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Abstract
Background: The two main options for renal allograft preservation are static cold storage (CS) and machine perfusion (MP). There
has been considerably increased interest in MP preservation of kidneys, however conflicting evidence regarding its efficacy and
associated costs have impacted its scale of clinical uptake. Additionally, there is no clear consensus regarding oxygenation, and
hypo- or normothermia, in conjunction with MP, and its mechanisms of action are also debated. The primary aims of this article were
to elucidate the benefits of MP preservation with and without oxygenation, and/or under normothermic conditions, when compared
with CS prior to deceased donor kidney transplantation.

Methods: Clinical (observational studies and prospective trials) and animal (experimental) articles exploring the use of renal MP
were assessed (EMBASE, Medline, and Cochrane databases). Meta-analyses were conducted for the comparisons between
hypothermic MP (hypothermic machine perfusion [HMP]) and CS (human studies) and normothermic MP (warm (normothermic)
perfusion [WP]) compared with CS or HMP (animal studies). The primary outcome was allograft function. Secondary outcomes
included graft and patient survival, acute rejection and parameters of tubular, glomerular and endothelial function. Subgroup analyses
were conducted in expanded criteria (ECD) and donation after circulatory (DCD) death donors.

Results: A total of 101 studies (63 human and 38 animal) were included. There was a lower rate of delayed graft function in
recipients with HMP donor grafts compared with CS kidneys (RR 0.77; 95% CI 0.69–0.87). Primary nonfunction (PNF) was reduced
in ECD kidneys preserved by HMP (RR 0.28; 95% CI 0.09–0.89). Renal function in animal studies was significantly better in WP
kidneys compared with both HMP (standardized mean difference [SMD] of peak creatinine 1.66; 95% CI 3.19 to 0.14) and CS (SMD
of peak creatinine 1.72; 95%CI 3.09 to 0.34). MP improves renal preservation through the better maintenance of tubular, glomerular,
and endothelial function and integrity.

Conclusions: HMP improves short-term outcomes after renal transplantation, with a less clear effect in the longer-term. There is
considerable room for modification of the process to assess whether superior outcomes can be achieved through oxygenation,
perfusion fluid manipulation, and alteration of perfusion temperature. In particular, correlative experimental (animal) data provides
strong support for more clinical trials investigating normothermic MP.

Abbreviations: CI = confidence interval, CIT = cold ischemic time, CrCl = creatinine clearance, CS = cold (static) storage, DBD =
donation after brain death, DCD = donation after circulatory death, DGF = delayed graft function, ECD = expanded criteria donor,
EMS = exsanguinous metabolic support, FeNa = fractional excretion of sodium, HMP = hypothermic machine perfusion, HR =
hazard ratio, KPS = kidney perfusion solution, MP = machine perfusion, MPS = machine perfusion solution, PGE1 = prostaglandin
E1, PNF = primary nonfunction, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses, RR = risk ratio
(relative risk), SMD = standardized mean difference, UW = University of Wisconsin, WIT = warm ischemic time, WP = warm
(normothermic) perfusion.
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1. Introduction

The most optimal long-term treatment option for end-stage renal
disease remains kidney transplantation. On a worldwide basis,
access and referral for transplantation is limited; in those patients
referred for transplantation, there is an imbalance between the
supply and demand for suitable organs.[1] In the United States
alone, the median time to deceased donor renal transplantation is
approximately 3 to 4 years.[2] This organ deficit has prompted the
adoption of different strategies to increase the availability of
kidneys for transplantation. One approach of considerable
importance is the increasing utilization of donation after
circulatory death (DCD) and expanded criteria donors (ECD),
which must supplement the standard criteria, donation after
brain death (DBD) kidneys.[1,3]

The growing demands for DCD and ECD kidneys must be
balanced with their perceived suboptimal posttransplant func-
tion. There are higher rates of delayed graft function (DGF) for
both DCD and ECD kidneys, and higher discard rates and by
definition poorer survival in the ECD subset, when compared
with standard criteria DBD kidneys.[4–10] Further improvements
to the organ procurement and preservation process are therefore
essential to improve marginal donor kidney quality.
Although cold static storage (CS) is still the most commonly

utilized method for renal preservation, machine perfusion (MP)
provides an important alternative. CS largely supplanted MP in
the 1980s due to a lack of evidence with regards to improvement
in transplantation outcomes and the large associated costs.[11–13]

MP has seen a resurgence in the last decade due to the changing
donor profile and advancements in perfusion solutions and
technology.[14]

Indeed, application of MP is still not widespread, with
conflicting evidence even in recent years regarding its utility.[15,16]

Furthermore, there is minimal clinical data regarding the utility of
evolving modifications to the MP process, and its mechanisms of
action are also poorly understood. In particular, the use of warm
(normothermic) perfusion (WP), oxygenation, or pharmaco-
therapies has largely been the subject of experimental (animal)
studies.
The aims of this systematic review and meta-analysis were

therefore to: describe ways in which MP is currently utilized;
provide an updated and comprehensive analysis of the effect of
hypothermic MP (HMP) on posttransplant graft function in
deceased donor kidney transplantation; and explore experimen-
tal (animal) literature to investigate the utility of normothermic
(WP) and/or oxygenated MP, and understand the mechanisms of
action of MP preservation.
2. Methods

