1 activated transcription in the early stage of virus infection through recruiting P-TEFb to TAR from the 7SK complex to phosphorylate RAPII, which bypassed the need of Tat for transcription elongation yet in a much lower efficiency²²³. However, at high concentration, SRSF1 competed with Tat in TAR binding to inhibit viral transcription (Fig. 9B)²²⁴. During splicing, overexpression of SRSF1 increased vpr mRNA level by activating the usage of splicing site A2 and altered the splicing patterns of viral RNAs^{225,226}. Intriguingly, depleting the RS domain of SRSF1 uplifted the inhibitory potency towards HIV-1 replication by over 2000-fold and reduced the impacts on cell viability, which provided a novel approach to treat AIDS with truncated SRSF1 protein²²⁴. SRSF2 and SRSF7 were found to inhibit Tat mRNA production²²⁶ while SRSF4 and SRSF6 inhibited splicing from the 5' splice site of exon3 inducing an accumulation of 13a7 vpr mRNA. In contrast, SRSF5 induced splicing from exon3 to exon4, promoting the production of the 1347 tat mRNA. SRSF6 stimulated vpr mRNA production by interacting with HIV-1 splicing enhancer GAR to inhibit its function^{227,228}. Depletion of SRSF10 affected HIV splicing and decreased the expression of Tat, Gag and Env²²⁹. The above studies pointed out the essential roles of SRSFs in regulating the gene expression of viruses, indicating the RNA regulation functions of SRSFs are not limited to endogenous genetic materials. These results also revealed the specific interaction of SRSFs with viral genes and proteins, implying the prospects to target SRSFs to treat virus infection diseases.

4.5. Fatty liver diseases

SRSF3 is essential for hepatic maturation and metabolic functions. Hepatic-specific deletion of SRSF3 in a mouse model resulted in disturbed hepatic architecture and dysregulations in glucose and lipid metabolism, leading to prolonged expression of fetal markers, decreased expression of adult markers and persistence of hepatic hematopoiesis. The missplicing of genes required for hepatocyte maturation, hepatic lipogenesis and cholesterol synthesis was altered upon the loss of SRSF3²³⁰.

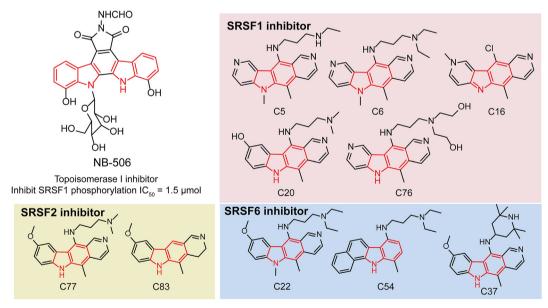
Another research correlated SRSF3 degradation to the genesis of nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and cirrhosis. Loss of SRSF3 expression was observed in both human NAFLD/NASH liver samples and mouse NAFLD/NASH models. Mechanistically, degradation of SRSF3 via neddylation on lysine 11 occurred in response to lipid-induced oxidative stress. Mutation of lysine 11 or prevention of SRSF3 neddylation inhibited the deleterious changes in liver metabolism and provided a new pathway to treat fatty liver diseases²³¹ DRAK2, a serine/threonine kinase belonging to death-associated protein kinase family, could exacerbate hepatic steatosis and inflammation in a high-fat diet induced mouse NAFLD model via reducing SRSF6 phosphorylation. DRAK2 directly interacted with SRSF6 thus preventing its phosphorylation by SRPK1. In particular, DRAK2-SRPK1-SRSF6 axis played an important role in the AS of mitochondrial function-related genes in the progression of NAFLD. The DRAK2-SRSF6 signaling cascade may offer a potentially novel therapeutic pathway for the treatment of NAFLD²³². SRSF10 regulated alternative polyadenylation in the liver and decreased SRSF10 was also associated with NAFLD progression. SRSF10 interacted with a number of the polyadenylation factors, prevented their binding to RNA and inhibited cryptic intronic polyadenylation. However, in the liver diseases, SRSF10 inactivation induced the usages of intronic polyadenylation sites, downregulated liver PPAR α signaling that regulated lipid accumulation, and increased susceptibility to NAFLD and obesity-induced metabolic dysfunctions²³³.

4.6. Fibrosis

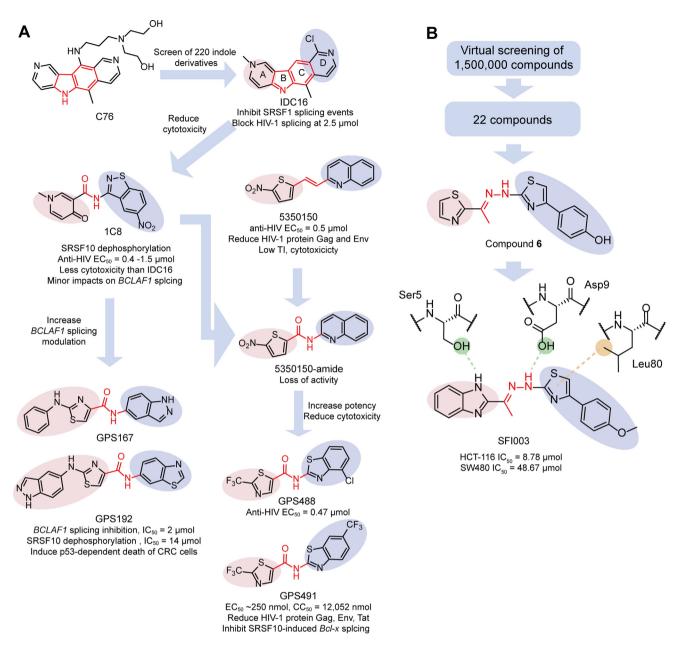
Fibrosis is defined as an irreversible and progressive progress with continuous accumulation of extracellular matrix components that result in destruction of normal tissues and comprised functions²³⁴. SRSFs have been implicated in the progression of fibrosis. For instance, SRSF6 was overexpressed and promoted synthesis of main fibrotic protein COL1A2 and pleural mesothelial cell *in vitro*. The involvements in SRSF6/wnt5A and SRSF6/SMAD1/5/9 signaling induced pleural fibrosis progression and SRSF6 inhibition prevented pleural fibrosis in a mouse model²³⁵. SRSF1 and SRSF9 activated wnt/ β -catenin signaling by enhancing β -catenin translation in an mTOR-dependent manner²³⁶. Accumulation of β -catenin was also involved in the pathogenesis of pulmonary fibrosis. SRSF1 downregulation attenuated collagen deposition and differentiation of mouse lung fibroblasts and

reversed established lung fibrosis through reduction of β -catenin²³⁷. Collectively, aberrant SRSF functions contributed to the progression of fibrosis and, accounting for the limited therapeutic approach to treat fibrosis, SRSFs could be novel targets for fibrosis diseases.

5. Targeting the therapeutic potential of SRSFs


Targeting aberrantly activated or overexpressed SRSFs is a promising approach to treat diseases. SRSF inhibition with siR-NAs or small molecules exhibited reduction of cancer proliferation or metastasis and HIV-1 replication. Otherwise, restoring impaired SRSF expression helps to maintain the functions of immune system and balance of tau isoforms, thereby inhibiting the genesis of SLE and tauopathy. Small molecules are characterized by optimal oral bioavailability and blood brain barrier penetrance, particularly with the wealth of knowledge from medicinal chemistry whereby physicochemical properties can be systematically optimized to improve pharmacokinetics and potency. In this work, we focused on the discovery of small molecules with SRSF modulating activities.

5.1. Indole derivatives


NB-506, a glycosylated indolocarbazole derivative, was initially identified as a topoisomerase I inhibitor. It turned out NB-506 selectively inhibited the SRSF phosphorylating activity of topoisomerase I, which reduced SRSF1 phosphorylation (IC₅₀ = 1.5 μ mol/L) and spliceosome assembly at 25 μ mol/L. NB-506 affected SRSF1 phosphorylation of murine P388 leukemia cells but not topoisomerase I mutant P388CPT5 cells (Fig. 9)²³⁸. Inspired by the indole moiety of NB-506, a series of indole derivatives were screened for inhibition against

spliceosome assembly via blocking the kinase activity of topoisomerase I. Pyrido-carbazole derivatives were formerly found as DNA-interacting agents with antitumor activity. However, binding affinity assays based on the intrinsic fluorescence of pyridocarbazole motif verified their DNA-independent interactions with SRSFs. Compound C76 with a pyrido-pyrrolo-isoquinoline motif bond SRSF1 with a K_d value of 0.19 μ mol/L. Heat denaturation assay revealed that the domain integrity was indispensable for binding. The inhibition was possibly attributed to the binding to RS domain, which blocked the interaction between SRSFs and topoisomerase I. The inhibition of ESE-dependent splicing events of these indole-derivatives were determined in in vitro splicing assay, which showed that these compounds had biased binding preference to SRSFs. For instance, the inhibitory effect of C22 on SRSF6 was much higher than SRSF1 ($ID_{50} = 1$ and 25 µmol/L, respectively). In particular, C77 and C83, which had a 9-methoxy-pyrido[4,3-b]carbazole moiety, selectively inhibited SRSF2-induced splicing events. These results revealed that slight structural difference affected the selectivity of indolederivatives. Using a cell-based HIV-1 splicing model, compounds C5, C6, C16 and C20 showed inhibition against HIV-1 genome splicing at 5 µmol/L (Fig. 10)²³⁹. Importantly, drug treatment neither affected the global splicing events nor cell viability.

Another screen of a library of 220 indole derivatives led to IDC16 which shared a similar pyrido-pyrrolo-isoquinoline moiety with C76 but differed in a Cl-substituent instead of amine on the pyridine ring (Fig. 11A). IDC16 also inhibited ESE-dependent splicing events of SRSF1. Significantly, IDC16 inhibited the splicing of HIV-1 pre-mRNA *via* specifically inhibiting 3'SS selection and completely blocked the synthesis of splicing isoforms at 2.5 µmol/L. IDC16 also inhibited HIV-1 replication in primary cells at 1 µmol/L while having no effects on cell proliferation and apoptosis. Compared with zidovudine, an antiretroviral agent

Figure 10 Indole derivatives were discovered as SRSF inhibitors and exhibited different inhibitory selectivity against SRSFs. NB-506 inhibited the kinase activity of topoisomerase I and reduced SRSF1 phosphorylation. Screening of indole derivatives led to the discovery of a series of compounds with selective inhibition against SRSF-induced splicing. C5, C6, C16, C20 and C76 inhibited SRSF1 while C22, C54 and C37 inhibited SRSF6 in the *in vitro* splicing assay. C77 and C88 were specific inhibitors of SRSF2-mediated AS.

