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Feature selection for global 
tropospheric ozone prediction 
based on the BO‑XGBoost‑RFE 
algorithm
Biao Zhang1, Ying Zhang2 & Xuchu Jiang2*

Ozone is one of the most important air pollutants, with significant impacts on human health, 
regional air quality and ecosystems. In this study, we use geographic information and environmental 
information of the monitoring site of 5577 regions in the world from 2010 to 2014 as feature input 
to predict the long-term average ozone concentration of the site. A Bayesian optimization-based 
XGBoost-RFE feature selection model BO-XGBoost-RFE is proposed, and a variety of machine learning 
algorithms are used to predict ozone concentration based on the optimal feature subset. Since the 
selection of the underlying model hyperparameters is involved in the recursive feature selection 
process, different hyperparameter combinations will lead to differences in the feature subsets selected 
by the model, so that the feature subsets obtained by the model may not be optimal solutions. 
We combine the Bayesian optimization algorithm to adjust the parameters of recursive feature 
elimination based on XGBoost to obtain the optimal parameter combination and the optimal feature 
subset under the parameter combination. Experiments on long-term ozone concentration prediction 
on a global scale show that the prediction accuracy of the model after Bayesian optimized XGBoost-
RFE feature selection is higher than that based on all features and on feature selection with Pearson 
correlation. Among the four prediction models, random forest obtained the highest prediction 
accuracy. The XGBoost prediction model achieved the greatest improvement in accuracy.

Ozone (o3) is a toxic greenhouse gas. Stratospheric ozone can protect life on the Earth’s surface from ultraviolet 
radiation, but tropospheric ozone, as the second largest pollutant in the atmosphere, is harmful to human health 
and vegetation1,2. The two main factors that produce high-quality ozone pollution are meteorological conditions 
and the concentration of ozone precursors3. Meteorological conditions are one of the most important factors 
affecting the concentration of ozone near the ground. The important influencing factors in various meteorologi-
cal conditions include solar ultraviolet radiation, relative humidity, wind direction and wind speed, which affect 
photochemical reaction conditions4. Ozone is mainly a secondary pollutant produced by photochemical reactions 
of NOx and VOCs, so it is closely related to the concentration of precursor substances. The emission sources of 
precursor substances NOx and VOCs can be divided into anthropogenic emission sources and natural emission 
sources. Anthropogenic emission sources are mainly formed by the production process of petrochemical-related 
industries, product consumption behavior and vehicle exhaust emissions5. To better prevent and address the 
threat of tropospheric ozone pollution, it is very important to establish an accurate and reliable prediction 
model and understand the key factors affecting ozone concentration6–9. Data-driven atmospheric chemistry 
research has begun to be combined with machine learning, which is widely used in the prediction of pollutant 
concentrations10. Ortiz-García et al.11 carried out the prediction of ozone concentration based on the concentra-
tion data of this site, the concentration data of neighboring sites, and meteorological variables through support 
vector machine regression, and in the process of using different factors for prediction, the prediction results were 
significantly different from those at other times. For different moments, the best moment data of different factors 
are used to form a dataset for prediction. Dong et al.12 combined the regionality and periodicity of ozone and 
proposed an ozone prediction model PCA-PSO-SVM that integrates temporal and spatial characteristics, using 
Hangzhou meteorological data and pollutant data to predict the daily maximum 8-h average concentration. The 
model showed better prediction accuracy and applicability. Liu et al.13 combined the observation data of MDA8 
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(maximum daily 8-h average ozone), combined with parallel ozone inversion, aerosol reanalysis, meteorologi-
cal parameters and land use data, and established a national MDA8 prediction model based on XGBoost. The 
external test of the regional measured data from 2005 to 2012 and the national data in 2018 shows that the model 
has strong robustness and reliability in the prediction of historical data.