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA, http://links.lww.com/MD/B324) was
utilized in the completion of this review (see Table, http://links.
lww.com/MD/B325).[17] The review protocol was registered
with the PROSPERO International Prospective Register
of Systematic Reviews (March, 2016; registration number—
CRD42016037100).[18]
2.1. Eligibility
2.1.1. Inclusion criteria. Clinical (human) studies consisted of
randomized control trials (RCT) or prospective (nonrandomized)
and observational studies, and were included in the presence of
MP data. Experimental (animal) studies by their nature are
2

prospective, and were included in the presence of comparative
data either between different types of MP, and/or MP and an
alternative form of preservation. Both English and non-English
articles were considered, utilizing a translator if necessary. Only
published works, and not conference abstracts, were included;
although there is some evidence to suggest that gray literature
exclusion can contribute to publication bias,[19] these abstracts
were all assessed and deemed to have either insufficient data or
quality for inclusion.

2.1.2. Exclusion criteria. Clinical/human studies were excluded
if less than 10 patients were in the MP group, or there was
significant data and/or patient overlap between 2 or more
published studies, and/or there was insufficient data with regards
to delayed graft function, primary nonfunction (PNF), or graft/
patient survival. These parameters were chosen as they were the
most commonly and uniformly reported in the studies analyzed.
For animal studies, an article was excluded if there was no
appropriate control group for comparison, and/or there was a
lack of a reperfusion period (either ex vivo or in vivo) after MP
preservation. All studies prior to 1980 were excluded. This
publication year reflects a time after which there was a distinct
shift in the type of perfusion machines and perfusion solutions
used.
2.2. Search strategy

The EMBASE, Medline, and Cochrane (1980–December 2015)
databases were searched using Ovid, with key search terms
including “kidney or renal” and “machine perfusion” (see Table,
Supplemental Digital Content 2, for complete strategy, http://
links.lww.com/MD/B326). In an effort to include all eligible
studies, a manual literature search was also conducted using any
potential articles’ bibliographies, in addition to reference lists
from other reviews.
2.3. Data collection

Data was extracted from each article by 2 independent reviewers
utilizing a predetermined template; a third reviewer was
consulted if necessary for any disagreements.

2.3.1. Clinical (human) data.Human data was analyzed for the
extraction of the following: date of publication and study period;
study type (i.e., prospective or retrospective); kidney allocation;
study center(s); patients in MP and CS groups; stratification of
MP and CS patients by DBD, DCD, and ECD status; MP
characteristics, including the use of oxygenation and preservation
temperature; perfusion machine(s) used; and the preservation
solution(s) used in CS and MP groups. Quantitative data was
extracted for—the incidence of DGF and primary nonfunction
(PNF), 1-year graft and patient survival in the whole cohort,
acute rejection rates, and posttransplant renal function (CrCl in
mL/min and serum creatinine in mg/dL). DGF was defined as the
need for dialysis in the first week after transplantation.[20] Only
6 studies either utilized an alternate definition of DGF, or did not
define DGF.
Hazard ratios (HR) for graft survival were calculated, when

possible, using the methods described by Tierney et al.[21]

Although the “ECD” graft description is not as descriptively
useful as a high Kidney Donor Profile Index donor kidney, ECD is
used in this manuscript as it is the most commonly utilized term in
the included literature.
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2.3.2. Experimental (animal) data. Study parameters collected
for animal data included: date of publication, institution(s)
involved, animal/species employed, weight range of animals,
experimental procedure(s)/model employed (study groups, DCD
or DBD, ex vivo perfusion or transplantation after preservation,
experimental period), number of animals in each group, cold/
warm ischemic times, perfusion machine and settings used,
preservation/perfusion solution(s) used, additives to preserva-
tion/perfusion solution(s), temperature of preservation/perfusion,
and the use of oxygen. Study outcomes consisted of renal function
parameters (peak creatinine in mg/dL, creatinine clearance (CrCl)
in mL/min,), renal tubule parameters (fractional excretion of
sodium (Na) (FeNa); enzymatic markers of tubular damage),
glomerular parameters (proteinuria), endothelial injury para-
meters, markers of inflammation, oxidative stress markers,
microcirculatory tissue perfusion post-preservation, oxygen
consumption, histology, and animal survival.
The standardized mean difference (SMD) was calculated

between comparator groups for peak creatinine, CrCl, FeNa, and
survival using an effects size calculator.[22]

2.4. Bias assessment
2.4.1. Clinical (human) data. Bias assessment of prospective
cohort studies included in the meta-analyses was performed using
the Newcastle–Ottawa quality assessment scale for cohort
studies.[23] RCT study quality was assessed using the Cochrane
Collaboration’s tool.[24]

2.4.2. Experimental (animal) data. Animal experimental stud-
ies have several important differences in comparison to clinical
studies. As such, SYRCLE risk of bias tool for animal studies was
instead utilized to assess the quality of animal data included in
meta-analyses.[25]

2.5. Synthesis and analysis of results

Observational (retrospective) human studies, in conjunction with
prospective studies, were collated to systematically summarize
the current parameters ofMP utilization clinically. Observational
studies were not included in subsequent formal quantitative
analyses.
Similarly, animal studies comparing HMP and CS were only

utilized to explore mechanisms of MP preservation. As there are
multiple human studies focusing on the comparison between
HMP and CS, animal studies for this comparator group were not
formally meta-analyzed to avoid additional heterogeneity.

