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The effective non-invasive diagnosis and prognosis are critical for cancer treatment. The plasma cell-free
DNA (cfDNA) provides a good material for cancer liquid biopsy and its worth in this field is increasingly
explored. Here we describe a new pipeline for effectively finding new cfDNA-based biomarkers for can-
cers by combining SALP-seq and machine learning. Using the pipeline, 30 cfDNA samples from 26 esopha-
geal cancer (ESCA) patients and 4 healthy people were analyzed as an example. As a result, 103 epigenetic
markers (including 54 genome-wide and 49 promoter markers) and 37 genetic markers were identified
for this cancer. These markers provide new biomarkers for ESCA diagnosis, prognosis and therapy.
Importantly, these markers, especially epigenetic markers, not only shed important new insights on
the regulatory mechanisms of this cancer, but also could be used to classify the cfDNA samples. We there-
fore developed a new pipeline for effectively finding new cfDNA-based biomarkers for cancers by com-
bining SALP-seq and machine learning. In this study, we also discovered new clinical worth of cfDNA
distinct from other reported characters.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is an important public health problem worldwide. Its
morbidity and mortality are increasing year by year, and the treat-
ment effect is poor, which seriously affects people’s health and
quality of life. According to GLOBOCAN data [1], there were approx-
imately 18.08 million new cancer cases and 9.56 million deaths in
the world in 2018, most of them live in low- or middle-income
countries. It is estimated that by 2025, there will be about 20 mil-
lion new cases of cancer every year [2]. The latest cancer statistics
show that [3], 1,762,450 new cancer cases and 606,880 cancer
deaths are projected to occur in the United States in 2019. Although
the incidence of cancer has not changed significantly, cancer mor-
tality has continued to decline, not only because of the develop-
ment of medical standards, but also for preventive screening.

Tissue biopsy is still the gold standard for tumor dosgnosis, but
due to the traumatic nature to patients, it brings a lot of interference
to the dynamic treatment of patients. There are also many risks and
ethical issues in tissue biopsy, which makes it have certain limita-
tions. Liquid biopsy is a kind of cutting-edge technology to analyze
a range of tumormaterials in the blood or other body fluids in amin-
imally invasive or noninvasivemanner. The tumormaterials include
circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-
free DNA (cfDNA), messenger RNA (mRNA), microRNA (miRNA),
and exosomes. For example, these liquid biopsies have been inten-
sively investigated for the most dentrimental cancer of non-small
cell lung cancer (NSCLC) [4–11]. Especially, the liquid biopsy for
plasmactDNA hasbeenwidelyused incompaniondiagnosis toguide
precision therapy of NSCLC. For example, the NSCLC patients diag-
nosed theT790MEFGRmutationswithplasmahadsimilaroutcomes
as those diagnosed with tissue when treating with the third-
generation EGFR inhibitor Osimertinib [12]. FDA has approved the
EGFRplasmamutation test as aguide to treatmentofNSCLCpatients
withEGFR inhibitors [13].However, ctDNAdetection is stilldifficault
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to be applied to early diagnosis of tumor because the amount of
ctDNA is very low in plasma and targeted enrichment has to be done
for accurate detection. Therefore, other easier liquid biopsies for
early diagnosis of tumor are still in demand.

Compared to ctDNA, cfDNA is amore availablematerial for liquid
biopsy,which is all freeDNAfloating inblood. CfDNAwasdiscovered
in 1948 [14]. Most of the plasma cfDNA originated from the
hematopoietic system in healthy subjects, but in clinical patients
(e.g. pregnancy and cancer), the related cells/tissues would release
additional DNA into the plasma [15,16]. The detection of this pertur-
bation would allow us to diagnose the abnormality for people in a
noninvasive way. In recent years, methods based on the analysis of
plasma cfDNA have been largely explored for noninvasive prenatal
testing (NIPT) and cancer liquid biopsy [17,18]. For example, the
cfDNA-based fetal aneuploidy test inpregnantwomenwas routinely
deployed in many countries by 2014, and the market value is esti-
mated to reach 3.6 billion USD in 2019 [19]. Studies on the applica-
tions of cfDNA for cancer detection and tumor origin determination
have also demonstrated the high clinical potential of cfDNA [20–
22]. In these studies, a variety ofmethodswere developed for differ-
entiatingthecfDNAmoleculesreleasedbythetissuesof interest (e.g.,
ctDNA) from the background ones [23,24]. Somemethods have uti-
lizedgeneticbiomarkers, suchas the fetal-specific informativesingle
nucleotide polymorphism (SNP) sites in pregnancies and somatic
mutations in cancer patients [25,26]. However, such genetic
biomarkers usually vary from case to case, which challenges the
development of sensitive and generalizable approaches. Under this
circumstance, the epigenetic biomarkers are more favored.

