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a b s t r a c t 

In this study, a new selective pressurised liquid extraction (SPLE) methodology was optimised for determining 

about 70 organic pollutants (OPs) including organochlorine (OCPs), organophosphate (OPPs) and pyrethroid (PYRs) 

pesticides, polychlorinated biphenyls (PCBs), polybromodiphenyl ethers (PBDEs), as well as, polycyclic aromatic 

hydrocarbons (PAHs) in wild boar liver samples considering the temperature, pressure and time of contact 

between the solvent and the matrix as influential variables. Clean-up of extracts was performed by solid-phase 

extraction (SPE) using EZ-POP cartridges. Detection of OPs was carried out by gas chromatography (GC) coupled 

to tandem mass spectrometry (QqQ-MS/MS). This new approach offers: 

• A new non-time consuming SPLE methodology for determining about 70 OPs in wild boar. 
• Recoveries achieved ranged between 74 to 119 % with RSD less than 20 %. 
• Detection and quantification limits in the low to mid pg/g range. 
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Specifications table 

Subject Area Environmental Science 

More specific subject area Biomonitoring environmental pollutants 

Method name Selective pressurized liquid extraction 

Name and reference of original method X. González-Gómez, N. Cambeiro-Pérez, E. Martínez-Carballo, J. Simal-Gándara, 

Screening of organic pollutants in pet hair samples and the significance of 

environmental factors. Sci. Total Environ. 625 (2018) 311–319. 

Resource availability 

It is well-known that living organisms are exposed to organic pollutants (OPs) release into the

environment. These chemical inputs from different sources (industry, urban and agricultural areas) 

may create a vulnerable status especially to animals [ 1 , 2 ]. The great variety of OPs that could

be responsible for this type of damage makes necessary the development of powerful analytical 

methodologies, which allow the identification of these substances. 

Reagents and standards 

A list of the target OPs and the labelled internal and surrogate standards including CAS and

supplier is given in Table S1 and S2, respectively. In order to improve peak shape and reduce OP

decomposition, the 3-ethoxy-1,2-propanediol (98 %), d-sorbitol ( > 99 %) and l-gulonic acid γ -lactone 

( > 98 %) used as analyte protectants (APs) were purchased from Sigma Aldrich (Madrid, Spain).

Individual stock standard solutions of APs were prepared in acetonitrile (50 g/L), acetonitrile:water 

(85:15, v/v, 5 g/L) and acetonitrile:water (80:20, v/v, 5 g/L), respectively. Mixes of 10 mg/L stock

solutions of each family of OPs were prepared from the individual stock solutions standards in

acetonitrile. From these solutions, standards ranging from 0.25 to 100 μg/L were prepared in APs

and used to construct the calibration line. These solutions were stored in amber flasks at - 18 °C. 

SPLE optimisation 

Liver is a complex matrix that requires a sample preparation in order to improve the in-situ clean-

up in sample procedure. The effect of the presence or the absence of additives (KOH (aqueous) (60

%, w/v) or KOH (MeOH) (35 %, w/v)) used in other analytic techniques such as matrix solid phase

dispersion (MSPD) were tested. Several combinations of KOH (aq) (30-60 %, w/v) and KOH (MeOH)

(10-35 %, w/v) were chosen for such purpose. With the use of KOH (60 %, w/v) fat elimination was

observed. Therefore, different combinations of mL KOH (15, 10 and 7.5) as well as activated silica

amounts (35, 30 and 25 g) were tested. The experimental runs were performed in 2.0 g liver samples

spiked with OP concentration range at 0.25 ng/g and 0.50 ng/g. Response was evaluated in terms of

the recoveries of the selected OPs. Determination by GC-QqQ-MS/MS were performed using a previous 

ones optimised by the present research team [2] (Table S3). 

The optimal sample conditions were 7.5 mL KOH (60%, w/v), 35 g activated silica and 1.0 g of

anhydrous sodium sulphate. To extract the maximum target analytes with minimum interferences, 

different SPLE parameters were optimized. The selected parameters were temperatures (100 ˚C, 137.5 

˚C and 175 ̊C), static times (5 min, 10 min and 15 min) and pressures (100 ba, 125 ba and 150 ba)

using acetonitrile as solvent by a Box and Benhken experimental design with three independent

variables consisted of 15 random experimental runs including three replicates at the central point. 