2.6. Meta-analyses

In general, the HMP or WP groups were considered the
intervention group when compared with CS; the intervention
group was WP when compared with HMP, and oxygenated
HMP when compared with nonoxygenated HMP. In the event of
multiple experimental groups and 1 control group, each different
experimental group was compared with the control group and
analyzed as a separate study.

2.6.1. Human (clinical) data. Only prospective studies were
included inmeta-analyses. As only 1 study utilizedWP[26] it could
not be separately analyzed. Therefore, studies comparing HMP
to CS were meta-analyzed. Further subgroup analyses for HMP
versus CS in DCD and ECD donors were undertaken. In the event
that 1 article presented the results from a subgroup of a larger
study, the ECD or DCD donor results were only included in
3

subgroup analyses. Forest plots denoting relative risk (RR) were
constructed for DGF and PNF; HR was utilized in graft survival
plots.

2.6.2. Animal (experimental) data. Meta-analyses were under-
taken for studies comparing WP to CS or HMP, and oxygenated
HMP to nonoxygenated HMP. All WP studies employed a DCD
model so further subgroup analyses could not be undertaken.
Forest plots were created for the SMD of relevant quantitative
parameters.
Meta-analyses were performed for the above comparator

groups using Comprehensive Meta-Analysis Version 2.2 (Biostat
Inc, Englewood, NJ). The I2 statistic was used to analyze study
heterogeneity, with values ≥50% indicating high levels of
heterogeneity. In these cases, a random effects model was used;
otherwise, a fixed effects model was employed. Publication bias
was assessed using funnel plots. A P value <0.05 denotes
statistical significance, and meta-analysis results are presented
with 95% confidence intervals (CI).
3. Results

3.1. Summary clinical and experimental study
characteristics

Both human and animal studies were analyzed in the formulation
of this systematic review, with human studies used in
comparisons between HMP and CS, and animal articles utilized
for the analysis of oxygenated HMP,WP, and the mechanisms of
MP. In total, 63 human and 38 animal studies met inclusion
criteria for which data was extracted for both quantitative and
qualitative analyses. Figure 1 outlines the study selection process.
Baseline study characteristics are outlined in Supplemental
Digital Content 3, http://links.lww.com/MD/B327 and 4,
http://links.lww.com/MD/B328 (Tables), while Table 1 summa-
rizes preservation and perfusion parameters for all studies.[27,28]

3.2. Human (clinical) data
3.2.1. MP parameters for deceased human donor kidney
preservation (all studies). University of Wisconsin (UW)-based
MP solutions were the most commonly utilized preservation
solutions in human MP (Table 1). Perfusion fluid was pumped
through kidneys using Waters or LifePort MP apparatus in most
cases (Table 1). Pulsatile perfusion was employed in the vast
majority of studies; only 2 (3.2%) articles specified the use of
nonpulsatile MP.[29,30] Median perfusion pressure was 50 mm
Hg (range 30–60 mmHg) in HMP articles, while the 1 WP study
used pressures of 52 to 70 mm Hg.[26]

Pharmacologic manipulation of the perfusate was minimal,
with only 8 (12.7%) human studies entertaining the addition of
nonstandard additives (Table 1), and 4 (6.3%) of articles utilizing
oxygenated MP. All but 1 human study utilized HMP; in the
WP study the perfusate was warmed to a temperature of 32° to
36°C.[26]

The duration and location of placement of kidneys on the
machine varied between centers. In particular, 18 of 63 (28.6%)
of articles specified the use of CS in conjunction withMP; in these
cases, MP was usually commenced upon arrival to the recipient
center. Kidneys that underwent MP tended to have greater
median CITs compared with CS kidneys (23.4 vs 19.5hours,
respectively) (see Table, Supplemental Digital Content 3, http://
links.lww.com/MD/B327), largely reflecting the use of MP as a
possible means to extend preservation times.

http://links.lww.com/MD/B327
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Figure 1. Study selection flow diagram.
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3.2.2. Meta-analyses (prospective studies). Eighteen studies
were included in the human meta-analysis, out of which 11
(61.1%) articles were RCTs, and 7 (38.9%) studies were
prospective but nonrandomized (prospective cohorts). As there
was only 1 study comparing WP to CS, WP could not be directly
compared with other preservation methods using the human
studies.
Forest plots of selected meta-analyses are shown in Figure 2,

with all results tabulated in Supplemental Digital Content 5,
http://links.lww.com/MD/B329.
Human studies displayed the short-term advantages of MP

when compared with CS. The RR (unadjusted) of DGF for HMP
versus CS studies was 0.77 (95%CI 0.69–0.87;P<0.001).Within
the DCD kidney subgroup, the RR of DGF was 0.78 (95% CI
0.66–0.91; P=0.002), while it was 0.67 for ECD donors (95%CI
0.42–1.08; P=0.097). It should be noted that only 2 studies were
available for the ECD comparison. A significant difference in PNF
rates between HMP and CS was only detected in the ECD cohort
(RR 0.28, 95% CI 0.09–0.89; P=0.031).
The medium to long-term effects of MP were less clear. With

respect to graft failure rates within the first year, there was no
difference between HMP and CS overall (HR 1.25, 95% CI
0.20–7.62; P=0.81). Insufficient data precluded HR calculations
for further subgroup analyses, or for the comparison of patient
survival between the HMP and CS groups.

