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ABSTRACT

Identification of primary microRNA (miRNA) gene tar-
gets is critical for developing miRNA-based thera-
peutics and understanding their mechanisms of ac-
tion. However, disentangling primary target dere-
pression induced by miRNA inhibition from sec-
ondary effects on the transcriptome remains a tech-
nical challenge. Here, we utilized RNA immunopre-
cipitation (RIP) combined with competitive binding
assays to identify novel primary targets of miR-122.
These transcripts physically dissociate from AGO2-
miRNA complexes when anti-miR is spiked into liver
lysates. mRNA target displacement strongly corre-
lated with expression changes in these genes fol-
lowing in vivo anti-miR dosing, suggesting that dere-
pression of these targets directly reflects changes
in AGO2 target occupancy. Importantly, using a met-
ric based on weighted miRNA expression, we found
that the most responsive mRNA target candidates
in both RIP competition assays and expression pro-
filing experiments were those with fewer alternative
seed sites for highly expressed non-inhibited miR-
NAs. These data strongly suggest that miRNA co-
regulation modulates the transcriptomic response
to anti-miR. We demonstrate the practical utility of
this ‘miR-target impact’ model, and encourage its in-
corporation, together with the RIP competition as-
say, into existing target prediction and validation
pipelines.

INTRODUCTION

microRNAs (miRNAs) are short non-coding RNAs that
negatively regulate gene expression by destabilizing target
transcripts through recruitment of RNA induced silencing
complexes (RISCs) (1). Importantly, aberrant miRNA ac-
tivity has been implicated in a number of diseases including
diabetes, cancer and autoimmune diseases (2–4).

miRNA inhibition with chemically modified oligonu-
cleotides that are complementary to miRNA (anti-miR) is

a promising new area of therapeutic development (5–7). Be-
cause each miRNA can potentially regulate several hundred
targets, pharmacological modulation of a single miRNA
can affect numerous cellular pathways through both pri-
mary as well as secondary changes in the transcriptome (8–
10). This far-reaching activity gives anti-miRs the potential
to treat complex diseases that are otherwise difficult to rem-
edy with traditional small molecule approaches whose ac-
tions are more limited in scope. It also creates, however, a
technical challenge in deciphering direct from indirect ef-
fects. Direct targets serve as pharmacodynamic (PD) mark-
ers for assessing the potency and efficacy of anti-miR, which
is essential for preclinical drug development.

Numerous computational methods are available to pre-
dict miRNA targets (11–14). The predominant target fea-
ture is the presence of a seven- or eight-nucleotide sequence
within the 3′UTR of candidate genes that is complementary
to the 5′end of a miRNA (the ‘seed region’). These seed sites
tend to be highly conserved and a wealth of biochemical
data supports that they comprise the majority of miRNA-
target interactions (1). However, in part due to the low se-
quence specificity of seed sequences, computational predic-
tions often suffer from high false-positive rates (15). There-
fore, while upregulation of seed-matched genes in response
to anti-miR treatment represents an on-target effect over-
all, some expression changes in seed-matched genes may be
merely coincidental. Experimental validation is required to
identify direct targets, yet to our knowledge no existing ap-
proaches have been developed specifically for target identi-
fication using anti-miRs in mammalian animal models.

We have now developed a RNA immunoprecipitation
(RIP) based anti-miR competition assay for validating pri-
mary targets in situ using animal tissues with medium-to-
high throughput. As a proof of concept study for this as-
say, we validated in mouse liver samples several novel di-
rect targets of endogenous miR-122––a therapeutically rel-
evant miRNA for liver disease (5,16–17). Most importantly,
we discovered that genes predicted to be highly regulated
by multiple miRNAs are less likely to respond to anti-miR
directed against a single miRNA. This effect of alternative
miRNAs has until now only been suggested, but not experi-
mentally confirmed nor quantified. Based on these findings,
we devise a ‘miR-Target Impact Model’ for use in directing
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and focusing efforts in miRNA validation and development
of future anti-miR therapeutics.

MATERIALS AND METHODS

Animal care and treatments

All animal experiments were conducted according to the In-
stitutional AAALAC Guidelines. Male C57BL/6 mice were
housed four to five animals per cage with a 12 h light/dark
cycle. For gene expression studies, oligonucleotides were
dissolved in 1× phosphate buffered saline (PBS) and ad-
ministered to mice by subcutaneous injection at 3 mg/kg on
Day 1 and Day 3. On Day 7, livers were harvested and gene
expression was measured by Nanostring or array profiling.

Array profiling

mRNA expression profiles were measured using Mouse
Genome 430 2.0 or Human Genome U133 Plus 2.0 ar-
rays (Affymetrix). mRNA microarrays were run in triplicate
for anti-miR- or saline-treated mice, and processing was
performed using Bioconductor for R (bioconductor.org)
(18), specifically the limma package for differential expres-
sion analysis (19). Sylamer analysis (10) was performed
using SylArray web server (http://www.ebi.ac.uk/enright-
srv/sylarray) (20). For miR-221/222 expression studies,
SKHep-1 cells were transfected in triplicate with 20 nM
anti-221 using RNAiMax (Life Technologies), and cells
were collected 48 h post-transfection.

