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Abstract

Multidrug resistance (MDR) has been a significant threat to public health and effective treat-

ment of bacterial infections. Current identification of MDR is primarily based upon the large

proportions of isolates resistant to multiple antibiotics simultaneously, and therefore is a

belated evaluation. For bacteria with MDR, we expect to see strong correlations in both the

quantitative minimum inhibitory concentration (MIC) and the binary susceptibility as classi-

fied by the pre-determined breakpoints. Being able to detect correlations from these two per-

spectives allows us to find multidrug resistant bacteria proactively. In this paper, we provide

a Bayesian framework that estimates the resistance level jointly for antibiotics belonging to

different classes with a Gaussian mixture model, where the correlation in the latent MIC can

be inferred from the Gaussian parameters and the correlation in binary susceptibility can be

inferred from the mixing weights. By augmenting the laboratory measurement with the latent

MIC variable to account for the censored data, and by adopting the latent class variable to

represent the MIC components, our model was shown to be accurate and robust compared

with the current assessment of correlations. Applying the model to Salmonella heidelberg

samples isolated from human participants in National Antimicrobial Resistance Monitoring

System (NARMS) provides us with signs of joint resistance to Amoxicillin-clavulanic acid &

Cephalothin and joint resistance to Ampicillin & Cephalothin. Large correlations estimated

from our model could serve as a timely tool for early detection of MDR, and hence a signal

for clinical intervention.

Introduction

Background

The phrase, multidrug-resistant isolate, is typically used to refer to a bacterial isolate that is

resistant to at least one antibiotic in three or more drug classes. The use of antibiotics for bacte-

rial diseases of human and animals contributes to the selection of pathogenic bacteria resis-

tance to multiple drugs [1]. In fact, multidrug resistance has become a significant threat to

public health and the effective treatment of bacterial infections. Research has shown that the
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in-hospital costs attributable to multidrug resistance isolates are alarmingly high, justifying the

application of strict infection control measures in medical institutions with increased rate of

multidrug-resistant infections [2]. It was also concluded by Giamarellos-Bourboulis et al.

(2006) [3] that patients with infections by multidrug-resistant isolates were associated with

decreased survival compared with infection by susceptible isolates.

In order to promote and protect public health by providing information about emerging

bacterial resistance, resistance spreading pattern, and the impact of interventions, the National

Antimicrobial Resistance Monitoring System (NARMS) was established in 1996. NARMS is a

collaborative effort of three federal agencies: the Centers for Disease Control and Prevention

(CDC), the U.S. Food and Drug Administration (FDA), and the United States Department of

Agriculture (USDA), as well as state and local health departments in all 50 states [4]. NARMS

tests isolates to determine their antibiotic susceptibility by finding the minimum inhibitory

concentration (MIC, expressed in μg/mL), which is defined as the lowest concentration of a

particular antibiotic that inhibits the visible growth of the bacteria. To date, dilution experi-

ments [5] and multiple computational approaches (e.g., whole-genome sequencing based

methods [6–9]) can be carried out for MIC determination. In NARMS, broth microdilution,

as shown in Fig 1, on the Sensititre System from Trek Diagnostics was the method used to

determine MICs for isolates [10]. Relative to the MIC breakpoints adopted from the Clinical

and Laboratory Standards Institute (CLSI), isolates are classified as susceptible, intermediate,

and resistant.

With societies investment in large-scale surveillance systems like NARMS, it is critical that

we obtain as much value from the collected data as possible. Because multidrug resistance is

particularly important, it would be desirable if the trends could be evaluated from multiple

aspects when antibiotics appear to be jointly acquiring resistance. For example, knowledge

that both drug A and drug B were showing increasing MIC levels in the same population of

bacteria could trigger an investigation into why and possible early mitigation. Currently, this

simultaneous increase in MIC of drug A and drug B would be detected only if both drugs

increased resistance sufficiently to cause a change in the percentage of resistant bacteria. Such

an approach to detection is very limited in scope. What is needed is a method that provides a

more sensitive signal to public health officials of emerging trends that can trigger closer scru-

tiny earlier. For example, if both drug A and drug B have increasing MICs below the break-

point threshold (or above the threshold) then current methods could not detect this change.