By combining the ozone formation mechanism14, the dataset in this study establishes features including site 
locations and environmental information and aggregates and averages multiyear ozone concentration data as 
an indicator of long-term ozone concentration. The longer aggregation period averages out short-term weather 
fluctuations, making it immune to short-term weather and unusual emissions. In the short-term prediction of 
ozone, historical emission data, meteorological monitoring data and air pollutant monitoring data are mostly 
used to construct features to predict the concentration. However, historical meteorological monitoring data and 
atmospheric pollutant data are not suitable for the prediction of ozone concentrations on a longer time scale. 
Because ozone concentrations are determined by many interrelated effects, such as precursor emissions, land 
use, land cover, and climatic conditions15, many of these factors and their interconnections cannot be accurately 
quantified, so we construct features by using environmental information as proxy variables that are associated 
with the mechanisms of ozone formation to predict long-term ozone concentrations. For example, one of the 
variables in the dataset is the climatic zone in which the site is located. Ozone is affected by weather, and to better 
represent the effect of weather on ozone concentrations on a long time scale, we can use the climate zone as an 
indicator of weather on longer time scales. In addition, the main sources of ozone precursor emissions include 
human activities such as transportation and emissions from industrial activities. Population density and average 
nighttime light intensity observed from space are used as proxies for human activity and industrial production. 
This method makes it possible to predict the long-term ozone concentration of the site by obtaining environ-
mental information about the site itself.

In previous studies, many complex and interrelated features, including precursor emissions, land cover, geo-
graphic location, and climate change, were all input into the model for prediction, and there was a lack of feature 
extraction in the ozone concentration prediction model. Since not all factors are related to predictor variables, 
proper selection of variables can improve the prediction accuracy; inputting too many features, especially those 
with strong correlation into the model, will reduce the efficiency and accuracy of training, increasing the model 
training burden16. Under the condition of ensuring prediction accuracy, on the one hand, the model dimension 
can be reduced, and the efficiency of the algorithm can be improved. On the other hand, extracting the main 
variables in the model by feature selection is conducive to further understanding the key factors affecting ozone 
concentration and provides reference value for the prevention and response to ozone threats17. In the study of 
feature selection for air quality indicators and pollutant forecasting, Domańska et al.18 used backward elimination 
to extract important variables that affect ozone concentration by determining the validity of each input feature. 
The results show that the subset of parameters found by the reverse elimination feature selection method provides 
the greatest prediction accuracy. Hui et al.19 used spatial correlation analysis, correlation analysis (mutuality) 
and binary gray wolf optimization (BGWO) in the spatial prediction problem for AQI (air quality indicator) 
3 stage-by-stage extraction of spatiotemporal features. Sethi et al.20 used the causality-based linear method to 
select the main factors affecting PM2.5 content. Compared with the prediction model without feature selection, 
it is found that the model after feature selection obtains higher prediction accuracy.

XGBoost‑RFE algorithm
XGBoost model.  XGBoost was first proposed by Chen et al.21 in 2014. It is a decision tree based on gradient 
lifting (GBDT) and is an efficient system implementation of the boosting method. In the XGBoost model, the 
objective function is expanded by second-order Taylor, and the optimization problem of the objective function 
is transformed into solving the minimum value of the quadratic function. At the same time, tree complexity is 
added to the objective function as a regularization term to improve the generalization performance of the model. 
The objective function of the model is:

where n is the sample size; yi is the true value of the i-th sample; ŷi is the predicted value of the i-th sample; 
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(
fk
)
 is the tree complexity; and 

K is the number of features.
Taylor second-order expansion of the objective function:
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The objective function can be rewritten as:

where Ij is the sample set of the j-th leaf node, � and γ is the weight factor.

Importance metrics.  The calculation methods of feature importance in the XGBoost model are mainly 
three ways: weight (the number of times a feature is used to split the data across all trees), gain (the average gain 
across all splits the feature) and cover (the average coverage across all splits the feature). In this study, the weight 
is used as a measure of feature importance.

Recursive feature elimination algorithm based on XGBoost.  Recursive feature elimination (RFE) is 
a sequential backward selection algorithm belonging to Wrapper22, which uses a specific underlying algorithm 
to select features by recursively reducing the size of the feature set. RFE was first proposed by Guyon I23 based on 
the SVM model, which achieved very good results in the process of gene selection and subsequently became a 
widely used method in gene selection research. XGBoost-RFE takes XGBoost as an external learning algorithm 
for feature selection, sorts the importance of features in each round of feature subset, and eliminates the features 
corresponding to the lowest feature importance to recursively reduce the scale of the feature set, and the feature 
importance is constantly updated in each round of model training. Based on the selected feature set, this study 
uses cross validation to determine the feature set with the lowest average score based on the mean absolute error 
(MAE). The algorithm flow chart is shown in Fig. 1.