Liver and SKHep-1 lysates

Liver lysates were prepared in lysis buffer (20 mM Tris, pH
7.4, 100 mM NaCl and 2.5 mM MgCl2) supplemented with
ethylenediaminetetraacetic acid (EDTA)-free Halt Protease
Inhibitor cocktail (ThermoFisher). Intact livers were ho-
mogenized with a glass Dounce in ice-cold lysis buffer by
20 strokes with each of the loose and tight plungers. The
homogenate was centrifuged at 1000×g for 10 min at 4◦C.
The resulting supernatant was then centrifuged twice at 16
000×g for 10 min at 4◦C to produce the final S16 lysate.
Protein concentrations were measured by DS Protein As-
say (BioRad) and adjusted to 10 mg/ml. Aliquots of lysate
were flash frozen and stored at −80◦C. SKHep-1 cultures
were maintained in Eagle’s Minimum Essential Medium
with 10% fetal bovine serum. Cells were collected by scrap-
ing, resuspended in lysis buffer containing 0.05% NP-40,
and homogenized by passing through a 27-gauge needle.

miR-target impact scoring (mTIS)

Sequence data for all mouse (GRCm38/mm10) and hu-
man (GRCh37/hg19) Refseq genes were downloaded from
the UCSC Genome Bioinformatics Table Browser (http:
//genome.ucsc.edu/) (21). 3′UTR sequences were parsed
based on annotated coding regions using Matlab (v7.12,
Mathworks, Inc) scripts written in-house. For all 3′UTRs,
miRNA binding sites were identified using seed sequences
downloaded from TargetScan v6.2 (targetscan.org; ‘miR
Family’ file). For all k genes containing a seed-match site

to a given miRNA of interest (MOI), mTIScores were cal-
culated by rewarding for number of MOI sites (Nmoi) while
penalizing for other miRNA sites (Ni−j), such that

mTISk.moi = Nmoi −
∑ (

Ni− j ∗ Ei− j
)
,

where E is the linear expression level of each alternative
miRNA relative to the moi (Ei−j = ei−j/emoi). Summed ex-
pression levels were used for miRNAs within the same fam-
ily, i.e. with identical seed sequences.

RIP competition assay

Hybridoma cells expressing monoclonal anti-AGO2 4F9
antibody were a generous gift from E. Chan (University
of Florida, Gainesville) (22). Antibody-containing super-
natant was dialyzed in binding buffer (0.1 M phosphate,
0.15 M NaCl; pH 7.2) and purified using protein-L agarose
(Pierce), as instructed by the manufacturer. Purified anti-
body was conjugated to magnetic M-270 Epoxy Dynabeads
(Life Technologies) as per manufacturer’s instructions. For
each IP, 6 �g antibody-conjugated beads were added to 250
�l lysate following pre-incubation with anti-miR oligonu-
cleotides for 30 min at room temperature, at which point
RNA remained stably intact (Supplementary Figure S1A
and B). IP reactions were tumbled at 4◦C for 2 h and subse-
quently washed ×3 in wash buffer (20 mM Tris, pH 8.0, 140
mM KCl, 5 mM EDTA, 1× Halt Protease Inhibitor (Ther-
moFisher), 40U/ml RnaseOut (Life Technologies) and 0.5
mM DTT). RNA was purified with either RNeasy mi-
cro or RNeasy 96-well kits (Qiagen). In both cases, 20 ng
polyA+ carrier RNA (Qiagen) was added to aid RNA re-
tention during purification. mRNA was quantified with re-
verse transcriptase-quantitative polymerase chain reaction
(RT-qPCR) or Nanostring nCounter technology (Nanos-
tring Technologies). Data were normalized using the geo-
metric mean of the top two most stable non-target genes,
as described elsewhere (23,24). RNA integrity was assessed
with an Agilent 2100 Bioanalyzer.

nCounter expression analysis

A custom nCounter Gene Expression CodeSet was pur-
chased from Nanostring Technologies. For IP samples,
RNA was purified with RNeasy min-elute spin-columns
and eluted with 16 �l ddH2O. For total RNA samples, input
RNA concentrations were adjusted to 20 ng/�l. A volume
of 5 �l was used for input and hybridized according to the
manufacturer’s protocol. For miRNA expression analysis,
nCounter miRNA expression assays were used with total
RNA samples purified using miRNeasy 96-well spin-plates
(Qiagen).