Similarly, if resistance is increasing in two drugs, but only one at a level that changes organisms

from being sensitive to resistant, current analysis methods could not detect this important

joint emergence of resistance either. Therefore, there is a need to develop methods of detecting

correlations in changes in MICs as well as changes in resistance category, which allows detec-

tion of joint resistance emergence in a more timely manner using already collected data.

Literature review

In practice, MIC data are often dichotomized to resistant and non-resistant and isolates with

intermediate susceptibilities are often considered as susceptible [11]. A predominant approach

to assessing the antimicrobial resistance (AMR) has focused on the proportion of resistant

component, which can be found in research about AMR temporal trends [12, 13], cross-popu-

lation correlation in AMR [14, 15], and multidrug resistance (MDR), etc.

For research in MDR, a survey on Mannheimia haemolytica isolated from respiratory dis-

eased bovine shows an increasing pattern of antimicrobial MDR from 42% to 63% between

2009 and 2011 simply using descriptive statistics [16]. They also conducted mixed-effect logis-

tic regression to analyze coresistance, i.e. the probability that resistance to a given agent was
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associated with resistance to at least one other antimicrobial. More examples of using descrip-

tive statistics to demonstrate MDR are found in the NARMS final report [10], as well as MDR

studies in Salmonella isolates from humans in France [17] and Taiwan [18], etc. To examine

and quantify the temporal trends of multidrug resistant gram-negative bacilli, resistant pro-

portion data from a nine-year nosocomial surveillance study was analyzed using the chi-square

test for trend, from which a rapid increasing pattern of resistance to three or more antimicro-

bials was discovered [19].

Another approach to revealing MDR was to calculate the correlation between resistance to

one drug and resistance to one or more other drugs within a bacterial population. The correla-

tion can be calculated using data of binary classification of isolates’ susceptibility (resistant v.s.

non-resistant) or the quantitative MICs of several antibiotics [20, 21]. In an analysis of MDR

in the European Union (EU), the multivariate binary resistance patterns were modeled with a

generalized linear model whose within-subject correlation matrix defines the dependence

among multiple antimicrobials [22]. The model parameters were estimated using a generalized

estimating equations (GEE) approach, which led to the same correlation estimation as the

Spearman rank correlation. All of the above-mentioned research articles on MDR were based

upon MIC dichotomization defined by CLSI and the observed MIC values.

Methods based on categorization of quantitative data can cause information loss [23]. The

CLSI breakpoints for several antibiotics have gone through changes during the NARMS pro-

gram, leaving it inappropriate to compare of resistant proportions over time. Additionally,

direct calculation with the observed MIC values could also be problematic, as they are all sub-

ject to the censoring issue. The observed “MIC = 16 μg/mL” of organism A in Fig 1 is interval

censored, which actually indicates that the true MIC is>8 and� 16 μg/mL” but ultimately

unknown. Similarly, organism B (MIC > 32 μg/mL”) and C (MIC� 0.5 μg/mL”) are right and

left censored at the highest and lowest concentration of the serial dilution experiment, respec-

tively. Therefore, what we actually observe from the MIC measurement is the interval where

the true MIC lies in. Correlation in MIC between antibiotics could possibly be overestimated

or underestimated if not adjusting for the censored nature of the data.

As part of detecting trends in increasing resistance in several antibiotics concurrently, it

would be helpful to have an estimation on the correlation in the resistance level among differ-

ent drugs, which includes two interesting perspectives:

i. Correlation in the continuous latent MICs, meaning that high MIC values to one drug indi-

cate high MIC values to the other(s).

ii. Correlation in the binary classification of susceptibility, meaning that being resistant to one

drug indicates being inclined to be resistant to the other(s).

Fig 1. Schematic of the microtiter plate for broth microdilution experiment to determine the minimal inhibitory concentration (MIC) [5]. A:

MIC is recorded as = the lowest concentration that inhibits visible bacterial growth; B: MIC is recorded as> the highest concentration when growth

occurs in all dilutions; C: MIC is recorded as� the lowest concentration when no growth occurs in any concentrations.

https://doi.org/10.1371/journal.pone.0261528.g001
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Correlation in the continuous latent MICs can be obtained by modeling their density.