Figure 11 (A) Structure optimization and activities of indole derivatives as SRSF inhibitors. IDC16 was discovered in the screening of 220 indole derivatives and was similar to C76, showing SRSF1 inhibition and HIV-1 splicing inhibition. To reduce the cytotoxicity of IDC16, the B/C ring motif was replaced with amide spacer and further optimization led to 1C8 that showed reduced impacts on cell viability and induced SRSF10 dephosphorylation. Bases on the structure 1C8, G167 and GPS192 were designed and synthesized with enhanced modulation on *BCLAF1* splicing and showing inhibitory effects on CRC cells. Compound 5350150 was initially discovered as anti-HIV agent. Subsequent optimization led to the discovery of GPS491 that showed increased anti-HIV activity and reduced cytotoxicity. Of note, GPS491 selectively inhibited SRSF10-induced *Bcl-x* splicing. (B) Discovery, activity and binding mode of SFI003.

which altered the expression of apoptotic genes, IDC16 impacted little on the splicing of endogenous genes²⁴⁰. The pharmaceutical effects of SRSF inhibitors were further expanded by the discovery of IDC92, which showed anti-cancer effects by SRSF1 down-regulation. Mechanistically, IDC92 treatment altered the splicing pattern of *Ron via* inhibiting exon11 inclusion, reducing the invasiveness of Cl.SF2 cells. Interestingly, IDC92 treatment had no interference with the AS pattern of caspase 9 and *Rac1* genes, another two targets of SRSF1. It remains elusive how IDC92 achieved such specificity¹⁵⁰.

The DNA-intercalating ability of IDC16 endowed by the polyaromatic structure made it unsuitable for long-term use as anti-HIV drug due to potential cytotoxicity, although it blocked HIV-1 replication at a lower concentration than the threshold of its cytotoxic effect. In this regard, a structure derivation campaign was conducted to reduce the cytotoxicity by disrupting the planar tetracyclic motif and retaining structural resemblance to IDC16. A series of molecules were designed and synthesized *via* replacing the B and/or C rings with spacer elements, or fusing A/B rings (Fig. 11A). This led to the discovery of several diheteroarylamide

compounds featured by a 5-nitro substituted benzo[d]-isothiazole motif as the D-ring and an amide linker which replaced B/C rings. SAR analysis showed that 5-nitro-isobenzoisothiazole was important to the activity, since reducing the size or changing the spatial orientation of this subunit resulted in activity loss. However, the A-ring motif was dispensable between methoxy or methoxyethanol-substituted pyridine/pyridinone, but removing the oxygen-substituted side chain led to activity loss. Compound 1C8 was the most potent one and inhibited different wild-type and drug-resistant HIV stains (EC₅₀ = $0.4-1.5 \mu mol/L$) (Fig. 11A). 1C8 also showed optimal therapeutic index ranging from 66 to 100²²⁹. Compared with IDC16, 1C8 had equivalent anti-HIV-1 potency but significantly reduced effects on cell viability of CEM-GXR cells at higher concentrations (for IDC16, 33.2% at 4 μmol/L, 19.9% at 8 μmol/L, and 11.9% at 16 μmol/L; for 1C8, 81.5% at 4 μ mol/L, 80.9% at 8 μ mol/L, and 78.7% at 16 μ mol/L). At the concentration of 1 µmol/L, 1C8 elicited a 40%-60% decrease in HIV-1 RNA accumulation and reduced the production of splice variants including Nef, Vpr1 and Tat1 by ~60%. Instead of targeting SRSF1, 1C8 was confirmed to specifically modulate the activity of SRSF10 by dephosphorylating Ser133, which altered the interaction of SRSF10 with HIV-1 transcripts and other splicing factors such as hnRNP F/H and hTRA2β. Further studies showed that the impacts of 1C8 on SRSF10-targeted gene splicing, including BCLAF1, GLYR1, CHEK1 and SMN2, and global splicing events were only moderate at 10 µmol/L, which was consistent with the minimal cytotoxic effect of 1C8²²

Based on the moderate effect on BCLAF1 AS of 1C8, over 400 IDC16 mimics with a variety of linkers replacing the central benzene and pyrrole rings were screened to find SRSF10 modulators. This led to GPS167 and GPS192, which possessed an aminothiazole carboxamide core and an amide linker (Fig. 11A). GPS167/GPS192 induced 50% of BCLAF1 splicing response at 2 µmol/L and altered the splicing events of other SRSF10-targeted genes, including MDM4, WTAP, CLK1 and SLK1. Mechanistically, treatment of GPS167/GPS192 produced higher proportion of dephosphorylated SRSF10 via inhibition of CLKs, leading to activity shift and improper subcellular localization of SRSF10. GPS167 impaired cell and organoid growth, inhibited migration and anchorage-independent colony formation of CRC cells. In particular, GPS167 treatment altered the splicing patterns of MDM4 and MDM2, which led to p53-dependent cell death of CRC cells. Of note, GPS167 disrupted organoid-like structures in the CRC organoid line CCOL-01 but not in the normal organoid line CNOL-11. Although GPS167 turned out to be an inhibitor of CLKs, its inhibitory activity was prominent only when SRSF10 was used as substrate, indicating the preferential modulation of GPS167 on SRSF10²⁴¹.

Compound 5350150 was initially identified active in the screening for modulators of SMN2 alternative splicing, but later revealed to show anti-HIV-1 activity (EC₅₀ = 0.5 μ mol/L)²⁴². Due to limited therapeutic index, structure optimization of this compound was conducted to reduce the cytotoxic effects. Firstly, the double bond was considered to largely account for the cytotoxicity and inspired by the amide spacer of 1C8, a series of compound with amide replacing the C=C double bond and diverse functionalized mono- and bicyclic aromatic/heteroaromatic motifs on the right-side were screened for anti-HIV-1 activity, which finally led to the discovery of GPS488 and GPS491 that achieved higher potency (EC₅₀ = 0.47 and 1.66 μ mol/L, respectively) and were nontoxic at 10 μ mol/L (Fig. 11A). SAR analysis showed that the functionalized

benzothiazole motif was essential for anti-HIV activity and substituents with other cyclic fragments, including quinoline, pyridine, thiazole, isoxazole and 1,3,4-thiadiazole, caused activity loss. Of note, compounds with 4-Cl, 6-NO₂ or 6-CF₃ group on the benzothiazole ring showed activity-viability profiles with a clear separation between activity and cell viability (toxicity) relative to 5350150 at 1 µmol/L. Optimization on the 5-nitro-thiophene ring revealed that CF₃ group was an effective alternative to the nitro function and the polar neutral functionality at C-5 of the thiophene ring played an essential role in target binding. Lastly, changing the left-side thiophene ring by a thiazole ring led to marked potency increase from EC₅₀ value of 5.5 to 0.47 μ mol/L²⁴³. GPS491 had potent inhibition on the replication of wild-type HIV-1 strains as well as variants resistant to antiretroviral drugs (EC₅₀ \sim 250 nmol/L, CC₅₀ = 12,052 nmol/L) in the CEM-GXR cell line and peripheral blood mononuclear cells. GSP491 treatment induced over 90% reduction of HIV-1 protein Gag, Env and Tat at low µmol/L dose via reducing unspliced and single spliced HIV-1 RNA accumulation. GPS491 also shifted the abundance of multiple spliced HIV-1 RNA such as Rev and Tat, which was similar to the effects of 5350150. Mechanism studies discovered that GPS491 selectively altered the abundance of SRSFs, increasing levels of SRSF5 and SRSF9 by 1.5-fold, while reducing SRSF6 level by 50%, respectively. GPS491 also increased the phosphorylation extent of SRSF4. In the assay of Bcl-x RNA splicing, GPS491 decreased the ability of SRSF10 to promote Bcl-xS 5' splice site usage, preventing the SRSF10-mediated switch towards more endogenous Bcl-xS RNA. In addition, GPS491 also reduced adenovirus infectious yield ~1000 fold and inhibited viral structural protein expression and the formation of virus particles of multiple coronaviruses (229E, OC43, SARS-CoV-2). These results implied a broad application range of GPS491 in the treatment of virus infections²⁴⁴.

The discovery of indole derivatives gives insights into the design of small molecules to target the splicing activities of SRSFs. They showed promising therapeutic effects on HIV-1 infections and cancers with minimal cytotoxicity and impacts on global gene expression. However, it remains unsolved how these molecules interact with SRSFs and how they achieved target selectivity. They were initially revealed to bind to RS domains, which interfered with SRSF phosphorylation and protein interaction. Later it was discovered that they showed inhibitory activity to SRSF phosphorylation and GPS167 preferentially inhibited CLK-mediated SRSF10 phosphorylation, indicating that indole derivatives could specifically target the interaction between SRSFs and SRSF kinases such as CLKs and SRPKs. Researches elucidating the mechanisms of indole derivatives were significant since they could illuminate further rounds of structural optimization. Meanwhile, studies of the in vivo effects of indole derivatives are also desired to further verify their therapeutic effects.

5.2. SFI003

Virtual screening of over 1,500,000 compounds based on the homology model of SRSF3 led to 22 compounds with moderate inhibition to growth of HCT-116 cells. The optimal lead compound 6 was featured by a hydrazone linker bridging two thiazole fragments. Structure optimization of compound 6 via replacing the 2,3-dihydrothiazole motif with a benzimidazole and methylation of the hydroxyl led to the discovery of SFI003, which was the most potent SRSF3 inhibitor in this category (Fig. 11B). SFI003 showed potent antitumor efficacy both *in vitro* and *in vivo*. *In*

silico binding prediction revealed that SFI003 occupied the pocket comprised of Ser5, Asp9, and Leu80, distant from the pre-mRNA binding site of SRSF3. SFI003 did not disrupt the binding of SRSF3 to target genes but inhibited SRSF3 expression via neddylation-dependent SRSF3 degradation. SFI003 inhibited proliferation and migration of HCT-116 and SW480 cells with IC₅₀ values of 8.78 and 48.67 μmol/L, respectively. Orally administered SFI003 at 100 mg/kg and above efficiently suppressed the growth of HCT-116 and SW480 xenografts. SFI003 attenuated DHCR24 expression via SRSF3 inhibition, leading to induced ROS generation and cell apoptosis. Since mTOR pathway is a downstream signaling pathway of ROS, SFI003 showed mTOR inhibition-based antitumor activity and synergetic effects with rapamycin with CI values less than 1. In HCT-116 and SW480 cells, the IC₅₀ values of SFI003 in combination with rapamycin decreased from 8.78 to 2.39 µmol/L and 48.67 to 1.45 µmol/L, respectively, when compared with SFI003 alone. Besides, SFI003 possessed optimal pharmacokinetic properties, oral bioavailability, and tumor distribution, making SFI003 a promising candidate for CRC treatment²⁴⁵.