RT-qPCR

Random cDNA was synthesized using a High Capacity
cDNA Reverse Transcription (RT) kit (Applied Biosys-
tems). In cases where RNA was purified with RNeasy min-
elute spin-columns, 10 �l of the ∼14 �l eluant was added
to RT master mix for a 20 �l final RT volume. Alterna-
tively, when RNA was purified with the RNeasy 96-well
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spin-plates, 45 �l of the ∼50 �l eluant was added to RT
master mix for a 90 �l final RT volume. After reverse tran-
scription was complete, smaller volume RT reactions were
diluted 1:5 with ddH2O while larger RT reactions were used
as-is for input into qPCR. 2.0 �l cDNA was used for each 10
�l qPCR reaction prepared with Universal TaqMan Master
Mix II without UNG (Applied Biosystems) and TaqMan
primer/probesets (IDT).

RESULTS

RIP anti-miR competition assay

AGO2 is the central RISC component that binds miRNA
complexes to target mRNA transcripts. Anti-miRs are syn-
thetic oligonucleotides that bind miRNA and compete with
target transcripts for AGO2-miRNA occupancy. To iden-
tify miRNA-target complexes that are sensitive to anti-miR
(i.e. direct targets), we developed a simple RIP competi-
tion assay wherein anti-miR was titrated into cytosolic ex-
tracts prior to AGO2 immunoprecipitation (IP). Direct tar-
get transcripts displaced by anti-miR were then identified
based on their depletion from IP fractions (Figure 1A).

To test whether our method could be used to identify
direct targets in animal tissue, we used mouse liver ex-
tracts as a source of endogenous miR-122-AGO2 com-
plex and benchmarked the assay using RT-qPCR to detect
well-validated miR-122 targets Aldoa, Dlat and Gys1. Af-
ter spiking in anti-miR-122 compound over a six-log con-
centration range, all three miR-122 targets showed dose-
dependent depletion from AGO2-IPs (Figure 1B and C).
In contrast, Ezh2 and Rnf167, which do not contain miR-
122 3′UTR sites, remained stably bound in the IP frac-
tions even at the highest doses, thus making them suit-
able as reference genes. Fitting these data with non-linear
regression revealed differences between the miR-122 tar-
gets: while Aldoa and Gys1 exhibited similar IC50 values
(∼10–50 nM), Dlat dissociated from AGO2 only at much
higher anti-miR-122 concentrations (∼500 nM). The three
targets also exhibited different maximum responses. In-
terestingly, a significant portion (∼38%) of Gys1, which
showed the greatest response among the three targets, re-
mained on the beads at even the highest anti-122 concen-
trations. Non-specific binding only accounted for a slim
margin (∼4%) of this refractory population (Figure 1D),
suggesting that under these conditions only certain por-
tions of each AGO2-bound target are sensitive to anti-
miR competition. Increasing pre-incubation time with anti-
miR did not lead to enhanced target mRNA release (Sup-
plementary Figure S1C). Furthermore, highly similar re-
sults were produced using different monoclonal antibodies
against AGO2 or TNRC6A (GW182 homolog)––the effec-
tor protein of miRNA-mediated repression (25,26)–– indi-
cating that pulled-down complexes represented active RISC
populations (Figure 1E). Currently, we are investigating the
rationale of this phenomenon where only portions of total
mRNA transcripts are seemingly susceptible to anti-miR-
mediated competition.

Additional control experiments also showed that these
responses were anti-miR-122 specific. Even at high con-
centrations, anti-miRs complementary to miR-22 and let-7
were ineffective by comparison, consistent with the lack of

canonical 3′UTR sites for these alternative miRNAs (Fig-
ure 1F).

We have thus developed a method that can directly iden-
tify target-miRNA complexes that are dose-sensitive to
anti-miR under near-native conditions using relevant ani-
mal tissue.