When modeling the MIC density, Craig [24] proposed to integrate the uncertainty of the true

log2MIC values within their underlying intervals to resolve the censorship issue. The author

also suggested a Gaussian mixture distribution to reflect the resistant and non-resistant popu-

lation components without reliance on specific breakpoints. These resistant and non-resistant

components of the bacterial populations are indicated by the bimodal distributed frequency

plot of the observed MIC. Following this idea, subsequent studies on AMR temporal trends

[25] and cross-population correlation in AMR [26] have improved the previous ones that did

not address the censored nature or the underlying mixture distribution. Jaspers et al. (2018)

[27] developed a Bayesian method to model the joint MIC density of two or more antimicrobi-

als, from which the correlation of type i can be inferred. However, their assumption that the

mean MIC of the resistant and non-resistant components was fixed over years could be unreal-

istic, and inference about correlation of type ii cannot be made from their model.

To our knowledge, research that estimates both types of correlation in antibiotic resistance

while accounting for the challenges of analyzing the MIC data has not been conducted yet. In

this study, we filled in this gap by modeling for the joint distribution of MIC between antibiot-

ics under a Bayesian framework with a Gaussian mixture model with covariance-dependent

mixing weights. Most importantly, the method was able to provide inferences about two types

of correlation in antibiotic resistance. Examples of Salmonella heidelberg isolates collected by

CDC NARMS were analyzed for two pairs of antibiotics, pair 1: amoxicillin-clavulanic acid

(AMC) & cephalothin (CEP); and pair 2: ampicillin (AMP) & cephalothin (CEP). These antibi-

otics are both β-lactam antibiotic with ampicillin and amoxicillin-clavulanic acid being in the

penicillin class and cephalothin being a cephalosporin, so we would expect both type i and

type ii correlation to exist. Our model was assessed by simulation studies to be accurate and

robust in estimating the correlations in resistance. The practical contribution of our method is

that a large correlation in the continuous latent MIC and/or the binary susceptibility could be

used as a way for early detection of MDR phenomenon.

Methods

Model notations and assumptions

Our proposed methodology estimates the joint distribution of the antibiotic resistance

between several drugs at the isolate level. The MIC data were log-transformed with base 2,

which is a commonly seen technique for two-fold serial dilution data. Latent variables of the

true log2MIC and the component indicator of the isolate were introduced to account for the

data censorship and the unobserved components. The joint resistance was assumed to follow a

multivariate Gaussian mixture model whose mixing weights contains the conditional depen-

dence between the susceptibilities of the antibiotics. The notations used for model description

are as follows:

• y�d;i: the observed but censored log2MIC for isolate i tested by drug d.

• yd,i: the real but latent log2MIC for isolate i tested by drug d.

• ld,i, ud,i: the lower and upper bound of the real latent value yd,i, and yd,i 2 (ld,i, ud,i]. The lower

and upper bounds for an interval censored log2MIC are y�d;i � 1 and y�d;i; for right censored

data, y�d;i and +1; for left censored data, −1 and y�d;i.

• cd,i: the latent indicator of the bacterial component from which the isolate i tested by drug d
was drawn. cd,i = 0, 1 indicates the susceptible and resistant component, respectively.
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Ranges of the subscripts are i = 1, 2, . . ., I, where I is the total number of isolates that were

tested by multiple antibiotics simultaneously, and d = 1, 2, . . ., D, where D is the number of

antibiotics belonging to different classes that were considered in this research. The supports of

the indices remain the same throughout the paper unless otherwise specified.

Model description

Denote the latent log2MIC vector (y1,i, y2,i, . . ., yD,i)
T of isolate i tested by D antibiotics simulta-

neously as~yi, the observed outcome as~y�i , and the indicator vector (c1,i, c2,i, . . ., cD,i)
T as~ci. The

joint antibiotic resistance was assessed at the isolate level as follows. For i = 1, 2, . . ., I, and

d = 1, 2, . . ., D,

~yi �
ind MVNDð~mð~ciÞ;SÞ; ð1Þ

where the d-th element μd(cd,i) of the mean vector~mð~ciÞ is

mdðcd;iÞ ¼

(
m0;d; if cd;i ¼ 0

m1;d; if cd;i ¼ 1
: ð2Þ

The model of latent data assumes that the real log2MIC vector for isolate i tested by D anti-

biotics follows a D-dimensional multivariate normal distribution with a mean vector~m and

