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Background and aims: Glucagon Like Peptide-1 Receptor (GLP-1R) activation reduces pro-inflammatory
responses of human monocytes, their accumulation in the vascular wall and foam cell formation
inhibiting atherosclerogenesis. This suggests that reduction of circulating GLP-1-1R positive monocytes
may have pro-atherogenic effects. It is unknown whether different CD14/CD16 monocytes subsets
display GLP-1R and whether their relative proportions correlate with atherosclerosis severity. We
evaluated the association between GLP-1R positivity in different CD14/CD16 monocyte subsets and
coronary atherosclerosis severity.
Methods: Relative amounts of classical (CD14þ/CD16-), intermediate pro-inflammatory (CD14þ/CD16þ)
and non-classical patrolling (CD14-/CD16þ) subsets of total circulating monocytes and the proportions of
GLP-1R positive monocytes in these subsets were determined in 13 control subjects and 10 dyslipidemic
ischemic heart disease (IHD) patients with severe angiographic proven coronary atherosclerosis using
flow cytometry analysis. Atherosclerosis severity was calculated by SYNTAX score.
Results: In univariable analysis, severe atherosclerosis was associated with decreased proportion of
classical monocytes and two fold increased CD16þ pro-inflammatory and patrolling subsets as compared
with controls (p ¼ 0.01, p ¼ 0.02 and p ¼ 0.01, respectively). Frequency of GLP-1R positive monocytes was
decreased in both CD16þ subsets (p ¼ 0.02 and p ¼ 0.05, respectively) and negatively correlated with
atherosclerosis severity (r ¼ �0.65, p ¼ 0.005 and r ¼ �0.44, p ¼ 0.05, respectively).
Conclusions: Increased skewing of the classical monocyte population toward CD16þ pro-inflammatory
and patrolling subsets accompanied by decreased in GLP-1R positivity are associated with coronary
atherosclerosis severity in IHD patients with dyslipidemia. Although the effect of potential confounders
cannot be ruled out, our data suggest that failure of GLP-1R-dependent anti-inflammatory/anti-athero-
genic control results in innate immune system dysfunction and can promote atherosclerogenesis.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

The inflammation underlying atherosclerosis is strongly related
to monocyte-related actions [1]. Monocytes are a main component
of innate immunity and heterogeneous in terms of phenotype and
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function. Subset identification of human monocytes is based on
their relative expression of CD14 co-receptor for toll-like receptor 4
(TLR4) which mediates lipopolysaccharide (LPS) signaling and
CD16, the FcgRIIIa immunoglobulin receptor [2].
CD14þCD16�classical monocytes (CM) involved in phagocytosis,
innate sensing/immune responses and migration represent up to
90% of blood monocytes. Remaining monocytes are equally repre-
sented by CD14þCD16þ inflammatory intermediate monocytes
(IMM) and patrolling CD14�CD16þ non-classical monocytes (NCM)
[3,4]. CM convert into NCM through an IMM subset [5]. A crucial
step in atherogenesis is the infiltration of the sub-endothelial space
of large arteries by monocytes, which subsequently differentiate
into macrophages transformed into lipid-loaded foam cells [6].

CM were assumed to predict cardiovascular events [7], but
subsequent work showed that pro-inflammatory IMM, are the key
cell type in the development of atherosclerosis [8]. The highest
levels of IMM associated with increased serum pro-inflammatory
cytokine TNF-a were demonstrated in patients with coronary
atherosclerosis [9] and a pivotal role of elevated IMM was
confirmed in the formation, growth, and stability of atherosclerotic
lesions [8,10e13]. In addition, patrolling anti-inflammatory NCM
[14,15], may also possess pro-inflammatory functions depending on
disease-specific context [14,16,17]. Only one of the four NCM sub-
phenotypes is more prevalent in patients with coronary artery
disease (CAD) [18]. Thus, both IMM and NCM CD16þ subsets may
play a significant role in the development of atherosclerosis.

Glucagon Like Peptide-1 (GLP-1) hormone is known as immu-
nomodulator of atherosclerosis [19]. GLP-1 receptor (GLP-1R) ag-
onists may halt atherosclerosis through anti-inflammatory effects
of monocytes/macrophages [20e22]. An impaired anti-
inflammatory GLP-1R signaling in monocytes treated in vitro by
oxidized low-density lipoprotein (ox-LDL) in obese patients was
demonstrated [23]. Ox-LDL's induce pro-inflammatory, pro-
atherogenic effects via epigenetic reprogramming of monocytes
in vivo [24] and pro-inflammatory phenotype of circulating
monocytes is attribute of symptomatic patients with atheroscle-
rosis [25]. Thus, GLP-R 1R deficiency and dyslipidemia may be
implicated in monocyte reprogramming toward pro-inflammatory
and pro-atherogenic phenotypes accelerating atherosclerosis
severity. There are currently no data on GLP-1R expression among
different CD14/CD16 monocyte subsets in humans associated with
atherosclerosis severity. The aims of our study were to determine
the proportions of CD14/CD16 GLP-1R positive monocytes subsets
and their association with atherosclerosis severity.