Identification of novel anti-122 primary biomarkers

With the RIP competition assay in hand, we next sought
to identify which target candidates from a shortlist of com-
putational predictions best responded to anti-miR-122. A
custom Nanostring nCounter codeset was designed with
probes recognizing 37 genes predicted by the TargetScan al-
gorithm (11) to be regulated by miR-122 (Table 1 (27–35)).
An additional four genes without miR-122 sites were also
included, among which the top two most stable genes were
used as reference genes (Supplementary Figure S2). Simi-
lar to earlier results, these candidate transcripts were dif-
ferentially displaced by anti-miR-122 from immunoprecip-
itated fractions (Figure 2A–C, Supplementary Figure S3).
Based on the extent of displacement, we were able to clas-
sify candidate genes as either ‘RIP-responsive’ or ‘RIP-non-
responsive’. Fourteen candidates (38%) showed statistically
significant displacement with 400 nM anti-miR-122 com-
pared to control (Figure 2A). An additional two candidates
responded at the next highest tested anti-miR-122 concen-
tration (4000 nM; Figure 2B), making for a total of 16 can-
didates (43%) that could be confirmed as being anti-miR-
122 sensitive. These targets are consequently likely to be
direct targets of miR-122. Consistently, all but one RIP-
responsive gene (94%) showed significant derepression in
vivo following anti-miR-122 treatment (Figure 2E). No-
tably, expression changes of RIP responsive genes were very
strongly correlated (r = −0.91) with levels of RIP response
(Figure 2D), indicating that changes in expression in vivo
are proportional to the amount of target RNA released
from RISC complexes by anti-miR. In contrast, a simi-
lar correlation did not exist with RIP-non-responsive can-
didates. Most non-responsive genes were also not signifi-
cantly upregulated following in vivo anti-miR-122 treatment
(Figure 2E). There were, however, a few exceptions: a total
of nine genes were significantly upregulated, but RIP-non-
responsive at any tested anti-miR-122 concentration (sum-
marized in Table 1). Potentially, expression changes in these
latter genes occur as a result of secondary effects of miR-122
inhibition, rather than as a direct consequence. Therefore,
despite the fact that these genes contain a miR-122 seed-
match and are upregulated in the presence of anti-122, they
are less likely to be direct biomarkers of miRNA modula-
tion. These results demonstrate how RIP competition as-
says can serve as a filter combined with expression analy-
sis to assist in identifying high-confidence primary anti-miR
PD markers.

RIP target response is explained by miR-target impact model

RIP competition experiments were able to differentiate
miR-122 seed-matched genes based directly on their sen-
sitivity to anti-miR-122 competition. We next wanted to
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Figure 1. Development of AGO2-RNA Immunoprecipitation Competition Assay. (A) Schematic of the RIP-competition assay. Livers were extracted
from mice and lysates were prepared ex vivo as described in the Materials and Methods section. In order to identify direct miRNA targets, lysates were
pre-incubated with spiked-in anti-miR compound, causing miRNA inhibition and preventing dissociated target mRNA from re-associating with AGO2
complexes. Target mRNAs were identified as being under-enriched in AGO2 co-immunoprecipitated fractions in the presence of anti-miR (left side of
panel) compared to PBS control (right side of panel). (B) Dose-dependent results for miR-122 target candidates Aldoa (blue), Dlat (red) and Gys1 (purple).
mRNA levels were measured with RT-qPCR and fold-changes were calculated with the 2−��Ct method relative to the geometric mean of genes Rnf167
and Ezh2 (gray), neither of which contain 3′UTR miR-122 seed sites. Data were fit with a competitive binding curve (for Aldoa: IC50 = 14.26 +/− 11.46
nM, bottom = 0.56, R2 = 0.64; for Dlat: IC50 = 477.1 +/− 391.3 nM, bottom = 0.71, R2 = 0.59; for Gys1: IC50 = 50.69 +/− 13.20 nM, bottom = 0.38, R2

= 0.94). (C) Western blots of AGO2 in input and IPs with anti-AGO2 or control (IgG) antibodies. (D) Quantification of Gys1 in AGO2-IPs or control by
relative standard curve (compare to quantification method in panel (B)). (E) Comparison of Gys1 results obtained with different monoclonal antibodies
recognizing AGO2 or TNRC6A, another RISC protein. (F) Comparison of Gys1 RIP competition results with various anti-miRs at 400 nM (top) or 4000
nM (bottom). Gys1 3′UTR contains three miR-122 sites but no sites for miR-22 or let-7.

identify factors that influenced these outcomes. We hypoth-
esized two influencing factors: first, we noticed that many of
the top responding targets, such as Slc25a34 and Gys1, con-
tained more than one miR-122 seed-match site (Table 1).
The presence of multiple seed sites is well known to increase
the extent of miRNA target regulation (11,36–37); presum-
ably then, a greater magnitude of derepression or IP deple-
tion may be expected with multi-seed targets. Second, since
most gene transcripts contain many different seed-match se-
quences, they can potentially be regulated simultaneously
by distinct miRNAs (38–40). Therefore, the presence of al-
ternative, non-inhibited miRNAs may have retained target

mRNA in IP fractions. This may at least partially explain
why inhibition of only one miRNA, miR-122, was insuffi-
cient to release certain targets from the majority of bound
RISCs (illustrated in Figure 3A).