covariance matrix S. The d-th element of the mean vector μd is dependent on the component

cd,i from which isolate i was drawn when treated with drug d. When considering drug d mar-

ginally, it is assumed that the classification of isolate i follows a Bernoulli distribution with

probability pd:

cd;i �
ind BernoulliðpdÞ: ð3Þ

Therefore, the mean log2MIC of isolate i against drug d takes value of μ1,d with probability

pd, and takes value μ0,d with probability 1 − pd. According to the meanings of being susceptible

and resistant, the relationship of μ0,d< μ1,d should always satisfy for all d. Some existing litera-

ture argues the phenomenon of antimicrobial multidrug resistance using the proportion of the

isolates that are resistant to several antibiotic classes, where the resistant component is defined

using the CLSI standards. The resistance classification cd,i in our method is different than the

commonly used cut-off method in the sense that the assignment of component here is proba-

bilistic rather than a hard dichotomization.

The covariance matrix S contains the variance of the latent log2MIC for each drug, regard-

less of the components. Such a simplification was assumed as it is impossible to accurately esti-

mate variances for both components when there exist large proportions of left and/or right

censored data, therefore variance estimation is not the primary goal of our work. The covari-

ance matrix can be decomposed into a correlation matrix (with 1’s on its diagonal and correla-

tion parameters on its off-diagonal, denoted as R) sandwiched by the two scale matrices (with

the standard deviations on its diagonal and 0’s on its off-diagonal, denoted as S). This separa-

tion strategy was adopted for the sake of selection of prior distribution for S. When consider-

ing two drugs (D = 2),

S ¼
s2

1
rs1s2

rs1s2 s2
2

 !

¼
s1 0

0 s2

 !
1 r

r 1

 !
s1 0

0 s2

 !

≕ SRS:

ð4Þ
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Distribution (3) implies independence in the component indicators among isolates for a

given antibiotic d, which is reasonable. However, independence in the component indicators

between antibiotics is not reasonable. When MDR occurs for a certain serotype, we expect not

only significantly positive correlation in the latent log2MIC, but also conditional dependence

in the binary susceptibility classification between different antibiotics. The former can be

assessed by parameter ρ in the correlation matrix R, while the latter can be assessed by intro-

ducing the covariance parameter between antibiotic susceptibilities.

To illustrate the approach to modeling the conditional dependence between antibiotic sus-

ceptibilities [28], two drugs are given as an example (D = 2). Therefore,~ci 2 G, where Γ = {{1,

1}, {1, 0}, {0, 1}, {0, 0}}. Denote the covariance between the two antibiotic susceptibilities as δ.

It can be shown that

Pðc1;i ¼ 1; c2;i ¼ 1Þ ¼ p1p2 þ d

Pðc1;i ¼ 1; c2;i ¼ 0Þ ¼ p1ð1 � p2Þ � d

Pðc1;i ¼ 0; c2;i ¼ 1Þ ¼ ð1 � p1Þp2 � d

Pðc1;i ¼ 0; c2;i ¼ 0Þ ¼ ð1 � p1Þð1 � p2Þ þ d

: ð5Þ

Eq (5), the probabilities of the four components defined by the susceptibilities of two drugs,

can be summarised to the following contingency table (Table 1). The feasible range of δ is

� minðp1p2; ð1 � p1Þð1 � p2ÞÞ � d � minðp1; p2Þ � p1p2: ð6Þ

The binary classifications are independent between the two antibiotics when δ = 0. Know-

ing the covariance δ is not very straightforward due to its uncommon range, therefore it was

transformed to correlation, denoted as ϕ, in the binary susceptible classification:

� ¼
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1 � p1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ð1 � p2Þ

p : ð7Þ

ϕ takes value between -1 and 1. A large ϕ implies that if a certain serotype is resistant to one

antibiotic, then it is highly likely to be resistant to the other.

The parameter space involved in this Gaussian latent class mixture model is

Y ¼ ð~m;S;~p; dÞ. Let f(�) be a generic representation for probability density function (pdf) or

probability mass function (pmf). Also, denote all latent log2MIC values ð~y1;~y2; :::;~yIÞ
T

as Y,

the corresponding observed values as Y�, and the latent component indicators as C. The mean

vector of the bivariate normal distribution is~m ¼ ðm1; m2Þ
T
, where μ1 2 {μ0,d = 1, μ1,d = 1} and μ2

2 {μ0,d = 2, μ1,d = 2}. The marginal probabilities of being resistant form a vector~p ¼ ðp1; p2Þ
T
.