The experimental design was generated and all analytical treatments were supported by the software 

Statgraphics Plus 5.1 version (Manugistics, Rockville, MD, USA). The results are shown in Fig. 1 . The

final working conditions were obtained at 100 ˚C, three extraction cycles (10 min) and 150 ba. 

Dual-layer EZ-POP SPE cartridges were used after SPLE. The final acetonitrile extract (1.0 mL) was

passed through the tandem of dual-layer EZ-POP SPE cartridges previously conditioned with 20 mL 

of acetone. Acetonitrile (40 mL) was used to elute the target analytes and the collected extract was

again reduced until dryness at 30 °C, re-dissolved in 100 μL of acetone containing 50 ng of the internal

standards and the three APs for GC-QqQ-MS/MS. 
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Fig. 1. A) Pareto charts for main factors and two-factor interactions for the selected surrogates PCB65, chrysene-D 12 and 

PBDE77, as well as response surface for 10 min cycle time. The single factors selected were: A (Temperature), B (pressure) 

and C (Cycle Time). 
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d  
uality assurance/quality control (QA/QC) 

The studied methods were in-house validated according to the criteria and recommendations of

uropean guidelines for linearity, precision, trueness/accuracy, limits of detection and quantification

LODs and LOQs) and uncertainly values [3] . Internal linear calibration was used to quantify the

argeted OPs in livers using the following internal standards: DDT-D 8 for OCPs, diazinon-D 10 for OPPs,

CB 30 and 195 for PCBs, trans -cypermethrin-D 6 for PYRs and PBDE 166 for PBDEs. Linear calibration

urves fit reasonably (r 2 > 0.999) in a twelve-point calibration curve with a concentration scale of two

r three orders of magnitude, depending on the compound (0.010 – 1.0 ng/g). The quality parameters

f the optimised method are summarized in Table 2 . Results obtained for the accuracy were in the

ange from 1.0 to 14 %. 

For the validation of the analytical methodology, 29 liver samples from Ourense (Northwest of

pain) were analysed. The set of liver samples was processed each day together with: a reagent

lank to test for contamination in the extraction process, a spiked blank and a spiked sample at

n intermediate concentration (0.50 ng/g) to calculate the extraction efficiency. Surrogate standards

chlorpyrifos-D 10 , α, γ -HCH-D 6 ; DDE-D 8 ; HCB- 13 C 6 , Chrysene-D 12 , PBDE 77, PCB 14, 65 and 166, trans -

ermethrin-D 6 ) were also added to check the recovery rates in each extraction procedure. 

Most of the target pollutants were detected in the selected liver samples with significant

ifferences (p < 0.050) and the following mean level concentration order �PAHs > �OCPs >

NDLPCBs > �PYRs > �OPPs > �DLPCBs > �PBDEs. Fig. 2 shows the main contributors in each

amily of OPs. Fluoranthene and pyrene were the main PAHs found in liver. With regard to chlorinated

ollutants, trans -Chlordane were the most abundant OCP followed by HCB, as well as, PCB 153, 138

nd 180 for NDLPCBs. PCB 157 and PCB 126 were the most prevalent DLPCB congeners. Permethrin

nd chlorpyrifos were the detected PYRs and OPPs, respectively. To our knowledge no results were

ound about the levels of PYR and OPP pesticides in liver of wild terrestrial mammals. PBDEs were

he OPs with the lowest contribution with PBDE 47, 100 and 99 as major congeners. 

dditional information 

To our knowledge, scarce literature about the concentration of OPs in wild boar liver is available

ue to the complexity of the selected biological sample [4–20] . For these reasons, it is required to
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Fig. 2. Summary of the main OP contributors in each family. 

Table 1 

Background of the analytical extraction methods for liver from wild mammals since 2001. 