5.3. Indacaterol

There has been a growing interest in repurposing pharmaceuticals from drugs that have been approved by the US Food and Drug Administration (FDA). Due to the well-characterized pharmacological effects and ensured safety, these drugs are readily for clinical application once their second indication is confirmed. Some clinical compounds approved by FDA have been discovered as SRSF modulators, which broadens the chemical space and offers optimal lead compounds for the development of potent and selective SRSF modulator. Based on the finding that SRSF6 RRM2 was indispensable for AS of ZO-1 in CRC progression and SW620 cell migration and invasion, homology modeling of the RRM2 was constructed to screen 4855 FDA-approved drugs. Indacaterol, a β 2adrenergic receptor agonist approved to treat chronic obstructive pulmonary disease, was discovered as SRSF6 inhibitor which suppressed CRC cell proliferation and migration $IC_{50} = 19.01 \mu mol/L$ in SW620 cell. Indacaterol also exhibited similar cytotoxic effect in RKO. HCT116 and HCT8 cells. Intraperitoneally injection of indacaterol inhibited tumor formation in a colitis-associated CRC model in a dose-dependent manner and abrogated tumor formation at the dose of 2.5 mg/kg. *In vitro* splicing assay revealed that indacaterol shifted the AS of ZO-1 gene and promoted exon23 inclusion, which reduced the proliferation and migration of CRC cells. Prediction of binding mode with molecular docking showed that indacaterol formed two hydrogen bonds with the backbone residue LEU58 and another two hydrogen bonds with ASP59 and GLU72. This result suggested that the RRMs of SRSFs could be promising binding sites for small molecule binding. Although the binding mode of indacaterol with SRSF6 has not been confirmed by complex crystal structure, indacaterol serves as an ideal lead compound for future SRSF6 inhibitor development⁹⁰. Zinc²⁺ also functioned as a specific SRSF6 inhibitor through inducing SRSF6 hyperphosphorylation but impacted little on the phosphorylation states of other SRSFs, which inhibited the RNAbinding ability of SRSF6. Zn²⁺ treatment affected the alternative splicing pattern of Bim via SRSF6 inhibition, promoting the generation of potent apoptosis inducer BimS¹²³.

5.4. Methylxanthines

Xanthines and methylxanthines were assayed for antitumor activity via p53 AS regulation, which discovered that caffeine and theophylline switched the splicing pattern of p53 from α to β isoform at 5 mmol/L through downregulation of SRSF3. These compounds synergistically suppressed cell survival and colony formation of HeLa cells and induced apoptosis in MCF-7 cells. Besides, theophylline and caffeine also induced EMT, p53dependent senescence and G2/M arrest in MCF-7 cells at 5-10 mmol/L but had no effect on normal epithelial cells at 10 mmol/L. SAR data showed the importance of methyl groups on the xanthine backbone, since compounds with different methyl theobromine (3,7-dimethylxanthine), substituent positions, xanthine and hypoxanthine, had no effects on SRSF3 and p53 AS. Although the efficacy of these compounds are not sufficient for systemic treatment considering their clinical therapeutic serum concentration (5-15 µg/mL), methylxanthine derivatives can be promising lead compounds to target SRSF3²⁴⁶. Interestingly, caffeine had been previously revealed to alter the splicing pattern of KLF6 and promoted an SpKLF6 isoform that antagonized the tumor suppression of KLF6. In particular, this effect was found mediated by induction of SRSF2²⁴⁷. Therefore, caffeine and theophylline might have more complicated effects on SRSF expression and the splicing patterns of downstream genes.

5.5. Cardiotonic steroids

Cardiotonic steroids have been widely used in the treatment of congestive heart failure and these molecules were recently discovered as SRSF modulators. Digitoxin depleted SRSF3 protein level by 58% and Tra2-β by 36% at 50 nmol/L in HEK293 cells. Alterations in a large set of splicing events were observed upon digitoxin treatment, most of which were rich in binding sites of SRSF3 and Tra2-β. Re-expression of SRSF3 or Tra2- β restored normal splicing patterns after digitoxin treatment, which indicated that digoxin altered global AS via reducing SRSF3 and Tra2- β^{248} . Other researches verified the effects on AS of digoxin in neuronal cells. For example, digoxin promoted the inclusion of MAPT exon 10 with $EC_{50} = 50$ nmol/L in a two-color fluorescent reporter splicing assay²⁴⁹. Facilitating the production of exon20-containing IKBKAP was of therapeutic significance to reverse familial dysautonomia (FD), an autosomal recessive disorder. Of note, digoxin also induced reduction in SRSF3 level and impacted the AS pattern of IKBKAP in neuronal cells. At the concentration of 100 ng/mL, digoxin resulted in almost exclusive production of exon20-containing IKBKAP transcripts and this response depended on an SRSF3 binding site located in the intron 5' of the alternatively spliced exon. At therapeutic concentration of 0.5-2.0 ng/mL, digoxin still achieved responsiveness, suggesting its promising application to treat FD²⁵⁰. Another study revealed that during HIV-1 viral processing, digoxin altered expression of CLKs and enhanced SRSF phosphorylation, which inhibited HIV-1 gene processing in HIV-1 transduced HeLa cells (inhibition of Gag expression with an IC50 of 45 nmol/L) and human $CD4^+$ PBMCs ($IC_{90} = 2 \text{ nmol/L}$). Digoxin significantly reduced incomplete spliced HIV mRNAs that encoded structural protein Gag, Gagpol and Env, and affected the usage of splicing site in multiple spliced HIV mRNAs, leading to specific loss of

Name	Structure	Target	Pharmacological effect	Ref.
Indacaterol	H OH NH	SRSF6	Inhibition of ZO-1 splicing and CRC cell proliferation and migration (IC $_{50}=19.01~\mu mol/L$). Reduce tumor growth at 2.5 mg/kg in CRC model	90
Zinc ion	Zn ²⁺	SRSF6	Induction of potent apoptosis inducer BimS	123
SFI003		SRSF3	Induce neddylation-dependent SRSF3 degradation and inhibit HCT-116 and SW480 cell proliferation (IC ₅₀ = 8.78 and 48.67 μ mol/L). Induce ROS <i>via</i> SRSF3/DHCR24 axis. Inhibit tumor formation at 100 mg/kg <i>in vivo</i>	245
Caffeine		SRSF3	Reduce expression level of SRSF3 and promote $p53\beta$ isoform production. Inhibit MFC-7 cell and HeLa cell proliferation at $>$ 5 mmol/L	246
Theophylline	N N N N N N N N N N N N N N N N N N N			
Digoxin	HO HIS ON H	SRSF3	Reduce SRSF3 expression and affect AS of p53, IKBKAP, MAPT. Inhibit HIV-1 RNA processing in HeLa cells and PBMCs. Induce apoptosis and EMT and in HeLa cells	251
Amiodarone		SRSF3	SRSF3 degradation and SLU7 reduction. Inhibition of HeLa cell growth	253

Rev. Besides, the export of incompletely-spliced HIV transcripts to cytoplasm was also blocked by digoxin treatment. Digoxin enhanced SRSF3 function via CLK-induced phosphorylation, since SRSF3 overexpression mostly mimicked its impact on HIV-1 gene processing 251 . Interestingly, similar to caffeine, digoxin switched the AS of p53 to the production of $p53\beta$ isoform through reducing the expression of SRSF3 in HeLa cells at 1 μ mol/L. Digoxin-treated HeLa cells underwent cellular apoptosis, EMT and an increase in S, G2/M and sub G1 populations. The effect of digoxin on p53 AS was also observed in glioblastoma multiforme cell U87 and GBM8401. Besides, downregulation of $HIF-1\alpha$ proteins was observed upon digoxin treatment 252 .

Amiodarone, a class III antiarrhythmic drug, induced the PTC-containing isoform of *SRSF3* (*SRSF3-PTC*) at 30 μmol/L and reduced SRSF3 protein level in a dose-dependent manner in HeLa cells. SLU7, which was essential for normal SRSF3 transcription, was reduced under amiodarone treatment. Amiodarone induced G1 arrest and apoptosis, and inhibited colony formation and anchorage-independent growth of HeLa cells. Further studies revealed that amiodarone synergized with caffeine and digoxin to regulate *p53* AS and promote reactive oxygen species generation²⁵³.

Reposition of approved drugs or published bioactive molecules has successfully discovered a series of compounds interfering with SRSF functions (Table 2). Nevertheless, the binding modes and/or pharmacological mechanisms of these compounds still remained unsolved. Future studies should aim to further optimize their potency and selectivity, and clarify the modes of action of these SRSF modulators.

5.6. Targeting SRSF phosphorylation

Phosphorylation states are closely related with SRSF cellular mobilization and interactions with genes and proteins. Therefore, inhibition of kinases such as SRPKs and CLKs has significant impacts on SRSFs, leading to impaired SRSF functions. Many studies have demonstrated that abnormal SRSFs phosphorylation caused by SRPK or CLK dysfunction were involved in disease progression. High expression of CLKs was observed in gliomas and renal tumors and correlated with poor survival of renal cancer patients²⁵⁴. SRPK inhibition or silence can be protective against many types of cancer and angiogenesis diseases²⁵⁵. Detailed analysis concerning SRPK/CLK inhibitors was reviewed elsewhere, with several molecules being investigated in clinical trials for the treatment of cancers, inflammatory diseases and angiogenetic diseases^{42,255,256}. Targeting SRSF phosphorylation, the central modification process for their RNA processing activity, indirectly rectifies abnormal AS events and represent a promising approach for the treatment of cancers and other diseases.

6. Conclusions and perspectives

AS determines the exclusion and inclusion of exons, thus generating mRNA and protein isoforms with quite different functions based on one transcript. It is conceivable that AS is indispensable to the maintenance of overall cellular activities and, significantly, many diseases have been demonstrated caused by defects of AS. Mutations of splicing factor genes including SF3B1, U2AF1, SRSF2 have been detected in solid tumors and a wide range of hematopoietic malignancies². In this regard, many small molecule inhibitors of SF3B1 were disclosed with further studies revealing a synthetic lethality between SF3B1 inhibition and spliceosome mutations²⁵⁷. Quite different from traditional small molecule drugs that directly bind to proteins for functional inhibition, molecules targeting splicing factors decrease the abundance of pathological proteins via interfering with their upstream gene splicing, which serves as a promising approach to target undruggable proteins. As important modulators of alternative splicing, SRSFs bind to pre-mRNAs and facilitate splice site recognitions and spliceosome assembly. The significant roles of SRSF overactivation in cancer development and other diseases imply unignorable therapeutic potentials of SRSF inhibition. Based on above

analysis, some critical issues and challenges require more efforts to be resolved.

First, some SRSFs have been found to regulate other RNA metabolism processes apart from alternative splicing, such as inhibition of R loops and promotion of transcription elongation. While for the other members of SRSFs, their unique regulations on RNA processing are rarely studied. Since SRSFs share functional redundancy in alternative splicing, untangling their discrepancies in splicing-independent physiology can depict the unique function pattern. Secondly, cancer cells with SF3B1, U2AF1 and SRSF2 mutations show higher sensitivity to splicing perturbations, partly due to increased genome instability and DNA damage caused by spliceosome mutations, which rationalizes the treatment of spliceosome-mutant malignancies with SF3B1 inhibitors. We wonder if there is an enhanced sensitivity of spliceosome-mutant cancer cells toward SRSF inhibitors given that SRSFs also function to maintain genome stability. Thirdly, as RNA-binding proteins, SRSFs contain structurally similar RNA binding motifs, making it challenging for selective inhibition and to prevent off-target effects of small molecule inhibitors. Indeed, RNA binding proteins have been considered as undruggable due to lack of ideal drug binding sites and potential off-target effects. It will be beneficial to clarify the binding modes and mechanisms of published SRSF modulators in the future.