Table 1. Contingency table of the components defined by the susceptibilities of two antibiotics.

c2,i

0 1

c1,i 0 (1 − p1)(1 − p2) + δ p2(1 − p1) − δ
1 p1(1 − p2) − δ p1 p2 + δ

https://doi.org/10.1371/journal.pone.0261528.t001
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Then under such a context of two antibiotics, the data likelihood can be written as

f ðY�jYÞ ¼
YI

i¼1

f ð~y�i jYÞ

¼
YI

i¼1

Z u2;i

l2;i

Z u1;i

l1;i

X

~ci2G

f ð~yi;~cijYÞdy1;idy2;i

¼
YI

i¼1

Z u2;i

l2;i

Z u1;i

l1;i

X

~ci2G

f ð~yij~m;S;~ciÞ � f ð~cij~p; dÞdy1;idy2;i:

ð8Þ

In (8), the first equality is due to independence among the submitted isolates. The second

equality is to sum the latent component indicators over their possible values, and to integrate

the continuous log2MIC over the intervals of which the discrete measurements lay in. The two

parts in
P

~ci2G
f ð~yij~m;S;~ciÞ � f ð~cij~p; dÞ are defined by the bivariate normal distribution (1) and

the contingency Table 1, which forms a Gaussian mixture distribution with mixing weights

containing the covariance between the antibiotic susceptibility. Consequently, a Bayesian

model is obtained:

f ðY;Y;CjY�Þ ¼ f ð~m;S;~p; d;Y;CjY�Þ / f ðY�;Y;C;~m;S;~p; dÞ

¼ f ðY�jY;C;~m;S;~p; dÞ � f ðY;Cj~m;S;~p; dÞ � f ð~m;S;~p; dÞ

¼ f ðY�jY;C;~m;S;~p; dÞ � f ðY;Cj~m;S;~p; dÞ � f ð~mÞ � f ðSÞ � f ð~pÞ � f ðdÞ

ð9Þ

In (9), the pmf f ðY�jY;C;~m;S;~p; dÞ associates Y�, the observed log2MIC, with its underly-

ing latent values Y, and corresponds to the lowest hierarchy of the model. The term

f ðY�jY;C;~m;S;~p; dÞ � f ðY;Cj~m;S;~p; dÞ is expressed in Eq (8). Selection of the prior distribu-

tions for the model parameters is described in the following Subsection of Prior specification.

Prior specification

A joint prior distribution of the unknown model parameters Y ¼ ð~m;S;~p; dÞ is required by

the full Bayesian analysis. If assuming independence, it can be expressed as the product of each

individual prior distribution as shown in the last equality in (9). Diffuse Gaussian priors were

selected for~m due to the a priori lack of knowledge about the means: μ0,1, μ1,1, μ0,2, μ1,2 * N(0,

10000). The constraint that μ0,d< μ1,d was applied to reflect the relationship between the sus-

ceptible and resistant component. Similarly, a non-informative prior distribution Beta(0.5,

0.5) was determined for p1 and p2. A default uniform prior was assigned to the covariance

parameter δ on its feasible range: f(δ)/ 1 for −min(p1 p2, (1 − p1)(1 − p2))� δ�min(p1, p2) −
p1 p2.

As for the prior distribution of the covariance matrix S, since the widely-used inverse

Wishart distribution tends to bias downward the posterior correlation [29], the separation

strategy [30] was adopted instead. According to the recommendation of the Stan development

team [31], an LKJ prior was determined for the correlation matrix [32]: f(R)/ |R|ν−1, ν> 0. By

choosing LKJ (ν = 1) for the correlation matrix R, the density of its prior is uniform over the

correlation matrices of dimension D = 2. We assigned weakly informative half-Cauchy priors

to the scale parameters: σ1, σ2 * Cauchy+(0, 2).
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Alternative approaches to assess correlation

It is often of interest to compare a new approach with alternative methods. As a comparison to

the Bayesian approach to estimating the correlation in latent log2MIC and in susceptibility,

alternative methods [20, 21] were brought up and used for comparison. Two alternative

approaches for the correlation related to MIC (type i correlation referred to above) are Pearson

correlation and Spearman rank correlation. We used Spearman rank correlation for the

observed log2MIC because the rank approach acknowledges the ordinal nature of the MIC.