Esophageal cancer (ESCA) continues to be a leading cause of can-
cer death worldwide, and approximately 480,000 cases are diag-
nosed annually worldwide [27]. Although technologies in surgical
treatment and systemic therapy advanced during the past few dec-
ades, over 400,000 cases have died fromESCAwithin the last 5 years
[18]. The predicted 5-year survival rate of ESCA, which ranges from
15% to 20%, has barely improved in recent decades due to high
recurrence rate, early metastatic tendency, and limited knowledge
of biomarkers and potential therapeutic targets [28,29]. Thus, find-
ing new biomarkers for the diagnose of ESCA is needed urgently,
especially those biomarkers applicable to liquid biopsy for early
discovery, diagnosis and prognosis of ESCA.

In this study, we tried to find both epigenetic and genetic
biomarkers of ESCA in cfDNA with adapted Single strand Adaptor
Library Preparation-sequencing (SALP-seq) in combination with
machine learning. The adapted SALP-seq [30,31], developed by our
laboratory, is a new single-stranded DNA library preparation tech-
nique. This technique isparticularly suited to construct thenext gen-
eration sequencing (NGS) libraries for highly degradedDNA samples
such as cfDNA [31]. Moreover, by using the barcode T adaptors, this
technique is competent to analyze many cfDNA samples in a high-
throughput format [31]. In this study, the NGS libraries of 20 cfDNA
samples, which were from 11 pre-operation ESCA patients, 5 post-
operation ESCA patients, and 4 healthy people, were constructed
by using SALP-seq. Based on bioinformatics analysis of the sequenc-
ing data, we identified 103 epigenetic markers (including 54
genome-wide and 49 promoter markers) and 37 genetic markers
for ESCA, which may ultimately contribute to the development of
effective diagnostic and therapeutic approaches for ESCA. Further-
more, thesemarkers were verified by analyzing 10 new cfDNA sam-
ples from pre-operation ESCA patients.

2. Experimental procedure

2.1. Sample processing and sequencing

Plasma DNA libraries were constructed from whole blood with
adapted SALP method [30,31]. CfDNA was extracted from 200 ll of
plasma. The purified cfDNA was quantified with Qubit 2.0 and 4 ng
of each cfDNA sample was used to prepare NGS library. Finally, the
Illumina-compatible libraries were generated for 20 cfDNA sam-
ples (Table S1) by using adaptors and primers listed in Table S2.
The library DNA was quantified with Qubit 2.0 and pooled at the
same quality (ng) to generate a final sequencing library. The library
was sequenced by two lanes of Illumina Hiseq X Ten platform
(Nanjing Geneseeq). Paired-end sequencing was performed. The
details of sample processing and sequencing protocols were
described in the Supplementary information. In the validation
experiment, we sequenced 10 new cfDNA samples using the same
method.
2.2. Analysis and statistics of cfDNA sequencing data

The raw sequencing data of cfDNA were separated with the bar-
code by using homemade perl scripts. Then the constant sequence
(19 bp) and barcode (6 bp) sequences were removed from the 50

end of the pair-end sequencing reads 2. All sequencing reads were
analyzed using the Bowtie2 tool [32], with the parameter -X 2000
to keep the long fragments. The paired-end sequencing reads were
mapped to the hg19 human reference genome in a paired-end
mode, allowing one mismatches for the alignment for each end.
The sequence alignment map (SAM) file was converted to BAM for-
mat using samtools [33]. Only paired-end sequencing reads with
both ends aligned to the same chromosome with the correct orien-
tation were used for downstream analysis. SNV was analyzed by
samtools. The annotation of SNV was performed by ANNOVAR
[34] with default setting. Functional enrichment analysis through
the Database DAVID [35] identified the biological significance of
genes. P-value adjusted by Benjamini-Hochberg to <0.05 estab-
lished the cut-off criteria. Reads number was calculated with bed-
tools [36]. The openness of 1-kb regions upstream TSS in different
samples was detected with DEseq2 [37], regions with p < 0.05 were
selected.