3.2.3. Meta-analysis publication bias and heterogeneity
(prospective studies). Visual assessment of funnel plots
4

displayed no significant asymmetry when comparing HMP to
CS for the DGF parameter. There was only mild asymmetry in
favor of positive studies for studies comparing PNF (see Figure,
Supplemental Digital Content 6, for funnel plots, http://links.
lww.com/MD/B330). Study heterogeneity was low for a majority
of parameters (see Table, Supplemental Digital Content 5, http://
links.lww.com/MD/B229).

3.2.4. Trends in 1-year graft loss and patient survival
(prospective studies). Meta-analyses for graft loss/survival at
1 year could only be conducted in 2 studies. In 1 of these studies
by Moers et al, graft loss at 1 year was significantly higher in the
CS group compared with HMP (HR 0.52; P=0.03); this finding
was maintained in the ECD (HR 0.35; P=0.02) but not DCD
subgroups (HR 1.29; P=0.7) in subsequent expansions of the
study cohorts.[16,31,32] Graft loss (survival) data for the 1 year
time-point were available in 8 further prospective studies.
Although there were no statistically significant differences
between HMP and CS, there was a trend toward higher survival
after HMP in 4 studies, including 1 article investigating
ECD kidneys.[33–36] In contrast, although still underpowered
to produce statistical significance, 2 studies indicated higher
survival in CS kidneys, with 1 of these studies analyzing DCD
kidneys.[37,38]

There were 7 prospective studies with results available for
patient survival 1 year posttransplant.[15,16,31–34,36] Median
survivals were 94.9% (range 80.6–97%) for HMP kidneys, and
96.7% (range 77.7–100%) for CS kidneys. No study reported
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Table 1

Summary human and animal study perfusion and preservation characteristics‡.

Humans
Preservation solution

[n studies]
∗,†

Additives to perfusion
solutionx,

∗
Perfusion

machine [n studies]
∗

Storage/perfusion
temperature [range, °C]

∗
Use of oxygen,
n studies

∗

CS EC [14] N/A N/A Hypothermic Nil
HTK [3]
Other [4]
UW [15]

MP Plasma/albumin-based [16] a-Ketoglutarate Gambro [4] Hypothermic [1–8] 4
Other [3]jj L-Arginine LifePort [16] Normothermic [34.6]

∗∗
[3 � HMP;

UW# [32] N-Acetylcysteine Other [5] 1 � WP]
Papaverine Waters (RM3 or

MOX-100) [31]
PEG-SOD
Phentolamine
Prostacyclin
PGE1
Verapamil

Animals
Preservation solution

[n studies]
∗,†

Additives to perfusion
solution

∗,x
Perfusion

machine [n studies]
∗

Storage/perfusion
temperature [range, °C]

∗
Use of oxygen,

n studies [pO2 mm Hg]
∗

CS HTK [9] N/A N/A Hypothermic Nil
HOC [3]
Other [2]
UW [11]

HMP Albumin-based [3] Alanine‡‡ Belzer [2] Hypothermic [0–8] 19 [150–800]
Custodiol-N/dextran## [5] Aspartate‡‡ Gambro [3]
HTK [3] Deferoxamine‡‡ LifePort [10]
Other [4] Glycine‡‡ Other [5]
UW# [21] L-arginine‡‡ Waters (RM3 or MOX-100) [8]

PEGxx

WP Blood [6]†† Components of EMS media¶¶ EMS technology [4] Subnormo/normo-
thermic [20–38]

14 [150–700]

Custodiol-N/dextran [2] FGF IOPSjjjj [4]
EMS medium [5] Sodium nitroprusside Other [3]
Other [1]

CS= cold (static) storage, EC=Euro-Collins, EMS= exsanguinous metabolic support, FGF=fibroblast growth factor, HMP=hypothermic machine perfusion, HOC=hyperosmolar citrate, HTK=
histidine–tryptophan–ketoglutarate, IOPS= isolated organ perfusion system, MP=machine perfusion, PEG=polyethylene glycol, PEG-SOD=polyethylene glycol-superoxide dismutase, PGE1=prostaglandin
E1, UW=University of Wisconsin, WP=warm (normothermic, machine) perfusion.
∗
Where recorded.

† Each study may have used >1perfusion/preservation solution (for different experimental groups).
‡ Excluding subgroups in study counts.
x In addition to “standard” additives such as insulin, penicillin and dexamethasone, as instructed by manufacturers of UW solution—see UW product sheet.[28]
jj Plasma-free packed red cells + Ringer solution used in WP study.
¶ Excludes any potential CS solution used prior to MP.
# UW solution developed for MP (in contrast to UW used in CS); includes kidney perfusion solution (KPS) 1, and Belzer machine perfusion solution (MPS).
∗∗
n=1 study.

†† In some cases leukocyte-depleted.
‡‡ Part of Custodiol-N solution.
xx As part of Institut Georges Lopez (IGL)-1 solution (substitute for hydroxyl ethyl starch in extracellular UW solution).[138]
jjjj Based on pediatric cardiopulmonary bypass apparatus.
¶¶ See Brasile et al.[27]
## Modified form of HTK.