For the binary correlation (i.e. type ii), the Spearman and Pearson methods give the same

result—that is they calculate the correlation in the binary classification expressed as cd,i in the

model—as the estimate using the GEE approach [22].

Real data analyses

Data description

The dataset used to apply the Bayesian approach to modeling the MDR is the human popula-

tion of NARMS, which was launched in 1996 within the framework of CDC’s Emerging Infec-

tions Program and the Foodborne Diseases Active Surveillance Network (FoodNet).

Participating public health laboratories submit their every 20th non-typhoidal Salmonella,

Campylobacter, Shigella, and Escherichia coli O157 isolates to CDC for antibiotic susceptibility

testing [33]. The data were published with year of collection, genus, serotype, MIC value tested

against multiple antibiotics, the test conclusion (resistant or not), etc. Currently, CDC

NARMS routinely tests for susceptibility to 18 antibiotic agents that belong to 12 classes of

drugs.

We limited our analyses to an important Salmonella serotype: S. heidelberg, which has 1196

isolates, accounting for 3.12% of the total 38311 Salmonella enterica isolates. The pairs of anti-

biotics we focused on are AMC (Amoxicillin-clavulanic acid, β–lactam combination agent

class) & CEP (Cephalothin, Cephalosporin class) and AMP (Ampicillin, Penicillin class) &

CEP. Since the susceptibility of heidelberg to CEP was not tested after 2003, there were 498 iso-

lates recorded for each pair. The scatter plots of the observed log2MIC of the two pairs are

shown in Fig 2. The CLSI cut-off value after log2 transformation is 5 for all drugs studied here.

Thus, there were 3.82% isolates jointly resistant to AMC & CEP, and 5.22% jointly resistant to

AMP & CEP.

Implementation

A Bayesian analysis of Markov Chain Monte Carlo (MCMC) was implemented in R version

3.6.3 using the rstan package [34] in order to draw inference from the posterior distribution f
(Θ, Y, C|Y�) which has no closed form. The sampling algorithm adopted was the No-U-Turn

sampler variant of Hamiltonian Monte Carlo which is efficient, and hence the preferred

method in Stan [35].

For each of the two example pairs, the initial values were determined based upon the log2-

MIC observations to avoid random initialization. More specifically, the mean vector~m was

obtained by taking the arithmetic mean of the censored observations within each component

for each drug. The standard deviations in the scale matrix S were each calculated directly from

the observations of each drug. The Spearman rank correlation of the observations between the

paired drugs was used as the initial value of type i correlation ρ. The proportions of the resis-

tant isolates were regarded as the initial values of~p. The difference between the jointly resistant

proportion and the product of the marginal resistant proportions is used as the initial value for

type ii covariance δ. Here, the resistant isolates are classified by CLSI standards.
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The model implementation was based on three chains with 10,000 MCMC iterations, disre-

garding the first 50% realizations as the burn-in session. The MCMC convergence was exam-

ined with the Gelman–Rubin diagnostic [36]. The point estimates and the 95% credible

intervals of the model parameters were obtained by taking the means and the 2.5th and 97.5th

percentiles of the posterior draws after the burn-in portion. The application results were sum-

marized and can be found in the following subsection. Model specification, implementation,

and other relevant R scripts are available in a public GitHub repository (GitHub: https://

github.com/MinZhang95/AMR-MDR).

Application results

The correlations in both the continuous latent log2MIC and the binary susceptibility are of

particular interest when modeling the joint distribution of resistance to several antibiotics.

Their estimation results can be found in Table 2, where the point estimation, standard devia-

tion, and credible interval for the two parameters of each example pair are presented.