In the screening of ESCA-associated important regions of the
whole genome, the mean decrease in accuracy (MDA) was used,
which was calculated using the randomForest package in R. MDA
represents the average decrease of classification accuracy on the
OOB samples when the values of a particular feature are randomly
permuted. Therefore, the permutation based MDA can be utilized
to evaluate the contribution of each feature to the classification.
After the ESCA-associated important regions were screened,
machine learning was used to classify cancer and normal samples.
Due to the small sample size, classifying was performed by using
SVM that shows many unique advantages in solving small sample,
nonlinear and high-dimensional pattern recognition problems. The
gene expression data were downloaded from TCGA data portal,
containing RNA-seq data of 23 cancers and their corresponding
normal samples. The comparison of RNA-seq datasets of selected
genes between cancer and normal samples were analyzed with R
scripts. The H3K27ac ChIP-seq data of TE7 ESCA cell lines were
downloaded from GEO database with the accession number
GSE76861 [38]. The ATAC-seq data of ESCA tissues derived from
donors with diverse demographic features were downloaded from
the TCGA database and the hg38 coordinates were converted to
hg19 using LiftOver [39]. All tracks were shown with UCSC genome
browser.
3. Results

3.1. Clinical specimens and SALP-seq

All procedures used in this research were performed according
to the Declaration of Helsinki. This study was approved by the
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Ethics Committee of Jinling Hospital (Nanjing, China). All partici-
pants were recruited from the Jinling Hospital, Nanjing University
School of Medicine (Nanjing, China), with informed consent. The
detail information of 20 whole blood samples collected from the
Jinling Hospital was listed in Table S1. We sequenced the cfDNAs
from as many as 20 blood samples in two lanes (Lane 1 and Lane
2; Table S1) of Illumina Hiseq X Ten platform. The previously pub-
lished one-lane cfDNA sequencing data [31] from the same 20
blood samples were also used in this study (Lane 3; Table S1).
We merged these sequencing data of three lanes with samtools
[33] for subsequent analysis (Total: Lane 1 + Lane 2 + Lane 3;
Table S1), which showed that the mean value of total reads was
7.2 � 107 with the mappable ratio of 89.8% and the depth of 6.0.
The data analysis in this study was, unless otherwise stated, based
on the data from the merged three lanes. In the validation experi-
ment, we sequenced 10 new cfDNA samples using the same
method and the detail information of samples was listed in
Table S1, which showed that the mean value of total reads was
3.4 � 107 with the mappable ratio of 89.6% and the depth of 2.9.
3.2. Finding cancer diagnostic/prognostic markers from chromatin
accessibility of promoters

We showed the distribution of cfDNA in the whole genome by
calculating and normalizing the reads density in each 1-Mb win-
dow. The results revealed that the distribution of reads of different
samples’ cfDNA was greatly different through the whole genome
(Fig. 1A). In the previous study, we have confirmed that the NGS
data can be used to characterize the chromatin state of different
types of cfDNA [31]. In mechanism, only nucleosome-protected
genomic regions can be sequenced in the NGS of cfDNA [31]. To
identify normal or cancer samples by viewing the signal strength
of the reads distribution around the transcription start site (TSS),
we calculated the reads density of ± 5-kb region around TSSs of
all human genes and the average reads density using deeptools
(parameter: RPKM) for 20 cfDNA samples. The results showed that
a peak was formed around the TSS in normal samples, and a valley
was formed in the pre-operation cancer samples (Fig. 1B; Fig. S1).
Moreover, we performed a principal component analysis (PCA) of
reads density of ± 5-kb region around the TSSs of all human genes.
As a result, the cfDNAs of pre-operation ESCA patients could be
clearly distinguished from those of normal people by analyzing
the cfDNA data with PCA (Fig. 1C). We also sequenced 10 new
cfDNA samples to verify this result and got the consistent results
(Fig. S2).