Hameed et al. Medicine (2016) 95:40 www.md-journal.com
statistically significant differences between either preservation
method.
Nicholson and Hosgood[26] presented the only human study

exploring the use of WP for renal preservation. The WP cohort
impressively had 100% 1 year graft and patient survival rates,
although there were only 18 patients in the WP group.

3.2.5. Graft rejection (prospective studies). Acute graft
rejection rates were not statistically comparable owing to
variable definitions and immunosuppression. Rejection rates
were no different in the multicenter trial by Moers et al[16]

(13.7% for CS vs 13.1% for MP). In contrast, 3 prospective
studies showed a strong trend toward lower rates of acute
5

rejection in the HMP group, although this did not reach
significance.[15,39,40]

3.2.6. Risk of bias assessment (prospective studies). The
risk of bias assessment of cohort studies is summarized in
Supplemental Digital Content 7, http://links.lww.com/MD/B331
(Figure). Six out of 8 domains in the assessment scale were
adequately covered in at least 60% of studies. Comparability of
cohorts in studydesignor analysiswas less adequately covered, as a
proportion of studies did not appropriately account for factors
such as organ ischemic times. Supplemental Digital Content 8,
http://links.lww.com/MD/B332 (Table) displays the risk of bias
assessment for the includedRCTsuponutilization of theCochrane

http://links.lww.com/MD/B331
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A

B

C

Figure 2. Forest plots comparing DGF (A), PNF (B), and 1-year graft loss (C) for all studies comparing HMP to CS—human studies. Data expressed as RR (for DGF
and PNF) and HR (for graft loss) ± 95% CI. Different analyses within the same study are denoted by an alphabetical letter suffix (e.g., “a”). CI = confidence interval,
CS = cold (static) storage, DGF = delayed graft function, HMP = hypothermic machine perfusion, HR = hazard ratio, PNF = primary nonfunction.
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Collaboration bias tool. Across studies, it can be seen that there
is a low risk of bias in at least 3 of the domains.Within the domains
of blinding and allocation concealment, however, at least half of
the studies were at risk of selection and performance bias.
4. Animal (experimental) data

4.1. MP characteristics (all studies)

In stark contrast to human studies, 30 of 38 (78.9%)animal articles
utilized oxygenated MP. Furthermore, WP, including subnormo-
thermicMP, was used in 14 (36.8%) of the included animal studies
(see Table, Supplemental Digital Content 4, http://links.lww.com/
MD/B328). As such, further quantitative analyses regarding
oxygenated and/or WP were undertaken in animal studies.

4.2. Meta-analyses (oxygenated HMP and WP studies)

There were 10 distinct animal data-sets utilized in the meta-
analyses that compared CS toWP, while 11 studies were included
6

that comparedHMPwithWP and 5 studies were available for the
comparison between oxygenated and nonoxygenated HMP.
Figure 3 displays forest plots of selected meta-analyses, with

results tabulated in Supplemental Digital Content 9, http://links.
lww.com/MD/B333.
Postpreservation renal function in animal experiments was

assessed using the parameters of peak creatinine, CrCl and FeNa,
and animal survival during the experimental period. Peak
creatinine values were significantly lower in animal groups
utilizing WP (SMD �1.72, 95% CI �3.09 to �0.34; P=0.014)
when compared with CS. The SMD of peak serum creatinine
levels in the WP group was also significantly lower when
compared with the HMP group (�1.66, 95%CI�3.19 to�0.14;
P=0.033). There was no significant difference however between
peak creatinine levels in the oxygenated HMP versus non-
oxygenated HMP group (SMD �0.39, 95% CI �1.85 to 1.08;
P=0.60); however, there were only 2 studies eligible for this
comparison.[41,42] However, the SMD of peak CrCl between the
WP and HMP (0.83, 95% CI �0.50 to 2.15; P=0.22) and CS

http://links.lww.com/MD/B328
http://links.lww.com/MD/B328
http://links.lww.com/MD/B333
http://links.lww.com/MD/B333


A

B

C

Figure 3. Forest plots comparing peak creatinine (A), peak CrCl (B), and survival (C) for WP compared with HMP—animal studies. Data presented as SMD±95%
CI. Different analyses within the same study are denoted by an alphabetical letter suffix (e.g., “a”). HMP = hypothermic machine perfusion, SMD = standardized
mean difference, WP = warm (normothermic) perfusion.
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(2.08, 95% CI �1.83 to 6.00; P=0.22) groups was not
significantly different.
FeNa could not be compared between WP and other groups

due to an insufficient number of studies. Importantly, pooled
FeNa was significantly lower in studies comparing oxygenated to
nonoxygenated HMP (SMD �1.54; 95% CI �2.54 to �0.54;
P=0.002).
Animal survival in such studies is a reflection of maintenance of

renal function as opposed to actual survival per se as the vast
majority of deaths reflected euthanasia after manifestation of
features of renal failure. Importantly, WP once again demon-
strated its superiority over HMP (SMD 1.29; 95% CI 0.52–2.07;
P=0.001). There was not enough data to analyze this parameter
for WP compared with CS groups.
4.3. Meta-analysis publication bias and heterogeneity (WP
studies)

Analysis of funnel plots did not display significant asymmetry
when comparing peak creatinine between WP and the HMP or
CS groups (see Figure, Supplemental Digital Content 10, for
funnel plots, http://links.lww.com/MD/B334). Study heterogene-
ity was high for most parameters (see Table, Supplemental Digital
Content 9, http://links.lww.com/MD/B333).
4.4. Mechanisms of action of MP—tubules, glomeruli, and
endothelium (all studies)