To assess both these factors in combination, we derived a
quantitative model that ranked genes by rewarding for num-
ber of predicted miR-122 (MOI) seed sites while penaliz-
ing for number of predicted alternative sites (Materials and
Methods). In addition, each alternative site was weighted
based on expression level in liver tissue relative to miR-122
(Figure 3B), since an alternative miRNA’s impact is likely
a function of its abundance. We termed this metric ‘miR-
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Figure 2. Validation of novel miR-122 primary targets in mouse liver. AGO2-RIP competition responses of 37 miR-122 target candidates measured by
Nanostring nCounter technology in the presence of (A) 400 nM or (B) 4000 nM anti-122. Fold-changes are relative to PBS. Green bars mark genes with
statistically significant reduction of mRNA in IP with treatment (P < 0.05 by ANOVA with Dunnett correction for multiple comparisons, n = 3, error bars
represent SEM). Results were normalized based on the geometric mean of Rnf167 and Nras, the most stable of all reference genes tested (Supplementary
Figure S2). (C) Summary of genes significantly reduced in IP with varying doses of anti-122, represented as fraction of total (N = 37). (D) Correlation
between RIP responses at 400 nM anti-122 and in vivo gene expression changes measured by Nanostring. Significantly upregulated genes resulting from
anti-122 administration (unpaired t-test, FDR = 5%, n = 3) are shown in pink, others in gray. Statistical significance from RIP experiments is indicated
by squares (significant) and circles (non-significant). Genes with significant RIP responses (grouped with a black outline) were fit by least-squares linear
regression (r = −0.91, P (one-tailed) < 0.0001, Pearson correlation). In contrast, genes with non-significant RIP responses were poorly correlated with
gene expression (r = −0.04, P = 0.4313). (E) Fraction of significantly upregulated genes with significant (pink; Ntotal = 16) or non-significant (gray; Ntotal
= 21) RIP responses at any tested anti-122 concentration. Additional data are in Supplementary Figure S2-S3.

target impact scoring’ (mTIScores) as it is an estimate of a
given miRNA’s repression potential on a target relative to
all other miRNAs. Based on this concept, we hypothesized
that genes with higher mTIScores for a particular miRNA
are more likely to be sensitive to inhibition of that miRNA,
whereas genes with lower mTIScores are less likely to be
sensitive to miRNA inhibition. The presence of many al-
ternative sites could in essence dilute the effects of any one
miRNA.

Consistent with this hypothesis, a moderately strong cor-
relation was observed between miR-122 target mTIScore
and RIP response at 400 nM (r = −0.59, P < 0.0001;
Figure 3C) and 4000 nM anti-miR-122 (r = −0.51, P =
0.0013; Supplementary Figure S4A). Furthermore, mTIS-
cores were a strong classifier of RIP response, outperform-

ing scrambled controls, TargetScan scoring (which does not
take alternative miRNAs into account) and 3′UTR length
alone (Figure 3D). Notably, all predictive power was lost
when control mTIScores were derived using out-of-context
miRNA expression data from the hepatocellular carcinoma
Hep3B cell line, where miRNA expression is markedly dif-
ferent from normal liver (Figure 3D). Taken together with
the strong correlation between RIP response and expression
changes (Figure 2D), these data indicate that anti-miR has
the greatest effect on mRNAs that are strongly regulated
by a single miRNA, and presence of additional regulators
mitigates these effects.

Additionally, we analyzed whether our model would
benefit from including seed sites located within the cod-
ing sequence (CDS) of target genes. Previous efforts using
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Table 1. Summary of results, computational scores and properties of miR-122 target candidates assessed in this study

Gene symbol RefSeq ID
#122
sites

TS con-
text+
score
prct

3′UTR
length
(nt) mTIScore

Avg RIP
FC
(400 nM)

Sig
RIP

Avg
exp FC

Sig
exp.

Previously
inferred

Previously
vali-
dated

Validated
here

Aldoa NM 007438 1 98 195 0.86 0.44 * 4.97 * (30) (31);
(32)

Y

Ankrd13c NM 001013806 1 89 992 0.79 0.59 * 2.81 * (11) Y
Brpf1 NM 030178 1 96 552 0.68 0.87 1.52
Calm3 NM 007590 1 77 1595 0.38 0.96 1.53 *
Ccng1 NM 009831 1 97 2331 0.16 0.94 2.86 * (33);

(34)
Cd320 NM 019421 2 67 1347 1.76 0.55 * 3.76 * (31) Y
Cdc42bpb NM 183016 1 46 1130 0.37 1.00 1.29
Clic4 NM 013885 2 82 3133 0.51 1.02 2.08 * (11) (34)
Cs NM 026444 1 83 1348 0.70 0.67 * 2.54 * (32) Y
Ctdnep1 NM 026017 2 93 565 1.94 0.79 1.94 *
Dicer1 NM 148948 1 84 3852 −0.29 0.94 1.17
Dlat NM 145614 2 90 1809 1.19 0.78 1.28
Efha2 NM 030110 1 98 1697 0.65 0.81 *,† 2.49 * Y†

Eif2c1 NM 153403 1 10 4492 −1.10 0.72 1.24
Foxk2 NM 001080932 1 73 2933 0.55 1.10 1.73 * (11)
Foxp2 NM 212435 3 82 3957 1.35 1.04 2.37
Fundc2 NM 026126 1 98 2772 0.43 0.89 1.24 (32)
G3bp2 NM 001080794 1 17 2636 0.12 1.04 1.72 *
Git1 NM 001004144 2 82 1187 1.33 0.68 * 1.61 Y
Gpr172b NM 029643 1 97 1005 0.87 0.69 * 2.16 * Y
Gys1 NM 030678 3 92 1251 2.77 0.46 * 3.16 * (30);