In the previous study we have confirmed that the SALP-seq data
of cfDNA can be used to characterize the chromatin state of differ-
ent types of cfDNA. In this study, we differentiated cancer and nor-
mal samples by chromatin openness. The reads density of all
promoters (defined as the 1–kb region upstream TSS) was calcu-
lated for each sample. The results showed that there was a great
difference of reads density of promoters between normal cfDNA
samples and ESCA cfDNA samples (Fig. 2A). Notably, some promot-
ers showed extremely low reads density in all cancer samples but
high density in normal samples (Fig. 2B). There were 49 genes hav-
ing such a distinct feature. Through the clustering results of these
49 genes from the heatmap, it was clearly seen that the cancer
samples can be distinguished from the normal samples (Fig. 2B).
We calculated the reads density of promoters of the 49 genes in
the post-operation cancer samples. The results showed that the
reads density of promoters of most of these genes was significantly
increased in the post-operation cancer compared with pre-
operation cancer (Fig. 2C), indicating the effect of surgery. More-
over, we sequenced 10 new cfDNA samples to verify this result
and got the consistent results (Fig. 2D). These data suggested that
the chromatin accessibility of the promoters of these 49 genes can
be used as the diagnostic and prognostic markers for cancer.

Through database and literature search, we found that 15 (ge-
nes in red in Fig. 2B) of these 49 genes have been reported to be
closely associated with ESCA (Table S3). Therefore, we inferred that
the remaining 34 genes are newly discovered genes associated
with ESCA. To validate the relationship between these 49 genes
and ESCA, we downloaded the RNA-seq data (containing 163 ESCA
and 11 normal samples) of ESCA from The Cancer Genome Atlas
(TCGA) database for analysis. We found that the expression of most
of these genes were significantly up-regulated in cancer samples
(Fig. S3A). In the process of database and literature search, we
found that some of these 49 genes are not only related to ESCA,
but also associated with other cancers (Table S3). We downloaded
RNA-seq data of 23 cancers from the TCGA database to analyze the
relationship between these genes and various cancers. The results
showed that most of these genes were significantly up-regulated in
various cancers (Fig. S3B). The above results indicated that the
chromatin accessibility of promoters of the selected 49 ESCA-
associated genes is distinct between normal and cancer, and chro-
matin accessibility of these promoters can be also used to diagnose
and prognose cancer. To further understand the functional roles of
these genes in ESCA, we performed GO analysis. As a result, both
chromosome organization (GO: 0051276) and chromatin organiza-
tion (GO: 0006325) were significantly enriched, implying that
some of these genes play critical roles in regulating the chromo-
some or chromatin structure (Fig. S4A). In the GO term of chromo-
some organization, there were nine genes, including BRPF1, NIPBL,
GEN1, SUV39H1, HIST1H4E, INO80, PELO, WHSC1, and ING1. In the
GO term of chromatin organization, there were seven genes includ-
ing BRPF1, NIPBL, SUV39H1, HIST1H4E, INO80, WHSC1, and ING1.
Among the genes enriched in GO: 0051276 and GO: 0006325,
SUV39H1, INO80, WHSC1, and ING1 were known ESCA-
associated genes. Other enriched GO terms were related to regula-
tion of cell cycle (GO: 0051726), growth (GO: 0040007) and so on,
which all play an important role in cancer development (Fig. S4A).
Pathway annotation was used to screen out the altered biological
functions arising from the 49 selected genes. The results indicated
that these genes were mainly enriched in 5 pathways, including
Lysine degradation, mTOR signaling pathway, mRNA Surveillance
pathway, Insulin resistance, and Spliceosome (Fig. S4B).