In conclusion, current studies of SRSFs have demonstrated their critical functions in AS and other RNA metabolic events. SRSF dysregulations are associated with cancers, autoimmune diseases, fatty liver diseases, tauopathy and viral gene propagation and so on. Although current studies of SRSFs give rise to plenty unsolved questions, we believe these challenges will finally be overcome with deeper understandings of the physiological and pathological roles of SRSFs in the future.

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 82150203).

Author contributions

Maode Lai and Wenying Yu conceived this review. Dianyang Li wrote the manuscript with the guidance of Maode Lai and Wenying Yu. Maode Lai and Wenying Yu revised the manuscript. All of the authors have read and approved the final manuscript.

Conflicts of interest

The authors declare no conflicts of interest.

References

- Sahebi M, Hanafi MM, van Wijnen AJ, Azizi P, Abiri R, Ashkani S, et al. Towards understanding pre-mRNA splicing mechanisms and the role of SR proteins. *Gene* 2016;587:107-19.
- Urbanski LM, Leclair N, Anczukow O. Alternative-splicing defects in cancer: splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip Rev RNA 2018;9:e1476.
- Graveley BR. Sorting out the complexity of SR protein functions. RNA 2000;6:1197–211.

- Zuo P, Manley JL. The human splicing factor ASF/SF2 can specifically recognize pre-mRNA 5' splice sites. Proc Natl Acad Sci U S A 1994;91:3363-7.
- Krainer AR, Conway GC, Kozak D. The essential pre-mRNA splicing factor SF2 influences 5' splice site selection by activating proximal sites. Cell 1990;62:35-42.
- Ge H, Manley JL. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 1990;62: 25-34
- Krainer AR, Conway GC, Kozak D. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. *Genes Dev* 1990; 4:1158-71
- Das S, Krainer AR. Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. *Mol Cancer Res* 2014;12:1195–204.
- Bonnal SC, Lopez-Oreja I, Valcarcel J. Roles and mechanisms of alternative splicing in cancer — implications for care. *Nat Rev Clin Oncol* 2020:17:457—74.
- Zhao S. Alternative splicing, RNA-seq and drug discovery. *Drug Discov Today* 2019;24:1258

 –67.
- Bowler E, Oltean S. Alternative splicing in angiogenesis. Int J Mol Sci 2019;20:2067.
- Cooper TA. Alternative splicing regulation impacts heart development. Cell 2005;120:1-2.
- Will CL, Luhrmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol 2011;3:a003707.
- Jamison SF, Pasman Z, Wang J, Will C, Luhrmann R, Manley JL, et al. U1 snRNP—ASF/SF2 interaction and 5' splice site recognition: characterization of required elements. *Nucleic Acids Res* 1995;23: 3260—7.
- Jobbins AM, Campagne S, Weinmeister R, Lucas CM, Gosliga AR, Clery A, et al. Exon-independent recruitment of SRSF1 is mediated by U1 snRNP stem-loop 3. EMBO J 2022;41:e107640.
- Roscigno RF, Garcia-Blanco MA. SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA 1995;1:692-706.
- Shi Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 2017;18:655-70.
- Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther 2021;6:78.
- Sanford JR, Wang X, Mort M, Vanduyn N, Cooper DN, Mooney SD, et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. *Genome Res* 2009;19:381–94.
- Shen M, Mattox W. Activation and repression functions of an SR splicing regulator depend on exonic *versus* intronic-binding position. *Nucleic Acids Res* 2012;40:428–37.
- Cowper AE, Caceres JF, Mayeda A, Screaton GR. Serine-arginine (SR) protein-like factors that antagonize authentic SR proteins and regulate alternative splicing. J Biol Chem 2001;276:48908–14.
- Krchnáková Z, Thakur PK, Krausová M, Bieberstein N, Haberman N, Müller-McNicoll M, et al. Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5' splice-site sequences due to weak interactions with SR proteins. *Nucleic Acids Res* 2019;47:911–28.
- 23. Cho S, Hoang A, Sinha R, Zhong XY, Fu XD, Krainer AR, et al. Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proc Natl Acad Sci U S A 2011;108:8233—8.
- 24. Clery A, Krepl M, Nguyen CKX, Moursy A, Jorjani H, Katsantoni M, et al. Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. *Nat Commun* 2021; 12:428
- Caceres JF, Krainer AR. Functional analysis of pre-mRNA splicing factor SF2/ASF structural domains. EMBO J 1993;12:4715—26.
- 26. Clery A, Sinha R, Anczukow O, Corrionero A, Moursy A, Daubner GM, et al. Isolated pseudo-RNA-recognition motifs of SR proteins can regulate splicing using a noncanonical mode of RNA recognition. *Proc Natl Acad Sci U S A* 2013;110:E2802—11.

 Cho S, Hoang A, Chakrabarti S, Huynh N, Huang DB, Ghosh G. The SRSF1 linker induces semi-conservative ESE binding by cooperating with the RRMs. *Nucleic Acids Res* 2011;39:9413—21.

- Daubner GM, Clery A, Jayne S, Stevenin J, Allain FH. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. *EMBO J* 2012;31:162–74.
- Maertens GN, Cook NJ, Wang W, Hare S, Gupta SS, Oztop I, et al. Structural basis for nuclear import of splicing factors by human Transportin 3. Proc Natl Acad Sci U S A 2014;111:2728–33.
- Ngo JC, Giang K, Chakrabarti S, Ma CT, Huynh N, Hagopian JC, et al. A sliding docking interaction is essential for sequential and processive phosphorylation of an SR protein by SRPK1. *Mol Cell* 2008;29:563-76.
- Haynes C, Iakoucheva LM. Serine/arginine-rich splicing factors belong to a class of intrinsically disordered proteins. *Nucleic Acids Res* 2006;34:305–12.
- Mayeda A, Screaton GR, Chandler SD, Fu XD, Krainer AR. Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements. *Mol Cell Biol* 1999;19:1853—63.
- Chandler SD, Mayeda A, Yeakley JM, Krainer AR, Fu XD. RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins. *Proc Natl Acad Sci U S A* 1997;94:3596—601.
- Shaw SD, Chakrabarti S, Ghosh G, Krainer AR. Deletion of the Nterminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing. PLoS One 2007;2:e854.
- Hertel KJ, Maniatis T. Serine-arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing. *Proc Natl Acad Sci U S A* 1999;96:2651–5.
- 36. Ngo JC, Chakrabarti S, Ding JH, Velazquez-Dones A, Nolen B, Aubol BE, et al. Interplay between SRPK and Clk/Sty kinases in phosphorylation of the splicing factor ASF/SF2 is regulated by a docking motif in ASF/SF2. Mol Cell 2005;20:77—89.
- Lai MC, Lin RI, Huang SY, Tsai CW, Tarn WY. A human importinbeta family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins. *J Biol Chem* 2000;275:7950–7.
- Kataoka N, Bachorik JL, Dreyfuss G. Transportin-SR, a nuclear import receptor for SR proteins. J Cell Biol 1999;145:1145-52.
- Aubol BE, Chakrabarti S, Ngo J, Shaffer J, Nolen B, Fu XD, et al. Processive phosphorylation of alternative splicing factor/splicing factor 2. Proc Natl Acad Sci U S A 2003;100:12601—6.
- Ghosh G, Adams JA. Phosphorylation mechanism and structure of serine—arginine protein kinases. FEBS J 2011;278:587—97.
- Wang HY, Lin W, Dyck JA, Yeakley JM, Songyang Z, Cantley LC, et al. SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. *J Cell Biol* 1998; 140:737–50.
- Martin Moyano P, Nemec V, Paruch K. Cdc-like kinases (CLKs): biology, chemical probes, and therapeutic potential. *Int J Mol Sci* 2020;21:7549.
- 43. George A, Aubol BE, Fattet L, Adams JA. Disordered protein interactions for an ordered cellular transition: Cdc2-like kinase 1 is transported to the nucleus via its Ser—Arg protein substrate. J Biol Chem 2019;294:9631—41.
- Velazquez-Dones A, Hagopian JC, Ma CT, Zhong XY, Zhou H, Ghosh G, et al. Mass spectrometric and kinetic analysis of ASF/SF2 phosphorylation by SRPK1 and Clk/Sty. *J Biol Chem* 2005;280:41761–8.
- Aubol BE, Plocinik RM, Hagopian JC, Ma CT, McGlone ML, Bandyopadhyay R, et al. Partitioning RS domain phosphorylation in an SR protein through the CLK and SRPK protein kinases. *J Mol Biol* 2013;425:2894–909.
- Keshwani MM, Aubol BE, Fattet L, Ma CT, Qiu J, Jennings PA, et al. Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function. *Biochem J* 2015;466:311–22.
- Aubol BE, Fattet L, Adams JA. A conserved sequence motif bridges two protein kinases for enhanced phosphorylation and nuclear function of a splicing factor. FEBS J 2021;288:566–81.

 Aubol BE, Keshwani MM, Fattet L, Adams JA. Mobilization of a splicing factor through a nuclear kinase—kinase complex. *Biochem J* 2018;475:677—90.