Methods

Subjects

In this case control study 10 IHD patients, mean age 64.5 ± 13.01
(range 46e75 years), 80% male, with angiographically proven 3
vessel severe coronary atherosclerosis disease were recruited.
Thirteen adults (38.5% male), mean age 58.0 ± 8.11 (range 44e70
years) were used as controls. Severity of coronary atherosclerosis
was calculated according to SYNTAX score [26]. Exclusion criteria
were malignancy, chronic dialysis treatment and refusal to partic-
ipate and/or inability to sign an informed consent. This study was
approved by the institutional Helsinki committee. All patients
signed an informed consent before enrollment.

Blood samples collection, preparation and FACS analysis

Whole blood samples were collected into K2-EDTA tubes (BD-
Plymouth, PL6 7BP, UK) by vein puncture and immediately pre-
pared for FACS analysis. Briefly, blood was treated with human Fc-
16
Receptor blocking solution (Biolegend, San Diego, CA), and subse-
quently stained with detection antibodies: anti human CD14 (Bio-
gems, Westlake Village, CA); anti human CD16 (Biolegend, San
Diego, CA); and either anti GLP-1R or mouse IgG2b isotype control
(R&D Systems Minneapolis, MN). After erythrocytes lysis, cells
were centrifuged, re-suspended in cold PBS and analyzed by flow
cytometer (Navios, Beckman Coulter, Indianapolis, IN) using Flow-
ing Software 2.5.1 (Turku Center for Biotechnology, Finland). Pro-
portions of CD14/CD16 monocyte subsets were determined within
the monocyte-enriched population based on forward and side-
scatter gating. GLP-1R expression was assessed as the percentage
of cells with AlexaFluor 488 signal greater than the isotype control.

Statistical analysis

Data were analyzed using the BMDP Statistical Software [27].
Pearson's chi-squared test, or Fisher's exact test, Student's t-test
and Spearman's correlations analysis were used. A p value of� 0.05
was considered significant.

Results

Table 1 demonstrates that in comparison with control subjects,
patients with severe atherosclerosis had significantly higher prev-
alence of hypertension (p ¼ 0.04), hypercholesterolemia
(p ¼ 0.001), and pharmacological treatment (p¼ 0.0001, p¼ 0.005,
respectively) and lower HDL (p¼ 0.001) but comparable LDL levels.

WBC and total monocyte counts were comparable in the 2
groups. However, severe atherosclerosis group demonstrated
significantly decreased proportion of CD14þ CM and increased
CD16þ (both IMM and NCM) (p < 0.01; p < 0.02 and p < 0.01,
respectively, Fig. 1A). Severe atherosclerosis group demonstrated
non-significant decreased frequency of GLP-1R positive cells in
CD14þ CM (p ¼ 0.23) but these frequencies were significantly
decreased among CD16þ IMM (p < 0.03) and NCM (p < 0.05))
subsets as compared to healthy controls (Fig. 1B). The decreased
GLP-1R positivity in CD16þ subsets negatively correlated with
atherosclerosis severity estimated by SYNTAX score (r ¼ �0.65,
p ¼ 0.005 and r ¼ �0.44, p ¼ 0.05, respectively).

Discussion

Our novel results show that severe atherosclerosis in IHD pa-
tients is characterized by redistribution of the proportions of
different CD14/CD16 monocyte subsets from CD14þ CM towards
CD16þ IMM and NCM both subsets. CM are not associated with a
vulnerable plaque phenotype, and do not predict secondary events
in severe atherosclerotic patients [28]. However, CM are involved in
the progression of early stages of atherosclerogenesis through
initial transformation into an inflammatory phenotype [29] termed
pro-inflammatory IMM, having a key role in the development of
atherosclerosis [5,8]. IMM further, convert into patrolling NCM (5).
It was suggested that an increase in the one of four NCM sub-
phenotypes is a compensatory attempt to resolve the atheroscle-
rotic plaque and prevent progression of coronary atherosclerosis
[18]. This is in accordance with our data that suggest an increase of
both CD16þ IMM and NCM subsets in severe atherosclerosis.