Compounds Specie Extraction Clean Up References 

OCPs, PCBs Wild boar SLE Silica gel [4] 

OPPs Wild boar SLE SPE C18 [5] 

OCPs, PCBs Wild boar SLE Florisil [6] 

PCDDs/DFs, PCBs Wild boar ASE Acidic silica, florisil [7] 

PBDEs Wild boar Soxhlet Acidic silica gel [8] 

OCPs, PCBs Wolf SLE Alumina [9] 

PAHs Otter Soxhlet GPC, silica gel [10] 

OCPs, PCBs Lynx SLE Sulfuric acid [11] 

PCBs, OH-PCBs Seal SLE Silica gel [12] 

PAHs Dolphin Soxhlet GPC [13] 

PBDEs Otter SLE GPC [14] 

PBDEs Otter SLE Florisil [15] 

PCDD/Fs, PCBs, PBDEs Reindeer SLE Multilayer column [16] 

OCPs, PCBs Mink SLE Florisil [17] 

PBDEs, PCBs Sheep SPLE Acidic silica, sodium sulphate [18] 

PCBs Racoon dog ASE GPC [19] 

 

 

 

 

 

 

 

 

 

 

 

develop quick and simple techniques capable of efficiently detecting a wide range of contaminants.

In this type of multiresidue methods the extraction process is perhaps the most critical step since it

requires the development of special and suitable conditions to determine substances with different 

physico-chemical properties related to water solubility (S w 

), octanol/water partition coefficient (K ow 

) 

and organic carbon partition coefficient (K oc ). In recent years, OPs have been analysed in the liver of

different wild animals ( Table 1 ). Most of the studies focus on the determination of a single group of

compounds. These researches use classical extractive techniques such as solid-liquid extraction (SLE) 

or soxhlet followed by clean-up steps using gel permeation chromatography (GPC) or solid-phase 

extraction (SPE with different absorbents (silica, alumina, florisil...) [ 4–6 , 8–17 ]. The main disadvantages

of these techniques are the use of large amounts of solvent and the need for additional cleaning steps

to avoid interferences, which involves possible loss of analytes and waste of time. Other alternatives

are the use of high pressure extractive techniques such as accelerated solvent extraction (ASE) or also

called pressurized liquid extraction (PLE) [ 7 , 18–22 ]. The combination of PLE with an in situ clean-

up (in cell) of the extract is known as selective pressurized liquid extraction (SPLE). This technique

avoids the need of subsequent cleanings and also improves the automation of the process. To the best
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Table 2 

Mean recoveries (R) and relative standard deviations (RSD) at four spike levels (LOQs, 0.10, 0.25 and 0.50 ng/g), LOD (ng/g) and 

LOQ (ng/g) for each target compound are shown. 