XGBoost-RFE algorithm flow:

(1)	 XGBoost is trained from the training set T containing all samples, and the fivefold cross validation method 
is used to evaluate the prediction accuracy of XGBoost based on the new feature subset after each round 
of feature elimination based on the mean absolute error (MAE);

(2)	 Calculate and sort the importance IM(∝) of each feature ∝ in the feature set based on gain (Gain);
(3)	 According to the backward selection of the sequence, delete the feature with the lowest feature impor-

tance, and repeat the remaining feature subset for 1–2 until the feature subset is empty. According to the 
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Figure 1.   Workflow of XGBoost-RFE.
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cross-validation results of each feature subset, the feature subset with the highest prediction accuracy is 
determined.

Bayesian optimized XGBoost‑RFE
Bayesian optimization.  This study performs feature selection based on XGBoost-RFE. Since the feature 
selection process involves the selection of the underlying model hyperparameters, different hyperparameter 
combinations will lead to differences in the feature subset selected by the model, so the obtained feature subset 
may not be the optimal solution. To obtain the optimal subset, this study combines the Bayesian optimization 
algorithm to adjust the parameters of the model and then obtains the optimal feature subset. Currently, the com-
mon parameter optimization methods are the grid search method and random search method. The grid search 
method adopts the method of traversing the parameter set, which is inefficient. Faced with a model with a large 
parameter space and a large number of parameters, it is easy to cause dimension explosion, which is not feasi-
ble. The random search method is used to randomly optimize the parameters, and it is easy to miss the optimal 
solution. This problem can be effectively addressed by Bayesian optimization (BO)24. BO has high optimization 
efficiency and can find an excellent parameter set with less computational cost25–27.

The Bayesian optimization algorithm establishes a probabilistic surrogate model of the objective function 
based on the historical evaluation results of the objective function and makes full use of the previous evaluation 
information when selecting the next set of hyperparameters, reducing the number of hyperparameter searches, 
and the obtained hyperparameters are also most likely to be optimal, thereby increasing the accuracy of the 
model. The Bayesian optimization algorithm is based on Bayes’ theorem, obtains the next-most-potential evalua-
tion point x by maximizing the acquisition function, evaluates the objective function value y, and adds the newly 
obtained (x, y) to the known evaluation. In the set of points, update the probability proxy model, and iterate to 
obtain the optimal solution28. Bayesian optimization mainly includes two parts: a probabilistic surrogate model 
and an acquisition function (AC). A probabilistic surrogate model is a probabilistic model used to represent 
an unknown objective function. Among them, the Gaussian process has a strong fitting function performance 
(Gaussian process, GP) and is the most widely used.

The Gaussian process is the parameter combination for the XGBoost model that needs to be optimized, 
namely:

where m(x) is the mean function, k
(
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)
 is the covariance function, and the prior distribution of the unknown 

function can be expressed as p
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points, and Kt is the covariance matrix formed by the covariance function.
The acquisition functions generally include PI, EI, and UCB. This study chooses the UCB function based on 

the confidence interval strategy as the acquisition function. Choosing a strategy based on confidence intervals 
(UCB) is the next evaluation point for:

where v∗ is the optimal value of the current objective function, φ(·) is the standard normal distribution cumula-
tive density function, and ξ is the balance parameter. By adjusting ξ , we can avoid falling into the local optimum 
and realize the global search for the optimum value.

Bayesian optimized XGBoost‑RFE feature selection.  XGBoost-RFE uses XGBoost as the underlying 
learner for recursive feature elimination and adopts the sequential backward selection method to sort and select 
features according to the feature importance measure output by XGBoost. However, the XGBoost model has 
many hyperparameters, and using different hyperparameter combinations can lead to differences in the optimal 
subsets obtained by the model during feature selection. Using inappropriate hyperparameters may result in a 
subset that is not optimal. Therefore, Bayesian optimization is used to optimize the recursive elimination model 
with XGBoost as the underlying learner to search for hyperparameters and corresponding optimal subsets that 
can minimize the cross-validation error after dimensionality reduction.