- Aubol BE, Serrano P, Fattet L, Wuthrich K, Adams JA. Molecular interactions connecting the function of the serine—arginine-rich protein SRSF1 to protein phosphatase 1. *J Biol Chem* 2018:293:16751–60.
- Ma CT, Ghosh G, Fu XD, Adams JA. Mechanism of dephosphorylation of the SR protein ASF/SF2 by protein phosphatase 1. *J Mol Biol* 2010;403:386–404.
- Edmond V, Moysan E, Khochbin S, Matthias P, Brambilla C, Brambilla E, et al. Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin. *EMBO J* 2011;30: 510–23.
- Sinha R, Allemand E, Zhang Z, Karni R, Myers MP, Krainer AR. Arginine methylation controls the subcellular localization and functions of the oncoprotein splicing factor SF2/ASF. *Mol Cell Biol* 2010; 30:2762-74.
- Larsen SC, Sylvestersen KB, Mund A, Lyon D, Mullari M, Madsen MV, et al. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci Signal 2016;9:rs9.
- 54. Moulton VR, Gillooly AR, Tsokos GC. Ubiquitination regulates expression of the serine/arginine-rich splicing factor 1 (SRSF1) in normal and systemic lupus erythematosus (SLE) T cells. *J Biol Chem* 2014;289:4126—34.
- Chen Y, Huang Q, Liu W, Zhu Q, Cui CP, Xu L, et al. Mutually exclusive acetylation and ubiquitylation of the splicing factor SRSF5 control tumor growth. *Nat Commun* 2018;9:2464.
- Caceres JF, Screaton GR, Krainer AR. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. *Genes Dev* 1998;12:55–66.
- Wagner RE, Frye M. Noncanonical functions of the serine-argininerich splicing factor (SR) family of proteins in development and disease. *Bioessays* 2021;43:e2000242.
- 58. Li X, Manley JL. New talents for an old acquaintance: the SR protein splicing factor ASF/SF2 functions in the maintenance of genome stability. *Cell Cycle* 2005;4:1706–8.
- Li X, Manley JL. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. *Cell* 2005;122:365-78.
- He X, Zhang P. Serine/arginine-rich splicing factor 3 (SRSF3) regulates homologous recombination-mediated DNA repair. *Mol Cancer* 2015;14:158.
- 61. Yang X, Zhan P, Feng S, Ji H, Tian W, Wang M, et al. SRSF6 regulates alternative splicing of genes involved in DNA damage response and DNA repair in HeLa cells. *Oncol Rep* 2020;44: 1851–62.
- Tammaro C, Raponi M, Wilson DI, Baralle D. BRCA1 EXON 11, a CERES (composite regulatory element of splicing) element involved in splice regulation. *Int J Mol Sci* 2014;15:13045–59.
- Chan S, Choi EA, Shi Y. Pre-mRNA 3'-end processing complex assembly and function. Wiley Interdiscip Rev RNA 2011;2:321-35.
- Tian B, Manley JL. Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 2017;18:18–30.
- Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: ending the message expands gene regulation. RNA Biol 2017:14:865–90.
- 66. Schwich OD, Blümel N, Keller M, Wegener M, Setty ST, Brunstein ME, et al. SRSF3 and SRSF7 modulate 3'UTR length through suppression or activation of proximal polyadenylation sites and regulation of CFIm levels. *Genome Biol* 2021;22:82.
- Yamaguchi Y, Shibata H, Handa H. Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. *Biochim Biophys Acta* 2013;1829:98–104.
- Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006;23:297–305.
- 69. Ji X, Zhou Y, Pandit S, Huang J, Li H, Lin CY, et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. *Cell* 2013;153:855–68.

- Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD. The splicing factor SC35 has an active role in transcriptional elongation. *Nat Struct Mol Biol* 2008;15:819—26.
- Huang Y, Gattoni R, Stevenin J, Steitz JA. SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. *Mol Cell* 2003; 11:837–43.
- Muller-McNicoll M, Botti V, de Jesus Domingues AM, Brandl H, Schwich OD, Steiner MC, et al. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. *Genes Dev* 2016; 30:553-66.
- Tintaru AM, Hautbergue GM, Hounslow AM, Hung ML, Lian LY, Craven CJ, et al. Structural and functional analysis of RNA and TAP binding to SF2/ASF. EMBO Rep 2007;8:756–62.
- Khan M, Hou S, Azam S, Lei H. Sequence-dependent recruitment of SRSF1 and SRSF7 to intronless lncRNA NKILA promotes nuclear export via the TREX/TAP pathway. Nucleic Acids Res 2021;49: 6420-36.
- **75.** Swartz JE, Bor YC, Misawa Y, Rekosh D, Hammarskjold ML. The shuttling SR protein 9G8 plays a role in translation of unspliced mRNA containing a constitutive transport element. *J Biol Chem* 2007;**282**:19844–53.
- Maslon MM, Heras SR, Bellora N, Eyras E, Caceres JF. The translational landscape of the splicing factor SRSF1 and its role in mitosis. *Elife* 2014:e02028.
- Michlewski G, Sanford JR, Caceres JF. The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. Mol Cell 2008;30:179–89.
- Karni R, Hippo Y, Lowe SW, Krainer AR. The splicing-factor oncoprotein SF2/ASF activates mTORC1. Proc Natl Acad Sci U S A 2008;105:15323-7.
- Kim J, Park RY, Chen JK, Kim J, Jeong S, Ohn T. Splicing factor SRSF3 represses the translation of programmed cell death 4 mRNA by associating with the 5'-UTR region. *Cell Death Differ* 2014;21:481–90.
- 80. Boutej H, Rahimian R, Thammisetty SS, Beland LC, Lalancette-Hebert M, Kriz J. Diverging mRNA and protein networks in activated microglia reveal SRSF3 suppresses translation of highly upregulated innate immune transcripts. *Cell Rep* 2017;21:3220–33.
- Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. *Nat Rev Mol Cell Biol* 2019;20:406–20.
- Behm-Ansmant I, Kashima I, Rehwinkel J, Sauliere J, Wittkopp N, Izaurralde E. mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett 2007; 581:2845–53.
- Durand S, Franks TM, Lykke-Andersen J. Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay. *Nat Commun* 2016;7:12434.
- 84. Chakrabarti S, Bonneau F, Schussler S, Eppinger E, Conti E. Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6. *Nucleic Acids Res* 2014;42:9447–60.
- Aznarez I, Nomakuchi TT, Tetenbaum-Novatt J, Rahman MA, Fregoso O, Rees H, et al. Mechanism of nonsense-mediated mRNA decay stimulation by splicing factor SRSF1. *Cell Rep* 2018;23: 2186–98
- Rahman MA, Lin KT, Bradley RK, Abdel-Wahab O, Krainer AR. Recurrent SRSF2 mutations in MDS affect both splicing and NMD. Genes Dev 2020;34:413–27.
- 87. Zhang C, Chen Y, Li F, Yang M, Meng F, Zhang Y, et al. B7-H3 is spliced by SRSF3 in colorectal cancer. *Cancer Immunol Immunother* 2021;70:311-21.
- Guo J, Wang X, Jia J, Jia R. Underexpression of SRSF3 and its target gene RBMX predicts good prognosis in patients with head and neck cancer. J Oral Sci 2020;62:175–9.
- 89. Gout S, Brambilla E, Boudria A, Drissi R, Lantuejoul S, Gazzeri S, et al. Abnormal expression of the pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma. *PLoS One* 2012;7:e46539.

- Wan L, Yu W, Shen E, Sun W, Liu Y, Kong J, et al. SRSF6-regulated alternative splicing that promotes tumour progression offers a therapy target for colorectal cancer. *Gut* 2019;68:118–29.
- Cohen-Eliav M, Golan-Gerstl R, Siegfried Z, Andersen CL, Thorsen K, Ørntoft TF, et al. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J Pathol 2013;229:630—9.
- Lai F, Jiang CC, Farrelly ML, Zhang XD, Hersey P. Evidence for upregulation of Bim and the splicing factor SRp55 in melanoma cells from patients treated with selective BRAF inhibitors. *Melanoma Res* 2012;22:244-51.
- Kim HR, Lee GO, Choi KH, Kim DK, Ryu JS, Hwang KE, et al. SRSF5: a novel marker for small-cell lung cancer and pleural metastatic cancer. *Lung Cancer* 2016;99:57

 –65.
- 94. Yadav S, Pant D, Samaiya A, Kalra N, Gupta S, Shukla S. ERK1/2-EGR1-SRSF10 axis mediated alternative splicing plays a critical role in head and neck cancer. Front Cell Dev Biol 2021;9: 713661.
- Wang H, Lekbaby B, Fares N, Augustin J, Attout T, Schnuriger A, et al. Alteration of splicing factors' expression during liver disease progression: impact on hepatocellular carcinoma outcome. *Hepatol* Int 2019;13:454–67.
- 96. Sen S, Langiewicz M, Jumaa H, Webster NJ. Deletion of serine/arginine-rich splicing factor 3 in hepatocytes predisposes to hepatocellular carcinoma in mice. *Hepatology* 2015;61:171–83.
- Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). *Blood* 2012;120:3080–8.
- Yang XC, Zhang SJ, Qiao C, Guo R, Qiu HX, Li JY. SRSF2 mutation in patients with chronic myelomonocytic leukemia. *Chin J Hematol* 2013;34:1024-7.
- Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2022 update on diagnosis, risk stratification, and management. Am J Hematol 2022;97:352-72.
- 100. Hou HA, Liu CY, Kuo YY, Chou WC, Tsai CH, Lin CC, et al. Splicing factor mutations predict poor prognosis in patients with de novo acute myeloid leukemia. Oncotarget 2016;7:9084—101.
- 101. Qian Y, Chen Y, Li X. CSF3R T618I, SETBP1 G870S, SRSF2 P95H, and ASXL1 Q780* tetramutation co-contribute to myeloblast transformation in a chronic neutrophilic leukemia. *Ann Hematol* 2021; 100:1459–61.
- Aujla A, Linder K, Iragavarapu C, Karass M, Liu D. SRSF2 mutations in myelodysplasia/myeloproliferative neoplasms. *Biomark Res* 2018;6:29.
- 103. Komeno Y, Huang YJ, Qiu J, Lin L, Xu Y, Zhou Y, et al. SRSF2 is essential for hematopoiesis, and its myelodysplastic syndromerelated mutations dysregulate alternative Pre-mRNA splicing. *Mol Cell Biol* 2015;35:3071–82.
- 104. Arbab Jafari P, Ayatollahi H, Sadeghi R, Sheikhi M, Asghari A. Prognostic significance of SRSF2 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis. *Hematology* 2018;23:778–84.
- 105. Grimm J, Jentzsch M, Bill M, Backhaus D, Brauer D, Küpper J, et al. Clinical implications of SRSF2 mutations in AML patients undergoing allogeneic stem cell transplantation. Am J Hematol 2021;96: 1287–94.
- 106. Zhang J, Lieu YK, Ali AM, Penson A, Reggio KS, Rabadan R, et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. *Proc Natl Acad Sci U S A* 2015;112: E4726—34.
- 107. Chen L, Chen JY, Huang YJ, Gu Y, Qiu J, Qian H, et al. The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. *Mol Cell* 2018;69:412–425.e6.
- 108. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. *Nat Struct Mol Biol* 2007;14:185–93.
- 109. Anczukow O, Rosenberg AZ, Akerman M, Das S, Zhan L, Karni R, et al. The splicing factor SRSF1 regulates apoptosis and proliferation

to promote mammary epithelial cell transformation. *Nat Struct Mol Biol* 2012;**19**:220–8.