The animal studies outlined comparisons between experimental
and control groups for a wide range of parameters that could not
be meta-analyzed due to significant variability in reporting
between different studies. These functional indicators are
displayed in Table 2,[41–61] and can broadly be characterized
into those relating to tubular, glomerular, or endothelial function
7

or damage, oxidative stress, levels of inflammation, microcircu-
latory tissue perfusion, and oxygen consumption. Histology was
not included in this analysis due to wide variability in the
reporting of histological criteria. Broadly, improved tubular
function with a reduction in tubular injury, improved glomerular
function, and reduced endothelial injury seemed to be evident
after the utilization of HMP compared with CS. Furthermore,
HMP appeared to improve renal cortical microcirculation. There
was no obvious advantage for any experimental group regarding
markers of inflammation or oxidative stress. Furthermore, with
the exception of higher oxygen consumption in all 3 studies
comparing WP with CS, no clear differences could be elucidated
between the other experimental and control groups (Table 2).
4.5. Risk of bias assessment (all studies)

Animal study bias assessment was performed using SYRCLE
assessment tool[25] and is summarized in Supplemental Digital
Content 11, http://links.lww.com/MD/B335 (Figure). Overall,
there were very few domains inwhich there was clearly a high risk
of bias. In 6 out of the 10 parameters however, bias assessment
was largely unclear as the domains could not be analyzed from
the available study data.
5. Discussion

This systematic review and meta-analysis provides a comprehen-
sive and up-to-date insight into the current published literature
regarding MP preservation of renal grafts prior to transplanta-
tion in the clinical setting. Animal data was included to explore
modifications to MP that are as yet grossly under-explored in
human studies, namely WP and oxygenated MP, in addition to
allowing the development of a greater mechanistic understanding
of MP.

http://links.lww.com/MD/B334
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[1]

Table 2

Tubular, glomerular, and endothelial function and damage in animal studies
∗
.

CS vs HMP
[n studies/total]

HMP vs WP
[n studies/total]

CS vs WP
[n studies/total]

HMP No-O2 vs HMP-O2
[n studies/total]

Tubules Lower FeNa: Lower FeNa: Lower FeNa: Lower FeNa:
CS—0/8 HMP—0/2 CS—1/4 No-O2—0/2
HMP—8/8 WP—1/2 WP—3/4 O2—0/2

Higher serum/urine tubular
damage markers†:

Higher serum/urine tubular
damage markers†:

Higher serum/urine tubular
damage markers†:

Higher serum/urine tubular
damage markers†:

CS—7/11 HMP—0/3 CS—2/4 No-O2—2/5
HMP—0/11 WP—1/3 WP—1/4 O2—0/5

Glomeruli Lower proteinuria: Lower proteinuria: Lower proteinuria: Lower proteinuria:
CS—1/6 HMP—0/1 CS—NR No-O2—0/1
HMP—4/6 WP—0/1 WP—NR O2—1/1

Endothelium Higher injury markers ‡: Higher injury markers ‡: Higher injury markers ‡: Higher injury markers ‡:
CS—3/5 HMP—0/1 CS—1/3 No-O2—1/1
HMP—1/5 WP—0/1 WP—0/3 O2—0/1

Inflammation Increased inflammatory markersx: Increased inflammatory markersx: Increased inflammatory markersx: Increased inflammatory markersx:
CS—1/5 HMP—0/2 CS—0/2 No-O2—0/1
HMP—2/5 WP—1/2 WP—1/2 O2—0/1

Oxidative stress Elevated markers of
oxidative stressjj:

Elevated markers of
oxidative stressjj:

Elevated markers of
oxidative stressjj:

Elevated markers of
oxidative stressjj:

CS—2/4 HMP—1/1 vCS—0/1 No-O2—1/2
HP—2/4 WP—0/1 WP—1/1 O2—2/2¶

Microcirculation# Better cortical microcirculation
∗∗
: Better cortical microcirculation

∗∗
: Better cortical microcirculation

∗∗
: Better cortical microcirculation

∗∗
:

CS—0/4 HMP—NR CS—NR No-O2—0/1
HMP—4/4 WP—NR WP—NR O2—0/1

O2 consumption Higher O2 consumption
††: Higher O2 consumption

††: Higher O2 consumption
††: Higher O2 consumption

††:
1 HMP—0/2 CS—0/3 No-O2—0/3
HMP—0/5 WP—1/2 WP—3/3 O2—0/3

CS= cold (static) storage, HMP=hypothermic machine perfusion, NR=not recorded, WP=warm (machine) perfusion.
∗
Number of studies for each respective outcome included only if statistically significant difference recorded in each study (see meta-analyses for pooled outcomes for FeNa); in studies where there were>2 study