The accuracy of the optimal feature subset obtained by XGBoost-RFE cross-validation is used as the objec-
tive function, and different parameter combinations of the model are used as independent variables to form a 
surrogate model framework for Bayesian optimization iterations. The parameter optimization process of the 
XGBoost-RFE model is shown in Fig. 2.

The BO-XGBoost-RFE process is:

(1)	 Initialize the XGBoost model parameters and the range of hyperparameters to generate random initializa-
tion points. The training set and initialization parameters are used as the input variables of the Gaussian 
model in Bayesian optimization, the cross-validation results of XGBoost-RFE under each set of parameters 
are used as the objective function, and the parameters are modified to improve the Gaussian model;

(2)	 Select the parameter combination points to be evaluated in the revised Gaussian model so that the acquisi-
tion function is optimal, the Gaussian model is closer to the true distribution of the objective function than 
the other parameter combination points, and the optimal parameter combination is obtained:
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(3)	 Input the parameter combination into the model for training, output the corresponding parameter com-
bination and the prediction error of the model ( x, f (x)) , add the newly collected samples 

(
x, f (x)

)
 to the 

historical sampling set, and update the Gaussian model;
(4)	 When the maximum number of iterations is reached, the model update is stopped, and the optimal sam-

pling point and the corresponding optimal subset are output.

Prediction of ozone concentration based on BO‑XGBoost‑RFE
Experimental data.  The dataset used in this study is the global long-term air quality indicator data of 5577 
regions from 2010 to 2014 extracted by Betancourt et al.14 based on the TOAR database (https://​gitlab.​jsc.​fz-​jueli​
ch.​de/​esde/​machi​ne-​learn​ing/​aq-​bench/-/​blob/​master/​resou​rces/​AQben​ch_​datas​et.​csv)29. As shown in Fig.  3, 
the monitoring sites include 15 regions, including EUR (Europe), NAM (North America), and EAS (East Asia), 
and are mainly distributed in NAM (North America), EUR (Europe) and EAS (East Asia). The dataset mainly 
includes the geographical location information of the monitoring site, such as longitude and latitude, the area 
to which it belongs, altitude, etc., and the site environment information, such as population density, night light 
intensity, and vegetation coverage. Since it is difficult to directly quantify factors such as the degree of industrial 
activity and the degree of human activity, environmental information such as the average light intensity at night 
and population density are used as proxy variables for the above factors. The ozone indicator records the hourly 
ozone concentration from air quality observation points in various regions and aggregates the collected ozone 
time series in units of one year into one indicator. Using a longer aggregation period can be used to average 
short-term weather fluctuations. The experimental data have a total of 35 input variables, including 4 categorical 
attributes and 31 continuous attributes. The predictor variable is the average ozone concentration in each region 
from 2010 to 2014. The specific variable names and descriptions14 are shown in the supplementary materials. A 
total of 4/5 of the total samples were used as the training set, and 1/5 were used as the test set.

Figure 2.   BO-XGBoost-RFE.

Figure 3.   Global distribution of monitoring sites.

https://gitlab.jsc.fz-juelich.de/esde/machine-learning/aq-bench/-/blob/master/resources/AQbench_dataset.csv
https://gitlab.jsc.fz-juelich.de/esde/machine-learning/aq-bench/-/blob/master/resources/AQbench_dataset.csv
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Results of BO‑XGBoost‑RFE.  According to the XGBoost-RFE algorithm for feature selection, XGBoost-
RFE combined with the cross-validation method is used to calculate the selected feature set in each RFE stage 
for fivefold cross-validation, and the mean absolute error (MAE) is used as the evaluation criterion to finally 
determine the number of features with the lowest mean absolute error (MAE). At the same time, the Bayesian 
optimization algorithm is used to adjust the hyper-parameters of XGBoost-RFE, and then the feature subset 
with the lowest cross-validation mean absolute error (MAE) is obtained. The main parameters of the XGBoost 
model in this article include the learning_rate, n_estimators, max_depth, gamma, reg_alpha, reg_lambda, col-
sample_bytree, and subsample. All parameters used in the model are shown in the supplementary material. 
Within the given parameter range, the Bayesian optimization algorithm is used, the mean absolute error (MAE) 
of the XGBoost-RFE fivefold cross-validation is used as the objective function, and the number of iterations is 
controlled to be 100. We obtained the hyperparameter combination corresponding to the lowest MAE and the 
corresponding optimal feature subset. The iterative process of Bayesian optimization is shown in Fig. 4.