- 110. Malakar P, Shilo A, Mogilevsky A, Stein I, Pikarsky E, Nevo Y, et al. Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. *Cancer Res* 2017:77:1155–67.
- 111. Gautrey H, Jackson C, Dittrich AL, Browell D, Lennard T, Tyson-Capper A. SRSF3 and hnRNP H1 regulate a splicing hotspot of HER2 in breast cancer cells. RNA Biol 2015;12:1139-51.
- 112. Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, et al. Long noncoding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-mediated translation of TCF7L2. Cancer Res 2019;79:2480—93.
- 113. Jin C, Dong D, Yang Z, Xia R, Tao S, Piao M. CircMYC regulates glycolysis and cell proliferation in melanoma. *Cell Biochem Biophys* 2020;78:77–88.
- 114. Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, Komura K, et al. SRSF3, a splicer of the PKM gene, regulates cell growth and maintenance of cancer-specific energy metabolism in colon cancer cells. *Int J Mol Sci* 2018;19:3012.
- 115. Yan J, Zhang D, Han Y, Wang Z, Ma C. Antitumor activity of SR splicing-factor 5 knockdown by downregulating pyruvate kinase M2 in non-small cell lung cancer cells. *J Cell Biochem* 2019;120: 17303—11.
- 116. Wang J, Liu T, Wang M, Lv W, Wang Y, Jia Y, et al. SRSF1-dependent alternative splicing attenuates BIN1 expression in non-small cell lung cancer. *J Cell Biochem* 2020;121:946–53.
- 117. Gao X, Dai C, Huang S, Tang J, Chen G, Li J, et al. Functional silencing of HSD17B2 in prostate cancer promotes disease progression. *Clin Cancer Res* 2019;25:1291–301.
- 118. Lv Y, Zhang W, Zhao J, Sun B, Qi Y, Ji H, et al. SRSF1 inhibits autophagy through regulating Bcl-x splicing and interacting with PIK3C3 in lung cancer. Signal Transduct Target Ther 2021;6:108.
- 119. Lance A, Druhan LJ, Vestal CG, Steuerwald NM, Hamilton A, Smith M, et al. Altered expression of CSF3R splice variants impacts signal response and is associated with SRSF2 mutations. *Leukemia* 2020;34:369-79.
- 120. Jia R, Ajiro M, Yu L, McCoy Jr P, Zheng ZM. Oncogenic splicing factor SRSF3 regulates ILF3 alternative splicing to promote cancer cell proliferation and transformation. RNA 2019;25:630—44.
- 121. Park SK, Jeong S. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation. *Biochem Biophys Res Commun* 2016;470:431–8.
- 122. Lu C, Li JY, Ge Z, Zhang L, Zhou GP. Par-4/THAP1 complex and Notch3 competitively regulated pre-mRNA splicing of CCAR1 and affected inversely the survival of T-cell acute lymphoblastic leukemia cells. *Oncogene* 2013;32:5602—13.
- 123. Hara H, Takeda T, Yamamoto N, Furuya K, Hirose K, Kamiya T, et al. Zinc-induced modulation of SRSF6 activity alters Bim splicing to promote generation of the most potent apoptotic isoform BimS. FEBS J 2013;280:3313—27.
- 124. Zhou X, Li X, Cheng Y, Wu W, Xie Z, Xi Q, et al. BCLAF1 and its splicing regulator SRSF10 regulate the tumorigenic potential of colon cancer cells. *Nat Commun* 2014;5:4581.
- 125. Zhang Y, Yu X, Sun R, Min J, Tang X, Lin Z, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med 2022;12:e684.
- 126. Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. *Adv Mater* 2019;31:e1904197.
- 127. Wang R, Su Q, Yin H, Wu D, Lv C, Yan Z. Inhibition of SRSF9 enhances the sensitivity of colorectal cancer to erastin-induced ferroptosis by reducing glutathione peroxidase 4 expression. *Int J Biochem Cell Biol* 2021;134:105948.
- 128. Tong J, Li D, Meng H, Sun D, Lan X, Ni M, et al. Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat

- metabolic-associated fatty liver disease. *Acta Pharm Sin B* 2022;**12**: 3650–66.
- 129. Munoz U, Puche JE, Hannivoort R, Lang UE, Cohen-Naftaly M, Friedman SL. Hepatocyte growth factor enhances alternative splicing of the Kruppel-like factor 6 (KLF6) tumor suppressor to promote growth through SRSF1. Mol Cancer Res 2012;10:1216–27.
- 130. Jin W, Cote GJ. Enhancer-dependent splicing of FGFR1 alpha-exon is repressed by RNA interference-mediated down-regulation of SRp55. Cancer Res 2004;64:8901-5.
- 131. Choi N, Jang HN, Oh J, Ha J, Park H, Zheng X, et al. SRSF6 regulates the alternative splicing of the apoptotic Fas gene by targeting a novel RNA sequence. *Cancers* 2022;14:1990.
- 132. Zhu H, Blake S, Kusuma FK, Pearson RB, Kang J, Chan KT. Oncogene-induced senescence: from biology to therapy. *Mech Ageing Dev* 2020;**187**:111229.
- Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004;279: 44475–82.
- 134. Fregoso OI, Das S, Akerman M, Krainer AR. Splicing-factor oncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence. Mol Cell 2013;50:56–66.
- 135. Comiskey DF Jr, Jacob AG, Singh RK, Tapia-Santos AS, Chandler DS. Splicing factor SRSF1 negatively regulates alternative splicing of MDM2 under damage. *Nucleic Acids Res* 2015;43: 4202–18.
- 136. Comiskey Jr DF, Montes M, Khurshid S, Singh RK, Chandler DS. SRSF2 regulation of MDM2 reveals splicing as a therapeutic vulnerability of the p53 pathway. *Mol Cancer Res* 2020;18: 194–203.
- 137. Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DH, et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. *J Clin Invest* 2016;126:68–84.
- 138. Tang Y, Horikawa I, Ajiro M, Robles AI, Fujita K, Mondal AM, et al. Downregulation of splicing factor SRSF3 induces $p53\beta$, an alternatively spliced isoform of p53 that promotes cellular senescence. *Oncogene* 2013;32:2792–8.
- 139. Kwon SM, Min S, Jeoun UW, Sim MS, Jung GH, Hong SM, et al. Global spliceosome activity regulates entry into cellular senescence. FASEB J 2021;35:e21204.
- 140. Xu Z, Han X, Tang Z, Tian G, Gao J, Xu X. Interaction between MALAT-1, CCR7 and correlated genes in oral squamous cell carcinoma. *Int J Clin Exp Pathol* 2017;10:10730-9.
- 141. Wang P, Guo L, Li K, Ning S, Shi W, Liu Z, et al. Serine/arginine rich splicing factor 2 expression and clinic pathological features indicating a prognostic factor in human hepatocellular carcinoma patients. Cancer Biomark 2018;21:681–7.
- 142. Lei S, Zhang B, Huang L, Zheng Z, Xie S, Shen L, et al. SRSF1 promotes the inclusion of exon 3 of SRA1 and the invasion of hepatocellular carcinoma cells by interacting with exon 3 of SRA1premRNA. Cell Death Discov 2021;7:117.
- 143. Oh J, Pradella D, Shao C, Li H, Choi N, Ha J, et al. Widespread alternative splicing changes in metastatic breast cancer cells. *Cells* 2021;10:858.
- 144. Wang H, Zhang CZ, Lu SX, Zhang MF, Liu LL, Luo RZ, et al. A coiled-coil domain containing 50 splice variant is modulated by serine/arginine-rich splicing factor 3 and promotes hepatocellular carcinoma in mice by the Ras signaling pathway. *Hepatology* 2019; 69:179–95.
- 145. Buoso E, Ronfani M, Galasso M, Ventura D, Corsini E, Racchi M. Cortisol-induced SRSF3 expression promotes GR splicing, RACK1 expression and breast cancer cells migration. *Pharmacol Res* 2019; 143:17–26.
- 146. Chen S, Yang C, Wang ZW, Hu JF, Pan JJ, Liao CY, et al. CLK1/SRSF5 pathway induces aberrant exon skipping of METTL14 and Cyclin L2 and promotes growth and metastasis of pancreatic cancer. J Hematol Oncol 2021;14:60.

- 147. Wang X, Lu X, Wang P, Chen Q, Xiong L, Tang M, et al. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med 2022;20:198.
- 148. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial—mesenchymal transition. *Nat Rev Mol Cell Biol* 2014;15: 178–96.
- 149. Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM, et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. *Mol Cell* 2005;20: 881–90
- 150. Ghigna C, De Toledo M, Bonomi S, Valacca C, Gallo S, Apicella M, et al. Pro-metastatic splicing of Ron proto-oncogene mRNA can be reversed: therapeutic potential of bifunctional oligonucleotides and indole derivatives. RNA Biol 2010;7:495-503.
- 151. Moon H, Cho S, Loh TJ, Oh HK, Jang HN, Zhou J, et al. SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene. *Biochim Biophys Acta* 2014;1839: 1132–40.
- 152. Liu Z, Sun L, Cai Y, Shen S, Zhang T, Wang N, et al. Hypoxia-induced suppression of alternative splicing of MBD2 promotes breast cancer metastasis via activation of FZD1. Cancer Res 2021;81: 1265–78
- 153. Lin JC, Lee YC, Tan TH, Liang YC, Chuang HC, Fann YC, et al. RBM4–SRSF3–MAP4K4 splicing cascade modulates the metastatic signature of colorectal cancer cell. *Biochim Biophys Acta Mol Cell Res* 2018;1865:259–72.
- 154. Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, et al. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 2008;121:3487—95.
- 155. Amin EM, Oltean S, Hua J, Gammons MV, Hamdollah-Zadeh M, Welsh GI, et al. WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. *Cancer Cell* 2011;20: 768–80
- 156. Wagner KD, El Mai M, Ladomery M, Belali T, Leccia N, Michiels JF, et al. Altered VEGF splicing isoform balance in tumor endothelium involves activation of splicing factors Srpk1 and Srsf1 by the Wilms' tumor suppressor Wt1. Cells 2019;8:41.
- 157. Bao M, Chen Y, Liu JT, Bao H, Wang WB, Qi YX, et al. Extracellular matrix stiffness controls VEGF165 secretion and neuroblastoma angiogenesis via the YAP/RUNX2/SRSF1 axis. Angiogenesis 2022; 25:71–86.
- 158. Chen Y, Yang M, Meng F, Zhang Y, Wang M, Guo X, et al. SRSF3 promotes angiogenesis in colorectal cancer by splicing SRF. Front Oncol 2022;12:810610.
- 159. Chang HL, Lin JC. SRSF1 and RBM4 differentially modulate the oncogenic effect of HIF-1alpha in lung cancer cells through alternative splicing mechanism. *Biochim Biophys Acta Mol Cell Res* 2019;1866:118550.
- 160. Merdzhanova G, Gout S, Keramidas M, Edmond V, Coll JL, Brambilla C, et al. The transcription factor E2F1 and the SR protein SC35 control the ratio of pro-angiogenic versus antiangiogenic isoforms of vascular endothelial growth factor-A to inhibit neovascularization in vivo. Oncogene 2010;29:5392–403.
- 161. Zhang L, Ye B, Chen Z, Chen ZS. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharm Sin B 2023;13:982—97.
- 162. Sheng J, Zhao Q, Zhao J, Zhang W, Sun Y, Qin P, et al. SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance. *EBioMedicine* 2018;38:113—26.
- 163. Sinnakannu JR, Lee KL, Cheng S, Li J, Yu M, Tan SP, et al. SRSF1 mediates cytokine-induced impaired imatinib sensitivity in chronic myeloid leukemia. *Leukemia* 2020;34:1787–98.
- 164. Liu LL, Xie N, Sun S, Plymate S, Mostaghel E, Dong X. Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene 2014;33:3140-50.
- 165. Pellarin I, Dall'Acqua A, Gambelli A, Pellizzari I, D'Andrea S, Sonego M, et al. Splicing factor proline- and glutamine-rich (SFPQ)