Furthermore, our results show GLP-1R positivity among
different CD14/CD16 monocyte subsets having various attributes,
suggesting for the first time that GLP-1R dependent signaling can
directly modulate diverse monocyte functions. We also show
decreased GLP-1R positivity among all CD14/CD16 monocytes of
patients with severe atherosclerosis. In addition, the significant
GLP-1Rreduction among CD16þ subsets both pro-inflammatory
IMM and patrolling NCM was negatively correlated with



Table 1
Clinical characteristics of patients with severe atherosclerosis and control group.

Severe atherosclerosis patients (n ¼ 10) Control subjects (n ¼ 13) p-value

Age, yrs. 64.9 ± 13.66 58.2 ± 8.41 0.19
Sex, male/female 8/10 5/13 -
Clinical background
HTN 6(60) 3(23) 0.04
Anti-HTN therapy 9(90) 2(15) 0.0001
Hypercholesterolemia 8(80) 2(15) 0.001
Statin use 7(70) 1(8) 0.005
Current Smoker 2(20) 1(8) 0.44
T2D 3(30) 1(8) 0.21
BMI 28.3 ± 5.71 26.3 ± 2.56 0.31

IHD status
s/p CABG 7 (70) e -
s/p PCI 4 (40) e -
s/p STEMI 1 (10) e -
SYNTAX score,(range) 27.1 ± 7.43,(20e34) e -

Laboratory parameters
WBC, 103/ml 7.4 ± 1.02 7.6 ± 0.62 0.89
Monocytes, 103/ml 0.58 ± 0.09 0.55 ± 0.04 0.67
CM,103/ml 0.48 ± 0.08 0.50 ± 0.03 0.86
CM GLP-1Rþ,103/ml 0.01 ± 0.004 0.02 ± 0.002 0.23
IMM,103/ml 0.04 ± 0.01 0.02 ± 0.01 0.07
IMM GLP-1Rþ,103/ml 0.003 ± 0.001 0.002 ± 0.0004 0.62
NCM,103/ml 0.05 ± 0.01 0.03 ± 0.004 0.05
NCM GLP-1Rþ,103/ml 0.003 ± 0.001 0.003 ± 0.001 1.00
CRP, mg/L 54.5 ± 36.83 8.8 ± 3.25 0.15
Cholesterol, mg/dL 178.9 ± 71.42 174.2 ± 72.65 0.88
LDL-cholesterol, mg/dL 92.3 ± 32.09 108.5 ± 36.02 0.31
HDL-cholesterol, mg/dL 25.6 ± 7.80 45.4 ± 14.30 0.001
TG, mg/dL 164.3 ± 76.08 130.7 ± 62.77 0.34
Creatinine, mg/dl 1.5 ± 1.85 0.7 ± 0.16 0.25

Data are expressed as mean ± SD or n (%). Continuous variables were compared using Student's t-test.
T2D: type 2 diabetes mellitus; HTN: hypertension; CABG: coronary artery bypass surgery; PCI: percutaneous coronary intervention; STEMI: ST-elevation myocardial
infarction; SYNTAX score: an angiographic grading of coronary artery disease severity; BMI: body mass index; WBC: white blood cells; CM: classical monocytes; IMM: in-
termediate monocytes; NCM: non-classical monocytes; GLP-1Rþ: Glucagon Like Peptide-1 Receptor positivity; CRP: C-reactive protein; LDL: low-density lipoprotein; HDL
high-density lipoprotein; TG: triglycerides.
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atherosclerosis severity. Therefore, the prominent down-regulation
of GLP-1R-dependent signaling in CD16þ monocytes subsets is a
characteristic sign of atherosclerosis severity.

It was previously suggested that an impaired anti-inflammatory
GLP-1R signaling in monocytes of morbidly obese patients (BMI
>40) may be involved in atherosclerosis development [23].

However, obesity associated impaired GLP-1R signaling are less
relevant to our studyas our patientswith severe atherosclerosiswere
overweight, butnotobese.Moreover,mostofourpatientswithsevere
atherosclerosis and reduced monocytes' GLP-1 R positivity had hy-
percholesterolemia, significantly decreased HDL levels accompanied
bya six-fold elevatedC-reactive protein (CRP) comparedwith control
subjects. This suggests that during atherosclerosis progression down
regulated anti-inflammatory GLP-1R signals in monocytes are asso-
ciated with dyslipidemia rather thanwith obesity.