groups, study outcome(s) only included for comparable groups.
†Markers measured (references): alanine aminopeptidase[45,54]; aspartate aminotransferase[42,52,57]; gamma-glutamyl transpeptidase[48]; lactate dehydrogenase[41,48,49,52,56,58,59,61]; liver fatty acid binding
protein[46,47]; N-acetyl-b-D-glucosaminidase.[45,54]
‡ Endothelial injury markers (references): endothelin-1[46,52,53,59,61]; thrombomodulin[41]; von Willebrand factor.[45,55,57]
x Inflammatory markers (references): high mobility group protein B1[55]; intercellular adhesion molecule 1[55]; interleukin-6[59,60]; myeloperoxidase activity[52]; nuclear factor kappa B1[53]; toll-like receptor 4[55];
tumor necrosis factor a.[48,60]
jj Free radical damage/oxidative stress markers (references): 8-isoprostane[52,56,59]; malondialdehyde[51]; oxidized to total glutathione ratio[54]; thiobarbituric acid reactive substances[45,50]; unspecified lipid
peroxidation products.[41]
¶ In Gallinat et al,[41] lipid peroxidation products significantly lower in the no oxygen group during preservation (perfusion), with the opposite true after transplantation; in Hoyer et al,[50] markers of oxidative damage
were also measured during preservation (perfusion), and were lower in the no oxygen group.
# Assessed as mean cortical erythrocyte flux 10 minutes postreperfusion by Laser Doppler flowmetry.
∗∗
Studies included.[41,43,45,46,55]

†† Studies included.[44,47–49,52,56,59,61]

Hameed et al. Medicine (2016) 95:40 Medicine
We show a definite reduction in DGF post-HMP preservation
for renal allografts in humans when compared with CS, including
in DCD and ECD kidneys. PNF appeared to be reduced in the
ECD subset. There was not enough data to give sufficient power
to comparisons of 1 year graft survival by meta-analysis, and
subgroup analyses could not be conducted for this parameter.
One-year patient survival was comparable among the different
studies. We obtained mixed results regarding the benefits of
oxygenated HMP. Furthermore, although there was only
1 human study that employed WP,[26] multiple animal studies
showed its advantages over both CS and HMP kidneys in terms
of posttransplantation creatinine levels and animal survival.
Animal study results showed mechanisms for improved allograft
function in MP kidneys, including better tubular and glomerular
function, and less endothelial damage.
Increased demands for donor kidneys have necessitated the use

of more marginal organs for transplantation. Indeed, any method
such as MP that will increase the pool of usable kidneys can
benefit developing and developed countries alike, especially due
to the often prohibitively high costs associated with long-term
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dialysis, and should be explored further. A detailed economic
analysis by Wight et al,[62] albeit from 2003, showed that MP is
likely to be more effective than CS in the long-term, with an
economic benefit more pronounced when MP preservation is
applied to DCD kidneys. While Groen et al[63] in 2012 could not
make the same conclusion for DCD transplants due to insufficient
numbers, these authors found reduced costs after MP in the ECD
subset, largely due to a reduced need for post-transplantation
dialysis and hospital bed-stays.
Mechanistically, MP reduces preservation-related damage and

aids renal recovery through a variety of mechanisms. ATP levels,
and thus energy homeostasis, are better preserved in perfused
kidneys.[43,44] Tubular and glomerular integrity seems to be aided
byMP, an assertion that is supported by the reduction in markers
of tubular damage and improved tubular and glomerular
function seen after MP as compared with CS (Table 2).
Furthermore, MP ensures better reperfusion of grafts as
measured by cortical microcirculation; this is likely related to
a reduction in endothelial damage and swelling[43,45] (Table 2).
The flow cessation itself in CS as compared with MP likely
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contributes to the increased endothelial dysfunction in CS
grafts.[64] The pulsatile aspect of MP likely has an important
effect on the maintenance of endothelial integrity, as pulsatile-
perfused kidneys compared with nonpulsatile MP have been
shown to have higher renal vascular flow, reduced expression of
endothelin-1, and increased expression of the vasoprotective
kruppel-like factors and nitric oxide.[46] We did not however find
significant support for less inflammation and oxidative stress in
the HMP group (Table 2), although recent evidence suggests that
apoptosis and inflammation may be reduced in HMP through
up-regulation of aldehyde dehydrogenase 2 and reduction in
expression of nuclear factor-kB and matrix metalloproteinase
9.[65,66]

In congruence with previous systematic reviews[8,67–69] our
data shows that DGF is undoubtedly reduced in patients
undergoing MP compared with CS. We additionally showed
the possibility of reduced PNF after HMP preservation of ECD
kidneys. In contrast to Jiao et al[70] however, we could not find
statistical evidence for improved graft survival in the ECD cohort,
due to a lack of available HR data that could subsequently be
pooled. Furthermore, statistical methods in the former study are
flawed, with survival analyses conducted using OR instead of
HR; in addition, 2 out of the 3 studies in their survival analysis
had significant patient overlap.[70] Perhaps most pertinently
however, the pivotal large-scale and multicenter RCT performed
by Moers et al showed significantly improved graft survival in
HMP patients, with this survival advantage still present after 3
years in DBD and especially ECD kidneys, but not in kidneys
from DCD donors.[16,71,72]