(11)
Y

Hnrnpu NM 016805 1 95 1055 0.75 0.84 1.27
Kif5b NM 008448 1 41 2722 0.15 0.84 *,† 1.89 * Y†

Lcorl NM 001163073 1 56 3125 0.43 1.19 1.31
Lrp10 NM 022993 1 56 444 0.93 0.70 * 1.85 * Y
Maf1 NM 026859 1 95 511 0.72 0.67 * 2.70 * Y
Mapre1 NM 007896 1 79 6388 −0.69 1.02 1.79 * (11)
Mcart1 NM 001009949 2 29 3319 1.06 0.69 * 1.97 * Y
Mmgt1 NM 146234 1 86 3633 0.10 1.14 1.26
Npepps NM 008942 1 97 1281 0.85 0.85 1.70 * (11)
Ocln NM 008756 1 98 1448 0.80 0.84 1.76 *
Orc2 NM 008765 1 97 1434 0.66 0.66 * 2.24 * (11) Y
P4ha1 NM 011030 2 98 2245 1.54 0.62 * 2.07 * Y
Rbm47 NM 001127382 1 68 2650 0.60 1.06 1.48
Slc25a34 NM 001013780 3 99 1589 2.67 0.36 * 6.68 * Y
Slc41a1 NM 173865 3 87 2144 2.58 0.64 * 2.75 * Y
Zbtb41 NM 172643 1 55 5478 −0.20 0.91 1.78 (11)

Note that Nanostring probes were designed to hit all mRNA isoforms. For computing scores for genes with multiple isoforms, isoforms with the longest an-
notated 3′UTRs were used. TargetScan context+ score percentiles (TS Context+ Score Prct) were derived from the TargetScan database (11,45). Candidate
genes that have been previously inferred (by gene expression analysis only) or previously validated (gene expression plus a secondary assay (e.g. luciferase,
AGO-IP, etc.)) as miR-122 targets in mouse or human are marked by citation(s) to the original work(s). These citations were compiled by cross-referencing
curated miRNA–mRNA target interactions in miRecords (27), miRWalk (28) and miRTarBase (29) databases.
*Statistical significance for RIP (Sig RIP) or expression (Sig Exp) changes are based on methods described in Figure 2.
†These genes responded significantly in RIP competition assays only at the highest (4000 nM) anti-122 concentration tested. Others marked as significant
responded at ≤400 nM.

cross-linking and immunoprecipitation followed by deep-
sequencing (CLIP) have shown that AGO2 is capable of
binding transcripts outside the 3′UTR in an otherwise
canonical, seed-based fashion (41,42). We found that inclu-
sion of CDS sites had little to no effect on classification per-
formance and only very slightly improved the correlation
between mTIScore and RIP response (r = −0.59 versus r =
−0.62, at 400 nM anti-miR-122, Supplementary Figure S4B
and C). As a result, for simplicity CDS sites were omitted
from further analyses.

miR-target impact model is generalizable to transcriptome,
other inhibited miRNAs

A moderately strong correlation was observed between
mTIScores and expression changes for the tested panel of
miR-122 target candidates (Supplementary Figure S4D).
To gain a broader perspective, array profiling was per-
formed on mice treated with either anti-miR-122 or anti-
miR against the let-7 family. In both cases, a miRNA-
specific signature in the transcriptomic response was ob-
served with seed-matched transcripts being enriched among
the most upregulated genes (Figure 4A and F). Cumula-
tive distribution frequencies (CDFs) of seed-matched genes
binned by mTIScores into equal sized groups indicated that
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Figure 3. Co-regulation by alternative miRNAs strongly influences the effect of anti-miR. (A) Modified AGO2-RIP competition schematic illustrating the
hypothesis that target mRNA is retained by alternative miRNAs. (B) Relative expression of miRNA profiled in mouse liver lysates. Expression levels were
used for weighting the impact of alternative miRNAs. (C) Relationship between RIP responses at 400 nM anti-122 (y-axis) and miR-target impact score
(mTIS; x-axis; see text for scoring details). Pearson coefficient and corresponding P-value are shown. (D) Receiver Operating Characteristic (ROC) curves
for classification of responsive (IP fold-change ≤ 0.75) and non-responsive (IP fold-change > 0.75) targets based on mTIS, TargetScan, or 3′UTR length.
As controls, mTIScores were computed using shuffled 3′UTR sequences (‘Scrambled’) or out-of-context miRNA expression levels (‘Hep3B’). Black dashed
line on the diagonal represents expected result for indiscriminate, purely random classification. Areas under each curve (AUC) are plotted in the inset with
a theoretical range from AUC = 0.5 (poor classifier) to AUC = 1.0 (perfect classifier). Only curves for mTIS and 3′UTR length, which are auto-correlated,
were statistically significant as being non-random (mTIS: P = 0.0015; 3′UTR length: P = 0.017).