- protein regulates platinum response in ovarian cancer-modulating SRSF2 activity. *Oncogene* 2020;**39**:4390–403.
- 166. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 2015;5:1282–95.
- 167. Zhang F, Wang H, Yu J, Yao X, Yang S, Li W, et al. LncRNA CRNDE attenuates chemoresistance in gastric cancer via SRSF6regulated alternative splicing of PICALM. Mol Cancer 2021;20:6.
- 168. Wang Z, Li K, Chen W, Wang X, Huang Y, Wang W, et al. Modulation of SRSF2 expression reverses the exhaustion of TILs via the epigenetic regulation of immune checkpoint molecules. Cell Mol Life Sci 2020;77:3441–52.
- 169. Li Z, Huang H, Wu X, Yu T, Xiao F, Zhou H, et al. SRSF3 Expression serves as a potential biomarker for prognostic and immune response in pan-cancer. Front Oncol 2022;12:808530.
- 170. Wu P, Geng B, Chen Q, Zhao E, Liu J, Sun C, et al. Tumor cell-derived TGFβ1 attenuates antitumor immune activity of T cells via regulation of PD-1 mRNA. Cancer Immunol Res 2020;8:1470–84.
- 171. Liu Z, Ma L, Gu Y, Huang Y, Liang X, Kong L, et al. Long non-coding RNA LINC01123 promotes cell proliferation, migration and invasion via interacting with SRSF7 in colorectal cancer. Pathol Res Pract 2022;232:153843.
- 172. Yu B, Qu L, Wu T, Yan B, Kan X, Zhao X, et al. A novel LncRNA, AC091729.7 promotes sinonasal squamous cell carcinomas proliferation and invasion through binding SRSF2. Front Oncol 2019;9: 1575.
- 173. Verduci L, Simili M, Rizzo M, Mercatanti A, Evangelista M, Mariani L, et al. MicroRNA (miRNA)-mediated interaction between leukemia/lymphoma-related factor (LRF) and alternative splicing factor/splicing factor 2 (ASF/SF2) affects mouse embryonic fibroblast senescence and apoptosis. *J Biol Chem* 2010;285: 39551–63
- 174. Chen C, Xue S, Zhang J, Chen W, Gong D, Zheng J, et al. DNA-methylation-mediated repression of miR-766-3p promotes cell proliferation via targeting SF2 expression in renal cell carcinoma. Int J Cancer 2017;141:1867-78.
- 175. Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res 2020; 10:38-59
- 176. Si Z, Yu L, Jing H, Wu L, Wang X. Oncogenic IncRNA ZNF561-AS1 is essential for colorectal cancer proliferation and survival through regulation of miR-26a-3p/miR-128-5p-SRSF6 axis. *J Exp Clin Cancer Res* 2021:40:78.
- 177. Liu Y, Mao X, Ma Z, Chen W, Guo X, Yu L, et al. Aberrant regulation of LncRNA TUG1-microRNA-328-3p-SRSF9 mRNA axis in hepatocellular carcinoma: a promising target for prognosis and therapy. *Mol Cancer* 2022;21:36.
- 178. Duan Y, Jia Y, Wang J, Liu T, Cheng Z, Sang M, et al. Long non-coding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis 2021;12:587.
- Luo J, Gao K, Chen M, Tian B. LINC01210 promotes malignant phenotypes of colorectal cancer through epigenetically upregulating SRSF3. *Pathol Res Pract* 2022;234:153905.
- 180. Barbagallo D, Caponnetto A, Cirnigliaro M, Brex D, Barbagallo C, D'Angeli F, et al. CircSMARCA5 inhibits migration of glioblastoma multiforme cells by regulating a molecular axis involving splicing factors SRSF1/SRSF3/PTB. *Int J Mol Sci* 2018;19:480.
- 181. Chen Z, Chen H, Yang L, Li X, Wang Z. CircPLCE1 facilitates the malignant progression of colorectal cancer by repressing the SRSF2dependent PLCE1 pre-RNA splicing. *J Cell Mol Med* 2021;25: 7244–56
- 182. Lv L, Deng H, Li Y, Zhang C, Liu X, Liu Q, et al. The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression. Cell Death Dis 2014;5:e1402.

183. Kong L, Wei Q, Hu X, Chen L, Li J. miR-193a-3p promotes radioresistance of nasopharyngeal cancer cells by targeting SRSF2 gene and hypoxia signaling pathway. *Med Sci Monit Basic Res* 2019;**25**: 53–62.

- 184. Mao Q, Li L, Zhang C, Sun Y, Liu S, Li Y, et al. Long non coding RNA NRON inhibited breast cancer development through regulating miR-302b/SRSF2 axis. Am J Transl Res 2020;12:4683—92.
- 185. Chen Y, Shen T, Ding X, Ma C, Cheng L, Sheng L, et al. lncRNA MRUL suppressed non-small cell lung cancer cells proliferation and invasion by targeting miR-17-5p/SRSF2 axis. *BioMed Res Int* 2020; 2020:9567846.
- 186. Jia T, Wang F, Qiao B, Ren Y, Xing L, Zhang H, et al. Knockdown of LncRNA PANDAR by CRISPR-dCas9 decreases proliferation and increases apoptosis in oral squamous cell carcinoma. Front Mol Biosci 2021;8:653787.
- 187. Xu Q, Shi J, Zhang L, Sheng Y, Zhang Y, Chu D, et al. Circ_0006006 facilitates non-small cell lung cancer progression by modulating miR-924/SRSF7 axis. J Gene Med 2022;24:e3411.
- 188. Zhang Q, Lv R, Guo W, Li X. microRNA-802 inhibits cell proliferation and induces apoptosis in human cervical cancer by targeting serine/arginine-rich splicing factor 9. *J Cell Biochem* 2019;120: 10370–9.
- **189.** Oh J, Liu Y, Choi N, Ha J, Pradella D, Ghigna C, et al. Opposite roles of $Tra2\beta$ and SRSF9 in the v10 exon splicing of CD44. *Cancers* 2020;**12**:3195.
- 190. Moulton VR, Tsokos GC. Alternative splicing factor/splicing factor 2 regulates the expression of the zeta subunit of the human T cell receptor-associated CD3 complex. J Biol Chem 2010;285:12490-6.
- 191. Ramanujan SA, Cravens EN, Krishfield SM, Kyttaris VC, Moulton VR. Estrogen-induced HSA-miR-10b-5p is elevated in T cells from patients with systemic lupus erythematosus and downregulates serine/arginine-rich splicing factor 1. Arthr Rheumatol 2021;73:2052–8.
- 192. Moulton VR, Grammatikos AP, Fitzgerald LM, Tsokos GC. Splicing factor SF2/ASF rescues IL-2 production in T cells from systemic lupus erythematosus patients by activating IL-2 transcription. *Proc Natl Acad Sci U S A* 2013;110:1845—50.
- 193. Kono M, Kurita T, Yasuda S, Kono M, Fujieda Y, Bohgaki T, et al. Decreased expression of serine/arginine-rich splicing factor 1 in T cells from patients with active systemic lupus erythematosus accounts for reduced expression of RasGRP1 and DNA Methyltransferase 1. Arthr Rheumatol 2018;70:2046-56.
- 194. Katsuyama T, Martin-Delgado IJ, Krishfield SM, Kyttaris VC, Moulton VR. Splicing factor SRSF1 controls T cell homeostasis and its decreased levels are linked to lymphopenia in systemic lupus erythematosus. *Rheumatology* 2020;59:2146—55.
- 195. Katsuyama T, Moulton VR. Splicing factor SRSF1 is indispensable for regulatory T cell homeostasis and function. *Cell Rep* 2021;36: 109339.
- 196. Cassidy MF, Herbert ZT, Moulton VR. Splicing factor SRSF1 controls distinct molecular programs in regulatory and effector T cells implicated in systemic autoimmune disease. *Mol Immunol* 2022;141: 94–103.
- 197. Su S, Katopodi XL, Pita-Juarez YH, Maverakis E, Vlachos IS, Adamopoulos IE. Serine and arginine rich splicing factor 1 deficiency alters pathways involved in IL-17A expression and is implicated in human psoriasis. *Clin Immunol* 2022;240:109041.
- 198. Xue F, Li X, Zhao X, Wang L, Liu M, Shi R, et al. SRSF1 facilitates cytosolic DNA-induced production of type I interferons recognized by RIG-I. PLoS One 2015;10:e0115354.
- 199. Ni X, Xu Y, Wang W, Kong B, Ouyang J, Chen J, et al. IL-17D-induced inhibition of DDX5 expression in keratinocytes amplifies IL-36R-mediated skin inflammation. *Nat Immunol* 2022;23:1577-87.
- 200. Sandoval-Castellanos AM, Bhargava A, Zhao M, Xu J, Ning K. Serine and arginine rich splicing factor 1: a potential target for neuroprotection and other diseases. *Neural Regen Res* 2023;18:1411–6.
- 201. D'Souza I, Schellenberg GD. Arginine/serine-rich protein interaction domain-dependent modulation of a tau exon 10 splicing enhancer:

- altered interactions and mechanisms for functionally antagonistic FTDP-17 mutations Delta280K AND N279K. *J Biol Chem* 2006; **281**:2460–9.
- 202. Chen C, Jin N, Qian W, Liu W, Tan X, Ding F, et al. Cyclic AMP-dependent protein kinase enhances SC35-promoted Tau exon 10 inclusion. *Mol Neurobiol* 2014;49:615–24.
- 203. Yin X, Jin N, Gu J, Shi J, Zhou J, Gong CX, et al. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) modulates serine/arginine-rich protein 55 (SRp55)-promoted Tau exon 10 inclusion. *J Biol Chem* 2012;287:30497—506.
- 204. Wang Y, Wang J, Gao L, Stamm S, Andreadis A. An SRp75/hnRNPG complex interacting with hnRNPE2 regulates the 5' splice site of tau exon 10, whose misregulation causes frontotemporal dementia. *Gene* 2011;485:130–8.
- 205. Shi J, Zhang T, Zhou C, Chohan MO, Gu X, Wegiel J, et al. Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome. *J Biol Chem* 2008;283: 28660—9.
- **206.** Kadri F, Pacifici M, Wilk A, Parker-Struckhoff A, Del Valle L, Hauser KF, et al. HIV-1-Tat protein inhibits SC35-mediated Tau exon 10 inclusion through up-regulation of DYRK1A kinase. *J Biol Chem* 2015;**290**:30931–46.
- 207. Shi J, Qian W, Yin X, Iqbal K, Grundke-Iqbal I, Gu X, et al. Cyclic AMP-dependent protein kinase regulates the alternative splicing of tau exon 10: a mechanism involved in tau pathology of Alzheimer disease. *J Biol Chem* 2011;286:14639–48.
- **208.** Chen KL, Yuan RY, Hu CJ, Hsu CY. Amyloid-β peptide alteration of tau exon-10 splicing *via* the GSK3β–SC35 pathway. *Neurobiol Dis* 2010;**40**:378–85.
- 209. Qian W, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F. Splicing factor SC35 promotes tau expression through stabilization of its mRNA. FEBS Lett 2011;585:875–80.
- 210. Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK, et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. *Proc Natl Acad Sci U S A* 2013;110:2366-70.
- Neueder A, Dumas AA, Benjamin AC, Bates GP. Regulatory mechanisms of incomplete huntingtin mRNA splicing. *Nat Commun* 2018;9:3955.
- 212. Mason MA, Gomez-Paredes C, Sathasivam K, Neueder A, Papadopoulou AS, Bates GP. Silencing Srsf6 does not modulate incomplete splicing of the huntingtin gene in Huntington's disease models. Sci Rep 2020;10:14057.
- 213. Fernandez-Nogales M, Cabrera JR, Santos-Galindo M, Hoozemans JJ, Ferrer I, Rozemuller AJ, et al. Huntington's disease is a four-repeat tauopathy with tau nuclear rods. *Nat Med* 2014;20:881–5.
- 214. Cabrera JR, Lucas JJ. MAP2 splicing is altered in Huntington's disease. *Brain Pathol* 2017;27:181—9.
- 215. Hernandez IH, Cabrera JR, Santos-Galindo M, Sanchez-Martin M, Dominguez V, Garcia-Escudero R, et al. Pathogenic SREK1 decrease in Huntington's disease lowers TAF1 mimicking X-linked dystonia parkinsonism. *Brain* 2020;143:2207—19.
- 216. Wee CD, Havens MA, Jodelka FM, Hastings ML. Targeting SR proteins improves SMN expression in spinal muscular atrophy cells. PLoS One 2014;9:e115205.
- 217. Somberg M, Schwartz S. Multiple ASF/SF2 sites in the human papillomavirus type 16 (HPV-16) E4-coding region promote splicing to the most commonly used 3'-splice site on the HPV-16 genome. *J Virol* 2010;84:8219–30.
- 218. Li X, Johansson C, Cardoso Palacios C, Mossberg A, Dhanjal S, Bergvall M, et al. Eight nucleotide substitutions inhibit splicing to HPV-16 3'-splice site SA3358 and reduce the efficiency by which HPV-16 increases the life span of primary human keratinocytes. PLoS One 2013;8:e72776.
- **219.** Mole S, Faizo AAA, Hernandez-Lopez H, Griffiths M, Stevenson A, Roberts S, et al. Human papillomavirus type 16 infection activates the host serine arginine protein kinase 1 (SRPK1)—splicing factor axis. *J Gen Virol* 2020;**101**:523—32.

- 220. Liu X, Mayeda A, Tao M, Zheng ZM. Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway. J Virol 2003;77:2105–15.
- 221. Hao C, Gong L, Cui X, Jonsson J, Zheng Y, Wu C, et al. Identification of heterogenous nuclear ribonucleoproteins (hnRNPs) and serine- and arginine-rich (SR) proteins that induce human papillomavirus type 16 late gene expression and alter L1 mRNA splicing. *Arch Virol* 2022;167:563—70.
- Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. *Cold Spring Harb Perspect Med* 2012;2:a006916.
- 223. Paz S, Krainer AR, Caputi M. HIV-1 transcription is regulated by splicing factor SRSF1. *Nucleic Acids Res* 2014;42:13812-23.
- 224. Paz S, Lu ML, Takata H, Trautmann L, Caputi M. SRSF1 RNA recognition motifs are strong inhibitors of HIV-1 replication. *J Virol* 2015;89:6275–86.
- 225. Ropers D, Ayadi L, Gattoni R, Jacquenet S, Damier L, Branlant C, et al. Differential effects of the SR proteins 9G8, SC35, ASF/SF2, and SRp40 on the utilization of the A1 to A5 splicing sites of HIV-1 RNA. *J Biol Chem* 2004;279:29963—73.
- 226. Jacquenet S, Decimo D, Muriaux D, Darlix JL. Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production. *Retrovirology* 2005;2:33.
- 227. Mueller N, Berkhout B, Das AT. HIV-1 splicing is controlled by local RNA structure and binding of splicing regulatory proteins at the major 5' splice site. *J Gen Virol* 2015;**96**:1906—17.
- 228. Tranell A, Fenyö EM, Schwartz S. Serine- and arginine-rich proteins 55 and 75 (SRp55 and SRp75) induce production of HIV-1 vpr mRNA by inhibiting the 5'-splice site of exon 3. J Biol Chem 2010;285:31537—47.
- 229. Shkreta L, Blanchette M, Toutant J, Wilhelm E, Bell B, Story BA, et al. Modulation of the splicing regulatory function of SRSF10 by a novel compound that impairs HIV-1 replication. *Nucleic Acids Res* 2017;45:4051–67.
- Sen S, Jumaa H, Webster NJ. Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function. *Nat Commun* 2013;4:1336.
- 231. Kumar D, Das M, Sauceda C, Ellies LG, Kuo K, Parwal P, et al. Degradation of splicing factor SRSF3 contributes to progressive liver disease. J Clin Invest 2019;129:4477–91.
- 232. Li Y, Xu J, Lu Y, Bian H, Yang L, Wu H, et al. DRAK2 aggravates nonalcoholic fatty liver disease progression through SRSF6-associated RNA alternative splicing. *Cell Metab* 2021;33:2004–20.
- 233. Jobbins AM, Haberman N, Artigas N, Amourda C, Paterson HAB, Yu S, et al. Dysregulated RNA polyadenylation contributes to metabolic impairment in non-alcoholic fatty liver disease. *Nucleic Acids Res* 2022;50:3379—93.
- **234.** Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. *Nature* 2020;**587**:555–66.
- Liang LM, Xiong L, Cheng PP, Chen SJ, Feng X, Zhou YY, et al. Splicing factor SRSF6 mediates pleural fibrosis. *JCI Insight* 2021;6:e146197.
- 236. Fu Y, Huang B, Shi Z, Han J, Wang Y, Huangfu J, et al. SRSF1 and SRSF9 RNA binding proteins promote Wnt signalling-mediated tumorigenesis by enhancing beta-catenin biosynthesis. *EMBO Mol Med* 2013;5:737-50.
- 237. Sun J, Jin T, Niu Z, Guo J, Guo Y, Yang R, et al. LncRNA DACH1 protects against pulmonary fibrosis by binding to SRSF1 to suppress CTNNB1 accumulation. *Acta Pharm Sin B* 2022;12:3602–17.
- 238. Pilch B, Allemand E, Facompré M, Bailly C, Riou JF, Soret J, et al. Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly, and splicing by the anti-tumor drug NB-506. *Cancer Res* 2001;61:6876—84.
- 239. Soret J, Bakkour N, Maire S, Durand S, Zekri L, Gabut M, et al. Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. *Proc Natl Acad Sci U S A* 2005;102:8764–9.

- 240. Bakkour N, Lin YL, Maire S, Ayadi L, Mahuteau-Betzer F, Nguyen CH, et al. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance. *PLoS Pathog* 2007;3:1530–9.
- 241. Sohail M, Shkreta L, Toutant J, Rabea S, Babeu JP, Huard C, et al. A novel class of inhibitors that target SRSF10 and promote p53-mediated cytotoxicity on human colorectal cancer cells. NAR Cancer 2021;3:zcab019.
- 242. Wong RW, Balachandran A, Haaland M, Stoilov P, Cochrane A. Characterization of novel inhibitors of HIV-1 replication that function *via* alteration of viral RNA processing and rev function. *Nucleic Acids Res* 2013;41:9471–83.
- 243. Zamiri M, Cheung PK, Brockman MA, Brumme ZL, Chabot B, Cochrane A, et al. 2-Trifluoromethylthiazole-5-carboxamides: analogues of a stilbene-based anti-HIV agent that impact HIV mRNA processing. ACS Med Chem Lett 2021;12:1818–23.
- 244. Dahal S, Cheng R, Cheung PK, Been T, Malty R, Geng M, et al. The thiazole-5-carboxamide GPS491 inhibits HIV-1, adenovirus, and coronavirus replication by altering RNA processing/accumulation. *Viruses* 2021;14:60.
- 245. Zhang Y, Wang M, Meng F, Yang M, Chen Y, Guo X, et al. A novel SRSF3 inhibitor, SFI003, exerts anticancer activity against colorectal cancer by modulating the SRSF3/DHCR24/ROS axis. *Cell Death Discov* 2022;8:238.
- 246. Chang YL, Hsu YJ, Chen Y, Wang YW, Huang SM. Theophylline exhibits anti-cancer activity via suppressing SRSF3 in cervical and breast cancer cell lines. Oncotarget 2017;8:101461–74.
- 247. Shi J, Hu Z, Pabon K, Scotto KW. Caffeine regulates alternative splicing in a subset of cancer-associated genes: a role for SC35. *Mol Cell Biol* 2008;28:883—95.
- 248. Anderson ES, Lin CH, Xiao X, Stoilov P, Burge CB, Black DL. The cardiotonic steroid digitoxin regulates alternative splicing through depletion of the splicing factors SRSF3 and TRA2B. RNA 2012;18: 1041-9.
- 249. Stoilov P, Lin CH, Damoiseaux R, Nikolic J, Black DL. A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators. *Proc Natl Acad Sci U S A* 2008;105: 11218–23.
- 250. Liu B, Anderson SL, Qiu J, Rubin BY. Cardiac glycosides correct aberrant splicing of IKBKAP-encoded mRNA in familial dysautonomia derived cells by suppressing expression of SRSF3. FEBS J 2013;280:3632–46.
- 251. Wong RW, Balachandran A, Ostrowski MA, Cochrane A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. *PLoS Pathog* 2013;9:e1003241.
- 252. Lu GY, Liu ST, Huang SM, Chang YL, Lin WS. Multiple effects of digoxin on subsets of cancer-associated genes through the alternative splicing pathway. *Biochimie* 2014;106:131–9.
- 253. Chang YL, Liu ST, Wang YW, Lin WS, Huang SM. Amiodarone promotes cancer cell death through elevated truncated SRSF3 and downregulation of miR-224. *Oncotarget* 2018;9:13390–406.
- 254. Dominguez D, Tsai YH, Weatheritt R, Wang Y, Blencowe BJ, Wang Z. An extensive program of periodic alternative splicing linked to cell cycle progression. *Elife* 2016;5:e10288.
- 255. Czubaty A, Piekielko-Witkowska A. Protein kinases that phosphorylate splicing factors: roles in cancer development, progression and possible therapeutic options. *Int J Biochem Cell Biol* 2017;91: 102–15.
- **256.** Tang J, Xie Y, Huang J, Zhang L, Jiang W, Li Z, et al. A critical update on the strategies towards small molecule inhibitors targeting serine/arginine-rich (SR) proteins and serine/arginine-rich proteins related kinases in alternative splicing. *Bioorg Med Chem* 2022;**70**: 116921.
- 257. Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. *Nat Med* 2018;24:497–504.