While Moers et al study provides evidence regarding the
efficacy of machine perfusion as it is utilized currently, our
analysis of all retrospective and prospective MP studies in
humans to date show that it is still employed in a very limited
fashion, with considerable room for modification to maximize
the potentials of this technique. In particular, temperature
modification, oxygenation, and pharmacologic manipulation of
perfusion solutions are all in their infancy with regard to human
renal preservation via MP.
The inclusion of animal data has allowed this review to capture

the possible future of MP, as this experimental work has not yet
caught up with application to the clinic. In particular, a
reasonable deduction can be made regarding the applicability
and potential success of WP, which currently has little human
data. WP reverses the pivotal concept of hypothermia in organ
preservation, sustaining normal metabolic rates with an
oxygenated red blood cell-based perfusate. Compared with CS
and HMP kidneys, WP kidneys had significantly lower peak
creatinine and better survival (Fig. 3; also see Table, Supplemen-
tal Digital Content 9, http://links.lww.com/MD/B333). Nich-
olson and Hosgood[26] utilized WP in human ECD kidney grafts,
and also reported lower rates of DGF compared with CS. WP
potentially reduces the possibility of irreversible cold-induced
metabolic disruption in addition to reducing ischemia-reperfu-
sion injury upon commencement of normothermic reperfusion
in vivo.[27,65,73]

An alternative to WP at body temperature is the concept of
subnormothermic MP, successfully utilized here in 2 stud-
ies.[47,48] Subnormothermic perfusion helps avoid the injuries
induced by cold ischemia without necessitating a significant
change in perfusion equipment or solutions.[48] In addition, it
guards against the pitfalls inherent to an immediate temperature
shift from hypothermia to body temperature upon postanasto-
motic reperfusion.[47]
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The perfusion solution and its additives potentially have a
major impact on the effectiveness of kidney preservation. UW or
a modified form of UW was the most commonly employed
solution for CS and MP in both animal and human studies
(Table 1), which is not surprising considering its proven
efficacy.[66] Although there is considerable ongoing research
into pharmacological manipulation of organ preservation
solutions, surprisingly few studies utilized additives to try and
change graft outcomes (Table 1). Pathophysiological targets
for these additives include free-radical injury, endothelial
damage, and vasoconstriction, the complement cascade, and
apoptosis.[74–78] These processes were in some cases targeted as
part of new perfusion solutions, including Custodiol-N, Vasosol,
and Exsanguinous Metabolic Support (EMS) media.[74,76,78,79] It
is difficult to ascertain individual effects of each pharmacologic
agent, as few studies undertook direct comparisons between
them. Guarrera et al[78] compared Vasosol solution, which
contains vasodilatory agents such as prostaglandin E1 (PGE1)
and nitroglycerin, and the antioxidant N-acetylcysteine, to UW
(Belzer MPS), and showed significant lower DGF rates in the
Vasosol group. The addition of PGE1 to UW was also shown to
be effective in another study.[76] Other pharmacological therapies
that may be incorporated into renal preservation are reviewed by
Chatauret et al.[80]

Oxygenation is also a pharmacologic intervention that can be
applied to HMP. Its use was much more prevalent in animal
studies, with comparisons showing significantly lower FeNa in
the oxygenated HMP compared to nonoxygenated HMP group
(see Table, Supplemental Digital Content 9, http://links.lww.
com/MD/B333). The absence of a statistical difference with
regards to peak creatinine may be explained by the fact that there
were only 2 studies for comparison.[41,42] Active oxygenation of
the perfusate may potentially increase the generation of reactive
oxygen species (see Table 2), although this was not supported
posttransplantation in the study by Gallinat et al.[41] In contrast,
the use of oxygen during HMP is purported to restore adequate
mitochondrial and cellular homeostasis prior to reperfu-
sion.[49,50] An alternative to oxygenated MP is the use of
persufflation, through which oxygen can be delivered to the
kidneys directly through its vasculature. Suszynski et al[81]

summarize the utility of persufflation for renal preservation; this
technique was compared to CS and HMP by Treckmann et al,[51]

with persufflated kidneys having significantly lower creatinine
levels posttransplantation compared with HMP.
Limitations of this review include the suboptimal comparabili-

ty of HMP and CS cohorts within the human studies. This was
largely due to the fact that CIT for humanMP kidneys was higher
than that for CS kidneys (see Table, Supplemental Digital
Content 3, http://links.lww.com/MD/B327), which is not
surprising given that MP is often used as a means to extend
the period of preservation. Furthermore, a not insignificant
proportion of RCTs suffered from features of selection bias due
to poor blinding and allocation concealment. Additionally, it is
difficult to tease out the impact of MP solutions on the overall
effect of MP, as a variety of solutions were utilized that were
usually different to the CS control. Animal studies, although
informative, were quite heterogeneous and difficult to formally
assess for bias. We attempted to minimize bias by excluding all
retrospective studies from the meta-analyses, and in order to
account for any study heterogeneity a random effects model was
employed to help reduce type I error.
In summary, we have shown distinct short-term advantages in

the use of MP over CS for the preservation of renal allografts,

http://links.lww.com/MD/B333
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especially with regards to the reduction of DGF. ECD graft
recipients may benefit further from a reduction in PNF rates. In
the medium to long-term, there is likely a survival and cost
advantage for ECD kidneys that have undergoneMP in this way.
Although results from animal studies should be interpreted with
more caution, they show some mechanistic advantages to the use
of oxygenated MP, and distinct functional improvements upon
the use of normothermic perfusion; this should provide a further
stimulus for MP oxygenation and WP human trials. We strongly
encourage additional exploration and enhancement of the MP
preservation technique, through a variety of modifications based
on the presented experimental evidence, which may improve its
short and long-term efficacy.
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