The parameter range and optimized value of XGBoost-RFE are shown in Table 1. The XGBoost-RFE feature 
selection results under the above optimized hyperparameters are shown in Fig. 5. The number of features in the 
feature subset with the lowest mean absolute error is 22, and the MAE is 2.410.

Additionally, the XGBoost-RFE feature selection model without Bayesian optimization is compared with 
the algorithm in this study. The default parameters of the underlying model XGBoost are set to learning_rate 
as 0.3, max_depth as 6, gamma as 0, colsample_bytree as 1, subsample as 1, reg_alpha as 1, and reg_lambda as 
0. The comparison results are shown in Table 2. The results show that the XGBoost-RFE cross-validation MAE 
without parameter tuning is larger than that of the algorithm in this study, and the dimension of the feature 
subset obtained is also higher than that of the algorithm in this study.

Figure 4.   Iterative process of Bayesian optimization.

Table 1.   Main hyper-parameter range and optimized value.

Hyper parameter Range Optimized value

Learning_rate (0.001, 0.3) 0.0798

N_estimators (50, 250) 134

Max_depth (3, 15) 8

Min_child_weight (1, 7) 4

Gamma (0, 1) 0.676

Reg_alpha (0, 1) 0.4873

Reg_lambda (0, 1) 0.2451

Colsample_bytree (0.1, 1) 0.7144

Subsample (0.1, 1) 0.823
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Prediction results.  To test the prediction accuracy of the prediction model with the optimal subset obtained 
by BO-XGBoost-RFE, three indexes, MAE, RMSE and R2, are used to evaluate the prediction results, and the 
expressions are as follows:

n indicates the number of samples, yi is the true value, ŷi is the predicted value and yi  indicates the mean 
value of the predicted value.

The XGBoost-RFE feature selection algorithm based on Bayesian optimization in this study is compared with 
feature selection using full features and features selected by the Pearson correlation coefficient, which measures 
the correlation between two variables. In this study, the correlation with predictor variables was selected to be 
less than 0.1, and the variables with correlations greater than 0.9 were deleted to avoid multicollinearity.

XGBoost, random forest, support vector regression machine, and KNN algorithms were used to predict 
ozone concentration with full features, features selected by Pearson’s correlation coefficient, and features based 
on BO-XGBoost-RFE. According to the evaluation indicators described above, the comparison of the predic-
tion performance results of the three algorithms before and after dimensionality reduction can be obtained. The 
MAE, RMSE and R2 results of each prediction model are shown in Table 3.

Among the four prediction models, random forest has the lowest MAE and RMSE and the highest R2 based 
on three different dimensions of data and therefore has the best prediction performance. The prediction accu-
racy of all four prediction models based on Pearson correlation is lower than that based on BO-XGBoost-RFE, 
indicating that only selecting features by correlation cannot accurately extract important variables. Although 
the RMSE of the support vector regression model based on BO-XGBoost-RFE is slightly lower than the RMSE 
based on full features, the prediction accuracy of XGBoost, RF, KNN after feature selection of BO-XGBoost-RFE 
is higher than that based on full features and Pearson correlation. Among the four prediction models, random 
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Figure 5.   XGBoost-RFE feature selection results: Cross-validation MAE under optimal hyperparameter 
combination.

Table 2.   Comparison of MAE and feature num before and after BO.