the extent of derepression was commensurate with mTIS-
core: overall a greater proportion of higher scored bins were
upregulated to a greater extent than lesser scored bins (Fig-
ure 4B and G). Importantly, similar results were found when
comparing seed-matched genes containing the same num-
ber of seed sites (Figure 4C–D, H–I), indicating that the
penalty for alternative miRNA binding sites was a signif-
icant contributing factor to these outcomes. In addition,
higher mTIScored bins were more enriched for significantly
derepressed targets, especially when only considering con-
served seed and alternative sites (Figure 4E and J).

In addition, we also analyzed profiling data for miR-17
inhibition using inducible tough-acting decoy (TuD) (43)
in Hep3B cells. Highly similar results compared to that of
miR-122 and let-7 were observed (data not shown), thus

demonstrating that our model is also applicable with non-
synthetic miRNA inhibitors expressed in cell culture.

In mouse liver, miR-122 and let-7 are among the most
highly expressed miRNA families, representing ∼33% and
∼10% of total miRNA, respectively (Supplementary Fig-
ure S5A). Likewise, the miR-17 family represents ∼25%
of total miRNA in Hep3B cells. To test whether miR-
target impact scoring could also be applied to a lesser ex-
pressed miRNA family, anti-miR against miR-221/222 was
transfected into SKHep-1 cells, where miR-221/222 fam-
ily expression accounts for <4% of total miRNA (Sup-
plementary Figure S5A). Consistent with reduced expres-
sion (44,45), miR-221/222 inhibition did not show a strong
transcriptomic signature (Supplementary Figure S5B), un-
like other tested miRNAs. Successful inhibition, however,
could be confirmed based on cumulative upregulation of
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Figure 4. Transcriptome-level assessment of miR-target impact model. Array profiling of liver tissue was performed following in vivo dosing of anti-
122 (A–E) or anti-let-7 (F–J). (A) Sylamer analysis for anti-122 treatment. Genes were ranked from most upregulated (left-hand side of x-axis) to most
downregulated (right-hand side), and hypergeometric enrichment scores were calculated for each possible short (7- or 8-mer) nucleic acid sequence based
on their frequency of occurrence in the 3′UTRs of the ranked gene list (y-axis). miR-122 target sites (8mer, 7m8 and 7m1A) were highly enriched in
3′UTRs of the most upregulated genes, indicating an on-target effect of miRNA inhibition. Gray lines represent the background for all non-miR-122
hexamer sequences. (B) Cumulative distribution frequencies (CDFs) for miR-122 seed-matched genes binned by mTIScores into equal sized groups. Median
mTIScores for each bin are indicated in parentheses. CDF for non-seed containing genes is shown in black. (C) CDFs for genes containing only one miR-122
site, binned by mTIScores into equal sized groups. (D) Same as (C) for genes containing exactly two miR-122 sites. (E) Fraction of miR-122 seed-matched
genes significantly upregulated (FDR = 20%) in equal-sized ranked bins of mTIScores computed using all seed sequences (top) or only conserved seed
sequences (bottom). (F–J) Analogous results for anti-let-7.

seed-matched transcripts compared to those lacking seed
sequences (Supplementary Figure S5C). Additionally, dere-
pression of the previously well-validated miR-221/222 tar-
get CDKN1B (p27) was observed (Supplementary Figure
S5D), and verified using RIP competition (Supplementary
Figure S5E). Here, mTIScores were slightly less predic-
tive: while the bottom three groups of genes binned by
mTIScores had rankings commensurate with CDFs, the top
scoring bin underperformed in terms of fold-change dere-
pression (Supplementary Figure S5C); even though it was
the bin most enriched with significantly upregulated tar-
gets (Supplementary Figure S5F). The observed underper-

formance may be partly due to improper penalization re-
sulting from inaccurate alternative site predictions and/or
miRNA expression measurements caused by ligation bias
(46). These inaccuracies would have greater consequence
when analyzing lower expressed MOI, where penalization
contributes more overall to target scores due to expression
weighted penalization.

Taken together, these results demonstrate that the miR-
target impact model can be generalized to global transcrip-
tomic responses of various miRNAs in both tissue and cul-
tured cells following inhibition by either expressed TuD or
synthetic anti-miR. In addition, they strongly indicate the
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widespread effects of alternative miRNAs on shaping the
cellular response to miRNA inhibition.

DISCUSSION

AGO-based RIP is a valuable tool for biochemically assess-
ing miRNA-target interactions (47–56). Unlike luciferase
assays that use exogenously expressed reporters, RIP pro-
vides physical evidence for the interaction of miRNA com-
plexes with endogenous target mRNAs. Despite these ad-
vantages, RIP is relatively less used compared to luciferase
assays for validating direct downstream mRNA targets of
miRNAs.