Since the credible interval for each correlation parameter of each case is above 0, we are

able to conclude significant correlations. In other words, the correlations in the latent log2MIC

Fig 2. Scatter plots of the observed log2MIC (MIC in unit μg/mL) with jittering of Salmonella heidelberg isolates tested by AMC & CEP (left) and

AMP & CEP (right) in NARMS human population during 1996-2003.

https://doi.org/10.1371/journal.pone.0261528.g002

Table 2. Estimations of the correlation in the latent log2MIC (ρ) and correlation in susceptibility classification (ϕ) using Salmonella heidelberg isolates of NARMS

human population tested by AMC & CEP and AMP & CEP during 1996-2003.

Pair Parameter Estimation Standard deviation Credible interval

AMC & CEP ρ 0.6303 0.0450 (0.5352, 0.7115)

ϕ 0.9677 0.0188 (0.9210, 0.9935)

AMP & CEP ρ 0.2818 0.0934 (0.0884, 0.4628)

ϕ 0.9174 0.0295 (0.8524, 0.9663)

https://doi.org/10.1371/journal.pone.0261528.t002
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and in the binary susceptibility are significantly positive for the paired antibiotics. The estima-

tions in the correlation of binary susceptibility ϕ are especially high, with values greater than

0.9 for both cases. The point estimations of ρ and ϕ from the Spearman correlation are 0.3986

and 0.9042 for AMC & CEP, 0.1316 and 0.6381 for AMP & CEP, which has some discrepancy

from the Bayesian estimations. To assess the performance of the hierarchical Bayesian model,

with the Spearman correlation as a comparison, simulation studies were conducted.

Simulation

To assess the performance of the proposed Bayesian approach to estimating the correlation in

antibiotic resistance, three simulation studies were conducted using the estimated results from

the two application examples in the Real data analyses Section and a negative control as the

underlying data generators. The negative control shared the same parameters as the applica-

tion results of AMC & CEP except that it assumed null correlations between the two antibiot-

ics. Greek letters with “hats” on top are adopted to denote the known model parameters

Ŷ ¼ ð~̂m ; Ŝ;~̂p; d̂Þ.
To simulate I = 498 isolates (which is the size of the real data examples):

1. Generate I categorical realizations following the multinomial distribution and denote the

counts within each category as ðn0;0; n0;1; n1;0; n1;1Þ
T
�MultinomialðI; P̂ðc1;i

¼ 0; c2;i ¼ 0Þ; P̂ðc1;i ¼ 0; c2;i ¼ 1Þ; P̂ðc1; i ¼ 1; c2;i ¼ 0Þ; P̂ðc1;i ¼ 1; c2;i ¼ 1ÞÞ. Each P̂ð�Þ is

calculated by entering ~̂p and d̂ into the probabilities shown in the contingency Table 1.

2. Generate Y, the latent log2MIC, which are composed of

n0,0 data from MVN2

m̂0;1

m̂0;2

 !

; Ŝ

 !

,n0,1 data from MVN2

m̂0;1

m̂1;2

 !

; Ŝ

 !

, n1,0 data from

MVN2

m̂1;1

m̂0;2

 !

; Ŝ

 !

,n1,1 data from MVN2

m̂1;1

m̂1;2

 !

; Ŝ

 !

.

3. Convert the latent log2MIC to the censored Y�:

y�d;i ¼

lowest concentration; yd;i � lowest concentration

dyd;ie; lowest < yd;i � highest concentration

highest concentration; yd;i > highest concentration

8
><

>:
; d�e represents the ceiling of a

number.

The lowest and highest concentrations refer to the two extremes of the dilution range,

which is drug-dependent. Each of the three antibiotics studied here has its own spectrum of

serial dilution.

4. Assign the binary conclusions (non-resistant v.s. resistant) according to the censored data

using the CLSI breakpoints. The censored log2MIC data simulated from the above steps are

considered as susceptible if below the breakpoint which is 5; otherwise, classified as

resistant.

We obtained n = 100 simulated datasets by repeating the above procedure 100 times for

each case. Both the proposed Bayesian approach and the Spearman methods were applied to

the simulated datasets. Therefore, 100 estimation results were attained for each pair. Since we

are interested in comparing the accuracy and robustness of the two methods, the mean abso-

lute error (MAE) and the root of mean squared error (RMSE) were calculated for each set of
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results, as displayed in Table 3. Scenarios 1-3 represent data generators of applications AMC &

CEP, AMP & CEP, and the null case, respectively.