Model MAE Feature number

BO-XGBoost-RFE 2.410 22

XGBoost-RFE 2.516 29
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forest has obtained the highest prediction accuracy. The MAE based on BO-XGBoost-RFE is 5.0% and 1.4% 
lower than that based on the Pearson correlation coefficient and the full-feature-based model, and the RMSE 
is reduced by 5.1%, 1.8%, R2 improved by 4.3%, 1.4%. Additionally, the XGBoost model achieved the greatest 
improvement in accuracy. The MAE was reduced by 5.9% and 1.7%, the RMSE was reduced by 5.2% and 1.7%, 
and the R2 was improved by 4.9% and 1.4% compared with the Pearson correlation coefficient-based and full-
feature-based models, respectively. This indicates that feature selection based on BO-XGBoost-RFE effectively 
extracts important features, improves prediction accuracy based on multiple prediction models, and has better 
dimensionality reduction performance.

Figure 6 shows the importance of each feature obtained by using the random forest prediction model, reflect-
ing the degree of influence of each variable on the prediction results of the global multi-year average near-ground 
ozone concentration. The most important variables that affect the prediction results according to the ranking of 
feature importance are altitude, relative altitude, and latitude, followed by night light intensity within a radius 
of 5 km, population density and nitrogen dioxide concentration, while the proxy variables for vegetation cover 
have a relatively weak effect on the prediction of ozone concentration.

Conclusion
This study uses the long-term air quality index observation data of 5,577 regions in the TOAR database from 
2010 to 2014 and uses the geographic information and environmental information of monitoring sites as features 
to predict the long-term average ozone concentration. However, since the metadata contain a large amount of 
environmental information that affects the ozone concentration, the addition of irrelevant information will 
increase the noise of the data, thereby reducing the prediction accuracy, so it is necessary to select the features. 
In this study, a Bayesian optimization-based XGBoost recursive feature elimination method is proposed, which 
extracts important variables to improve the prediction accuracy of long-term ozone concentrations. The predic-
tion accuracy based on the BO-XGBoost-RFE model is higher than that of the model based on all features and 
feature selection with Pearson correlation. Among the prediction models, the random forest model achieved the 
highest prediction accuracy. In comparison with the feature selection based on Pearson correlation, MAE and 

Table 3.   MAE, RMSE and R2 of each prediction model.

Model

After FS After Pearson’s All features

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

XGBoost 2.386 3.281 0.718 2.590 3.462 0.675 2.478 3.368 0.698

RF 2.374 3.206 0.720 2.500 3.380 0.690 2.407 3.266 0.710

SVR 2.676 3.631 0.659 2.912 3.871 0.583 2.677 3.620 0.636

KNN 2.801 3.808 0.606 2.873 3.837 0.601 2.846 3.834 0.601

Figure 6.   Feature importance in random forest.
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RMSE decreased by 5.0% and 5.1%, respectively, and R2 increased by 4.3%. Compared with the full feature-based 
model, MAE and RMSE are reduced by 1.4% and 1.8%, respectively, and R2 is improved by 1.4%.

However, the model proposed in this study also has certain limitations. Although we have improved the pre-
diction accuracy of long-term ozone concentration through feature selection and reduced the dimensionality of 
the data, the accuracy after dimensionality reduction is still not high. In addition, the stations in the data of this 
study are mainly distributed in the Northern Hemisphere, and a small number of stations are in the Southern 
Hemisphere. The monitoring sites include 15 regions, including EUR (Europe), NAM (North America), EAS 
(East Asia), etc., but they are mainly distributed in NAM (North America), EUR (Europe) and EAS (East Asia). 
Based on the above limitations, we suggest that (1) more environmental information can be considered as input 
variables, and the accuracy of predicting long-term ozone concentrations would be further improved by adding 
more comprehensive information; (2) subsequent research can expand the data coverage by adding more other 
site information and further study the global long-term ozone concentration characteristics.

Data availability
Data and methods used in the research have been presented in sufficient detail in the study. The dataset is the 
TOAR database (https://​gitlab.​jsc.​fz-​jueli​ch.​de/​esde/​machi​ne-​learn​ing/​aq-​bench/-/​blob/​master/​resou​rces/​AQben​
ch_​datas​et.​csv).
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