Complex mechanisms underlie the association between dysli-
pidemia, hypercholesterolemia and reduced monocyte's GLP-1R.
Hypercholesterolemia is associated with increased systemic levels
of ox- LDL known to be involved in endothelial cell dysfunction [30]
increasing the number of monocytes recruited to atherosclerotic
plaques. These monocytes differentiate into macrophages that
interact with ox- LDL resulting in the formation of foam cells, which
in turn secrete pro-inflammatory cytokines that amplify the in-
flammatory response [31]. GLP-1 agonists prevent ox-LDL-induced
adhesion of monocytes to human endothelial cells [32] and ox-LDL
uptake by macrophages [33]. In addition, HDL is also important for
the physiological detoxification of ox-LDL [34] but HDL of patients
with CAD lacks this ability [35]. Taken together, this suggests that
decreased GLP-1R signals in concert with reduced/aberrant HDL
may jointly down-regulate the anti-inflammatory effects of
monocytes in severe atherosclerosis.
17
Conceivably, dyslipidemia and decrease of anti-inflammatory
GLP-1R signals initially stimulate reprogramming of the circu-
lating CM subset towards pro-inflammatory IMM subset increasing
their numbers. Further, significant loss of GLP-1R dependent anti-
inflammatory signals in these pro-inflammatory monocytes en-
hances their migration into the inflamed vessel wall [10] which
closely correlates with plaque vulnerability in asymptomatic CAD
patients [36]. The elevated pro-inflammatory IMMultimately result
in an increased proportion of NCM patrolling subset which nor-
mally differentiate into anti-inflammatory resident “M2-like”
macrophage populations that suppress inflammatory conditions in
atherosclerotic plaques [37,38]. Since GLP-1 induces human
macrophage polarization toward the anti-inflammatory M2
phenotype [39], GLP-1R deficiency in the patrolling NCMmay shift
macrophage polarization toward inflammatory M1 phenotype,
promoting atherogenesis by generation inflammatory foam cells
[6].

Other inflammatory mediators in addition to dyslipidemia may
also intensify atherosclerogenesis. It was estimated that as many
40% of new atherosclerosis cases may result from common chronic
infections [40] and a low level of LPS derived endotoxemia con-
stitutes a strong risk factor for the development of atherosclerosis
[41]. In addition, both ox-LDL and LPS endotoxin bind to CD14þ co-
receptor of TLR4 activating TLR4 mediated monocytes inflamma-
tory pathways [42e45]. Furthermore, ox-LDL and low doses of LPS
cooperatively activate macrophages to express higher levels of pro-
inflammatory cytokines [46] and are implicated epigenetic and
metabolic reprogramming of monocytes and trained immunity
underlying the pathophysiology of atherosclerosis [47]. This sug-
gests that decreased anti-inflammatory GLP-1R signals in mono-
cytes of dyslipidemic patients with subclinical endotoxemiamay be



Fig. 1. Severe atherosclerosis is associated with increased proportions of intermediate
(CD14þ/CD16þ IMM) and non-classical (CD14-/CD16þ NC) monocytes and decreased
frequency of GLP-1R positivity in these subsets.
(A) Proportions of classical (CD14þ/CD16þ CM), intermediate (CD14þ/CD16þ IMM)
and non-classical (CD14-/CD16 þ NCM) subsets in total circulating monocyte amount
of healthy controls (grey bars, n ¼ 13) and patients with severe atherosclerosis (black
bars, n ¼ 10). (B) Frequency of monocytes expressing GLP-1R among different
monocyte subsets in healthy controls (grey bars, n ¼ 13) and patients with severe
atherosclerosis (black bars, n ¼ 10). Data are means ± SE.
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implicated in programming monocytes into a non-resolving in-
flammatory state aggravating atherosclerosis.

Several limitations restrict the interpretation of our findings.
The small size of our cohort did not allow a multivariable analysis.
Therefore, our unadjusted results should be considered as indica-
tive, until confirmed in a larger sample. Additionally, functional
in vitro experiments with GLP-1 treated monocytes were not per-
formed due to the insufficient number of these cells in the obtained
limited whole blood samples. Monocytes' subsets distribution and
its association with GLP-1R positivity were also not estimated
18
during atherosclerosis progression in patients with extreme obesity
and low-grade endotoxemia. In addition, the SYNTAX revasculari-
zation oriented score including lesions >50% stenosis rather than
atherosclerotic burden score, may underestimate the coronary
atherosclerosis severity.

In conclusion, although the effect of potential confounders
cannot be ruled out, our novel results indicate that patients with
severe atherosclerosis have significantly increased proportions of
both CD16þ pro-inflammatory& patrolling subsets accompanied by
significantly decreased GLP-1R positivity. The negative correlation
between CD16þ monocyte expressing GLP-1R and atherosclerosis
severity suggests that the modulated function of these monocyte
subsets plays an important role in atherosclerosis progression.
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