OPs RT (min) % R (RSD) LODs LOQs 

α-HCH-D 6 6.860 109 (10) - - 

α-HCH 6.912 89 (16) 0.010 0.050 

HCB- 13 C 6 7.043 94 (18) - - 

HCB 7.043 112 (16) 0.32 1.1 

PCB 14 7.079 108 (10) - - 

β-HCH 7.309 117 (9.1) 0.020 0.19 

γ -HCH-D 6 7.344 93 (17) - - 

PCB 11 7.079 89 (9.0) 0.010 0.040 

Diazinon 7.544 94 (1.0) 0.11 0.38 

PCB 28 8.027 83 (7.2) 0.0010 0.0040 

Parathion Methyl 8.654 106 (17) 0.10 0.33 

Heptachlor 8.765 106 (18) 0.010 0.040 

Aldrin 9.289 117 (4.0) 0.010 0.040 

PCB 52 9.293 92 (5.0) 0.010 0.040 

PCB 65 9.293 105 (14) - - 

Chlorpyrifos-D 10 9.387 88 (19) - - 

Fenthion 9.433 77 (5.0) 0.010 0.040 

Chlorpyrifos 9.476 106 (15) 0.040 0.14 

Fluoranthene 10.454 104 (11) 0.030 0.10 

trans -Chlordane 10.880 95 (1.0) 0.010 0.040 

Pyrene 11.101 100 (10) 0.11 0.39 

cis -Chlordane 11.267 99 (3.0) 0.010 0.040 

DDE-D 8 11.752 99 (17) - - 

PCB 101 11.752 92 (2.3) 0.010 0.040 

PCB 105 11.752 108 (9.0) 0.010 0.040 

PCB 77 11.753 102 (1.0) 0.010 0.040 

PCB 81 11.753 103 (11) 0.010 0.040 

o,p’ -DDT 12.045 94 (4.0) 0.050 0.16 

Dieldrin 12.677 120 (8.0) 0.010 0.040 

Endrin 12.677 119 (8.3) 0.010 0.040 

PCB 114 12.750 94 (14) 0.010 0.040 

PBDE 28 13.530 87 (11) 0.0010 0.0020 

p,p’ -DDT 12.924 119 (12) 0.010 0.040 

o,p ’-DDT 13.058 94 (18) 0.030 0.12 

PCB 138 13.364 89 (3.1) 0.010 0.040 

PBEB 13.628 115 (12) 0.010 0.040 

PCB123 13.979 92 (10) 0.010 0.040 

PCB 118 13.979 93 (11) 0.010 0.060 

p,p’ -DDT 14.054 86 (18) 0.0080 0.020 

PCB 153 14.616 99 (1.0) 0.010 0.040 

PCB 166 14.616 108 (12) - - 

PCB 156 14.616 81 (16) 0.010 0.040 

PCB126 14.611 115 (16) 0.010 0.040 

Chrysene-D 12 15.569 89 (12) - - 

Chrysene 15.553 99 (8.0) 0.010 0.060 

B[a]A 15.553 85 (5.4) 0.020 0.080 

PCB 180 15.942 106 (13) 0.010 0.040 

PCB 157 15.937 85 (18) 0.010 0.040 

PCB 167 15.937 117 (4.0) 0.010 0.040 

PBDE 47 16.316 74 (9.2) 0.0020 0.0070 

PCB 169 16.764 102 (1.0) 0.010 0.040 

PBDE 77 17.657 93 (1.1) - - 

PCB 189 18.037 90 (18) 0.010 0.040 

trans -Permethrin 18.786 99 (5.0) 0.12 0.42 

cis -Permethrin 19.026 99 (6.0) 0.12 0.42 

trans -Permethrin-D 6 19.087 97 (9.0) - - 

PBDE 99 19.100 99 (6.0) 0.0010 0.0040 

B[k]F 19.785 110 (13) 0.030 0.12 

B[b]F 19.785 100 (1.3) 0.0030 0.010 

( continued on next page ) 
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Table 2 ( continued ) 

OPs RT (min) % R (RSD) LODs LOQs 

PBDE 100 19.959 87 (4.0) 0.030 0.12 

Cyfluthrin 20.294 110 (14) 0.050 0.16 

Cypermethrin 20.489 111 (10) 0.10 0.33 

B[a]P 20.923 116 (11) 0.010 0.030 

PCB 209 21.276 114 (1.0) 0.010 0.040 

PBDE 153 22.111 87 (8.0) 0.030 0.12 

PBDE 154 23.589 113 (1.4) 0.050 0.16 

Deltamethrin 23.621 92 (14) 0.050 0.16 

DB[ah]A 25.636 115 (11) 0.010 0.040 

B[ghi]P 26.089 105 (9.0) 0.010 0.060 

I[123cd]P 26.089 105 (7.4) 0.13 0.43 

a LOD = 3 ∗ sb/b 
b LOQ = 10 ∗ sb/b (sb = standard deviation of the intercept; b = slope of the calibration curve). They were then tested 

experimentally by spiking five replicates of blank samples at such levels. To calculate LODs and LOQs the obtained values of 

unfortified liver samples were multiplied by the enrichment factors and by the recoveries of the analytes. To verify the limits 

for real samples, signal-to-noise ratios for the analytes in extracts of liver samples in which concentrations were close to the 

calculated LOQs were determined. 

PCBs; Bobcat; ASE; Silica gel; [20] . 

 

 

 

 

 

 

 

 

 

 

of our knowledge, there is only a research in sheep liver where only PBDEs and PCBs were analysed

by this technique [18] . Something new and promising is the inclusion of additives such as potassium

hydroxide in SPLE to avoid the co-elution of unwanted matrix components allowing the extraction of

about 70 OPs. 
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