3.3. Finding cancer diagnostic/prognostic markers from chromatin
accessibility of whole genome

To find ESCA-associated important regions from the whole gen-
ome, we calculated the reads density in each 1-kb window of the
whole genome, and then used MDA to screen out 88 ESCA-
associated regions. Most of these regions were non-coding
sequences, suggesting that these regions contain important regula-
tory elements (Fig. 3). Then we pinpointed the genomic location of
these regions, and found that 36.36% of these regions were located
in the distal intergenic regions (more than 10-kb from TSSs), and
25% of these regions were located in the Proximal regulatory
region (10-kb regions upstream TSSs) (Fig. 3, inset). It can also be
seen from the MDA diagram that distal elements (defined as occur-
ring inside of distal intergenic) were much more important than
promoter elements (defined as occurring inside of Proximal regula-
tory region) in the classification (Fig. 3), indicating that distal ele-
ments exhibited a greater specificity and wider dynamic range of
activity in association with cancer, whereas promoter element
accessibility was less cancer-specific. This functional specificity of
distal regulatory elements was also previously observed in healthy
tissues and in cancer [39,40].

We researched the ESCA-associated important regions that
were located in distal intergenic and proximal regulatory regions.
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The Fig. 4A showed the reads density in the ESCA-associated
important regions (including 32 distal intergenic and 22 proximal
regulatory regions) of each sample, which indicated that there was
a great difference between normal cfDNA samples and ESCA cfDNA
samples. In addition, we also calculated the reads density of the 54
regulatory regions in the post-operation cancer samples. The
results showed that the reads density of most of these regions
was increased in the post-operation cancer compared with pre-
operation cancer (Fig. 4B), showing the effect of surgery. These
data suggested that the chromatin accessibility of these genomic
regions can be used as the diagnostic and prognostic markers for
cancer. To further validate these markers, we sequenced 10 new
cfDNA samples to verify this result. As a result, all the consistent
results were obtained (Fig. 4C). These data also indicated that more
new caner-associated markers could be identified using the whole-
genome chromatin accessibility characterized with cfDNA.

To further verify the chromatin accessibility of these genomic
regions characterized with cfDNA using SALP-seq, we downloaded
the H3K27ac ChIP-seq data of TE7 ESCA cell lines from GEO with
the accession number GSE76861 and the ATAC-seq data of 19 ESCA
tissues derived from donors with diverse demographic features
from the TCGA database [38,39]. These data together with SALP-
seq data were compared by visualizing these regions (including
32 Distal Intergenic regions and 22 Proximal regulatory regions)
with UCSC genome browser. The results revealed that the
chromatin accessibility of these genomic regions characterized
with cfDNA using SALP-seq in this study were highly consistent
with those characterized with cancer cells and tissues using
H3K27ac ChIP-seq and ATAC-seq (Fig. S5).

Because these regions are non-coding regions and their chro-
matin accessibility are significantly changed, they should play reg-
ulatory functions in tumor by providing accessible binding sites to
transcription factors (TFs). We therefore searched the potential TF
binding sites in these regions using FIMO with the motif matrix
obtained from the HOCOMOCO (version 11) with default setting.
The results showed that these regions contained a large number
of TF binding sites (TFBSs). Moreover, we compared these regions
with the SEdb database, a comprehensive human super-enhancer
database. The results revealed that 17 of these 54 regions were
well known super-enhancer elements (Fig. 3).

In order to find the target genes regulated by the selected ESCA-
associated distal elements and promoter elements, we predicted
target genes for these genomic regions by using EnhancerAtlas
with parameter ‘‘Esophagus”. The results showed that these
regions were assigned to 104 genes (Fig. 3), 16 of which were also
present in the 49 genes identified above with promoter chromatin
accessibility, including LSM12, MAP4K1, SF3A2, SLC25A28, RCN2,
YIF1B, NCBP2, EIF1AD, LPGAT1, WHSC1, SUV420H1, ATP6V1A,
INO80, PPIB, MRPL45, and ING1. These data not only illustrated
the reliability of our results, but also indicated that more
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Fig. 2. Analysis of gene promoters. (A) The heat map and clustering of reads density of promoters with significant difference in chromatin accessibility in cfDNA samples. (B)
The heat map and clustering of reads density of promoters of 49 selected genes. The genes in red are known ESCA-associated genes. (C) The heat map and clustering of reads
density of promoters of 49 selected genes in the post-operation cancer cfDNA samples. (D) The heat map and clustering of reads density of promoters of 49 selected genes in
the 10 verification cancer cfDNA samples. Pre: pre-operation cfDNA; Post: post-operation cfDNA; Normal: normal cfDNA; Verification: 10 cfDNA samples of verification. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cancer-associated genes could be identified using the whole-
genome chromatin accessibility characterized with cfDNA. To fur-
ther validate these potential cancer-associated genes, we down-
loaded the RNA-seq data of ESCA from the TCGA database for
analysis. The results indicated that the expression of most of these
genes were significantly up-regulated in cancer samples (Fig. S6).
Through database and literature search, we found that 21 of these
104 genes have been reported to be closely associated with ESCA
(Fig. 3; Table S4). Therefore, we inferred that the others are newly
discovered genes associated with ESCA. The gene annotation
revealed that these genes were mainly associated with the
biological processes of apoptotic, metabolic, cell growth, and
translational initiation, and molecular function of histone lysine
N-methyltransferase activity and interferon activity (Fig. S7A).
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The Pathway annotation showed that these genes were mainly
enriched in 9 pathways, including signaling pathways of PI3K-
Akt, AMPK, Hippo, and Jak-STAT (Fig. S7B). These biological pro-
cesses, molecular functions and pathways all play important roles
in cancers.