Limited use of RIP may in part be due to technical
challenges inherent in the method. Because AGO2 binds
a diverse range of miRNAs, RIP provides a global view
of miRNA regulation. In order to identify direct targets
specific to a particular miRNA, it is usually perturbed
by transfection or inhibition in order to measure changes
in the AGO-associated mRNAs. However, a complication
arises from the fact that miRNA perturbation also induces
changes in overall transcript abundance, thus necessitating
another measurement in order to calculate a net IP (50).
Accounting for these changes in total transcript abundance
can confound interpretation, complicate analysis, and re-
duce sensitivity of IP data due to propagation and com-
pounding of errors in all the necessary measurements.

Here, we expanded on the utility of AGO2-based RIP
methods for target validation by coupling it with post-lysis,
anti-miR competition assays. The simple alteration of treat-
ing lysates ex vivo over very short time periods––rather
than obtaining lysates from pre-treated cells or tissues––
eliminated gene expression changes, and as a result, im-
proved sensitivity and interpretation. In addition, it im-
proved both throughput and efficiency. Defined levels of
anti-miR could be titrated into prepared lysates in 96-well
format while only requiring very few animals.

The method’s effectiveness was demonstrated by identi-
fying several novel targets of miR-122 in mouse liver. Prob-
ing the interactions between miR-122 and its targets in their
near-native context enabled direct correlations to be made
with differential gene expression analysis, thereby recon-
necting independent measurements of the two outcomes
of miRNA inhibition: physical disruptions in RISC-target
complexes and downstream changes in target mRNA abun-
dance. Accordingly, very strong correlation between in vivo
and ex vivo target responses suggests that the majority of
AGO-target interactions observed by IP represent endoge-
nous complexes rather than post-lysis artifacts (57).

Coordinated action of multiple miRNAs on common tar-
gets is a prevalent feature of miRNA regulatory networks
(38–40). Several genes have been shown experimentally to
be simultaneously repressed by multiple miRNAs (58,59).
Yet the effects of co-regulation, if any, following miRNA
inhibition were until now only inferred. Tan et al. (55) previ-
ously suggested that miRNA co-regulation may explain why
four putative miR-17 targets (RAB12, E2F3, MYLIP and
CDKN1A) showed less than expected changes in AGO-
IP fractions following anti-miR-17 transfection in Hodgkin
lymphoma (HL) cell lines. Our results now strongly indi-
cate that miRNA co-regulation has a widespread impact in

modulating the transcriptomic responses to anti-miR treat-
ment, with more highly co-regulated targets being less sen-
sitive to anti-miR. These results also refine our understand-
ing of the mechanism of anti-miR drugs. Anti-miR potency
is derived not only from its ability to bind and inhibit cog-
nate miRNA, but ultimately through its ability to effectively
alter RISC-mRNA target occupancy.

A priori knowledge of this modulatory effect of alterna-
tive miRNAs can assist target validation efforts. To this end,
the miR-target impact model can potentially be used as a
positive filter that is capable of enriching for targets most
likely to be directly responsive to anti-miR treatment. We
present this model, however, as more of a conceptual frame-
work than an out-of-the-box solution. It has thus far only
been tested on a handful of miRNAs, and out of these ini-
tial results, it appears to perform better with those that are
more highly expressed. For miRNAs with lower expression,
further optimization may be necessary both in terms of ex-
perimental measurements (more accurate miRNA expres-
sion levels) and bioinformatics (scaling of alternative site
penalty, better understanding of relevant miRNA-binding
sites). In this regard, the model’s utility would likely be en-
hanced by combining its features with that of other target
prediction methods to reduce false-positives in alternative
predictions.

Another interesting aspect of the miR-target impact
model is its reliance on cell-specific miRNA expression
data. Indeed, use of out-of-context expression data derived
from hepatocellular carcinoma cells diminished any predic-
tive power for healthy mouse liver. These results emphasize
the importance of having accurate expression data that re-
flect the cellular environment and are also consistent with
widespread dysregulation of miRNA in cancer (60,61). Ac-
cordingly, changes in alternative miRNA abundance and
target co-regulation may in part explain our previous find-
ing that miR-21 inhibition leads to widely disparate tran-
scriptome responses in cultured cancer cells compared to
non-transformed tissue (44). Other instances of cell-specific
attenuation of miRNA activity have also been reported. For
instance, RNA-binding proteins (RBPs) HUR and PUM
can strengthen or weaken miRNA-mediated repression of
specific targets in a manner that is dependent on the ex-
pression level and/or phosphorylation state of the RBP
(62,63). Incorporation of context-specific factors into next-
generation computational tools may therefore be a critical
element for improving sensitivity and specificity of miRNA
target prediction.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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