Discussion and conclusion

In this work, we proposed a Bayesian latent class mixture model as a tool to assist with assess-

ment of the antibiotic multidrug resistance phenomenon. When MDR occurs, we expect

strong correlation in the latent log2MIC between antibiotics, and also strong correlation in the

binary susceptibility classification. This Bayesian approach is capable of addressing both char-

acteristics while modeling the resistance level for multiple drugs. The approach offers the

opportunity to obtain more from the MIC data than is currently being extracted. On the same

dataset, using the proposed model, researchers and public health officials are able to (a) assess

the correlation of MIC for antibiotics even below the resistant threshold; (b) assess the binary

classification of organisms resistant or non-resistance in a manner independent of the pre-

determined threshold values; and (c) account for the censored nature of the MIC data.

One of the goals of the surveillance programs is to early detect issues with the hope that

interventions can mitigate risk. The purpose of correlation estimation is not merely to test for

significant correlations, but also to identify newer correlations that are emerging. The question

could be “Are two antibiotics that were previously not correlated starting to show positive cor-

relations?”. And the answers inferred from our approach could trigger an investigation into

the mechanism of that correlation. Similarly, if the correlation between two classes of antibi-

otic increases, this might also warrant an investigation. As such, we envision that most of the

findings from our analyses will be hypotheses generating. Further, the presence of correlation

should be combined with other information available in the dataset. In our examples, only

3.82% of isolates are jointly resistant to AMC & CEP, and 5.22% jointly resistant to AMP &

CEP, so concerns about correlation might be tempered by the low resistant prevalence. Public

health officials would need to balance the three pieces of information: type i correlation, type ii

correlation and resistant prevalence when making decisions.

The currently used analytical methods, Spearman correlation in log2MIC and the binary

conclusions, were compared against the proposed model in Table 3. What can be seen from

the bias that arises is that although the Spearman calculation is straightforward, it does not

consider the censored nature of the MIC data, or the mixture structure of susceptible and

Table 3. Comparisons of the estimated correlations for latent log2MIC (ρ) and binary classification (ϕ) between the Bayesian and Spearman method through

simulations.

Scenario Parameter Truth Method Estimation SD MAE RMSE

Scenario 1 ρ 0.6303 Bayesian 0.6304 0.0409 0.0331 0.0407

Spearman 0.7040 0.0388 0.0756 0.0832

ϕ 0.9677 Bayesian 0.9461 0.0174 0.0228 0.0276

Spearman 0.6302 0.0746 0.3375 0.3455

Scenario 2 ρ 0.2818 Bayesian 0.2649 0.0655 0.0522 0.0671

Spearman 0.1933 0.0472 0.0892 0.1001

ϕ 0.9174 Bayesian 0.8926 0.0218 0.0269 0.0329

Spearman 0.7231 0.0493 0.1943 0.2004

Scenario 3 ρ 0.0000 Bayesian -0.0074 0.0590 0.0478 0.0592

Spearman -0.0096 0.0481 0.0390 0.0489

ϕ 0.0000 Bayesian 0.0174 0.0416 0.0344 0.0449

Spearman 0.0055 0.0459 0.0370 0.0460

https://doi.org/10.1371/journal.pone.0261528.t003
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resistant isolates. As shown in the simulation results in Table 3, when correlations exist, the

advantages in the Bayesian model are obvious in terms of the mean absolute error (MAE) and

the root of mean squared error (RMSE), meaning that the Bayesian method provides a more

accurate and robust estimation of the correlations. When correlations do not exist, such

advantages become less obvious and the two methods perform comparably well. It can be

found that the alternative method tends to underestimate the correlation in the susceptibility

status when the ground truth is not null, which could be misleading in real life. Though the

Spearman correlation of 0.6302 in the binary conclusions for the AMC & CEP example is

quite high, it is not as close to the truth as the Bayesian estimation. However, the proposed

model does require a mixture of susceptible and resistant components in order to obtain an

accurate estimation, and we found this to be true for many (but not all) of the organism-antibi-

otic combinations in the NARMS datasets.

The proposed Bayesian model was articulated for the two dimensional case where two anti-

biotics were considered simultaneously. This work can be generated to three or higher dimen-

sions and applied to more antibiotics. Application of this model to three drugs and more could

promote our understanding to the surveillance data and serve as an alert when MDR emerges.
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