3.4. Establishing classification model of ESCA based on the identified
ESCA-associated regions

To build a classification model for predicting ESCA, we then
analyzed 88 regions with the support vector machine (SVM;
e1071 package in R) algorithm [41]. The results revealed that the
established SVM model could accurately distinguish cancer sam-
ples from normal samples with an Area Under Curve (AUC) value
of 1.0 (Fig. 5A). To further improve the clinical applicability of
the classification model, after debugging and screening, we finally
selected top 24 ESCA-associated important regions to re-establish
the model. As a result, the re-established model could still accu-
rately distinguish cancer and normal samples with an AUC value
of 1.0 (Fig. 5B). The validation of the model with the later
sequenced cfDNA samples obtained good prediction results with
accuracy 93.8% (Fig. 5C). In order to explore the effect of the reads
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Fig. 4. Analysis of the selected 54 ESCA-associated important regions. (A) The heat map and clustering of reads density of ESCA-associated important regions (including 32
distal intergenic and 22 proximal regulatory regions) of each sample. (B) The heat map and clustering of reads density of ESCA-associated important regions in the post-
operation cancer cfDNA samples. (C) The heat map and clustering of reads density of ESCA-associated important regions in the 10 verification cancer cfDNA samples.
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Fig. 5. Classification of ESCA and normal cfDNA based on ESCA-associated important regions. (A) Results of classification of cancer and normal cfDNA samples using SVM
based on 88 ESCA-associated important regions. (B) Classification results based on top 24 ESCA-associated important regions. (C) Classification results of the verification data.
(D) Classification results of 1 � 107 reads that were extracted from each sample. (E) Classification results of 1 � 106 reads that were extracted from each sample. The picture
below shows the receiver operating characteristic curve (ROC).
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number on the model, we selected 1 � 106 and 1 � 107 reads from
20 firstly sequenced cfDNA samples and then predicted separately.
The results showed that the model still maintained a good predic-
tive effect at 1 � 107 reads (Fig. 5D–E), suggesting that the model
can be used to predict ESCA at lower cfDNA sequencing depths.

3.5. Characterizing ESCA-associated mutations with cfDNA

Mutations analysis of cfDNA with target or genome scale
sequencing was widely used in NIPT or liquid biopsy. We next ana-
lyzed ESCA-associated mutations with SALP-seq reads of cfDNA
samples. The results indicated that there were mutations in the
whole genome (Fig. 6A). We extracted mutational signatures of
20 cfDNA samples using 6 kinds of base substitutions (C > A,
C > G, C > T, T > A, T > C, and T > G). The results indicated that there
were variant levels of all these base substitutions in different indi-
viduals (Fig. 6B). The results showed that the pre-operation ESCA
cfDNA had lower C > T and T > C transitions than normal cfDNA,
but had higher C > G and C > A transversions than normal cfDNA
(Fig. 6C). There were also significant differences of transitions
(Ti) and transversion (Tv) frequencies between pre-operation ESCA
and normal samples (Fig. 6D). Moreover, there was a significant
difference of Ti/Tv ratio between pre-operation ESCA and normal
samples (Fig. 6E). Importantly, the surgical treatment evidently
changed the seven mutation features (Fig. 6C–E). The seven muta-
tion features can be developed into diagnostic markers for ESCA
liquid biopsy. To pinpoint the genomic location of the single
nucleotide variant (SNV), we systematically annotated the SNV
using ANNOVAR [34]. The results indicated that most of the SNVs
were located in distal intergenic and intronic regions (Fig. 6F).

To find the mutations in coding sequences of all genes, we ana-
lyzed mutations in each cfDNA samples. The results indicated that
there were large amount of mutations in thousands of genes in
pre- and post-operated ESCA cfDNAs and normal cfDNA
(Table S5). To test whether the clinically relevant mutations can
be detected by the cfDNA NGS, we compared these genes identified
by cfDNA sequencing with the MSK-IMPACT panel genes (468
genes). MSK-IMPACT can be used to identify clinically relevant
somatic mutations, novel non-coding changes, and mutational
features shared between common and rare tumor types, which



10

20

30

T>C C>T C>G C>A T>A T>G

%
M

ut
at

io
ns Type

Normal

Post

Pre

0

25

50

75

100

cfD
NA

1
cfD

NA
2

cfD
NA

3
cfD

NA
4

cfD
NA

5
cfD

NA
6

cfD
NA

7
cfD

NA
8

cfD
NA

9
cfD

NA
10

cfD
NA

11
cfD

NA
12

cfD
NA

13
cfD

NA
14

cfD
NA

15
cfD

NA
16

cfD
NA

17
cfD

NA
18

cfD
NA

19
cfD

NA
20

cfDNA Samples

%
M

ut
at

ion
s

Type
C>A
C>G
C>T
T>C
T>A
T>G

1

2

3
4

5

6

7

8

9
10

11

12

13
14 15 16 17

18
19

20
21

22
X

Y

30

40

50

60

70

Ti Tv

%
M

ut
at

io
ns Type

Normal

Post

Pre

1.5

2.0

2.5

Normal Post Pre

R
at

io
 o

f T
i /

 T
v

48.98%

36.72%

5.46%

0.80%
0.16%
0.80%

0.70%

6.02%

0.36%

Pre
distal_intergenic

intronic

Proximal_regulatory_region

exonic

UTR5

UTR3

downstream

ncRNA_intronic

ncRNA_exonic

48.64%

36.86%

5.64%

0.84%
0.18%
0.80%

0.69%

5.98%

0.37%

Post
distal_intergenic

intronic

Proximal_regulatory_region

exonic

UTR5

UTR3

downstream

ncRNA_intronic

ncRNA_exonic

48.52%

37.06%

5.56%

0.83%
0.22%
0.80%
0.69%

5.94%

0.38%

Normal
distal_intergenic

intronic

Proximal_regulatory_region

exonic

UTR5

UTR3

downstream

ncRNA_intronic

ncRNA_exonic
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authorized by the Food and Drug Administration of USA in 2017
[42]. Finally, we found that 37 mutated genes uniquely existed in
pre-operation patients (Fig. S8A; Table S6), suggesting that these
genes might play a certain role in ESCA. These 37 genes contained
many well-known cancer-related genes, such as PTEN, MYC, EZH1,
IDH2, AKT2, and FGFR2.

We then performed functional enrichment analysis on these 37
genes. GO analysis revealed that these genes were significantly
associated with cell death regulation, transcriptional activator
activity, RNA polymerase II transcription regulatory region
sequence-specific binding, tissue development and so on
(Fig. S8B). The KEGG pathway analysis demonstrated that these
genes were significantly enriched in Pathways in cancer, Signaling
pathways regulating pluripotency of stem cells, Central carbon
metabolism in cancer, Transcriptional misregulation in cancer,
and mTOR signaling pathway (Fig. S8C). The GAD DISEASE CLASS
analysis demonstrated that these genes were significantly enriched
in CANCER, REPRODUCTION, and DEVELOPMENTAL (Fig. S8D).
Moreover, the GAD DISEASE analysis revealed that these genes
were significantly associated with esophageal cancer (Fig. S8D).
The UP KEYWORDS analysis of DAVID demonstrated that these
genes were significantly enriched in Disease mutation, Transcrip-
tion regulation, Tumor suppressor and Proto-oncogene (Fig. S8E).
The UP SEQ FEATURE analysis of DAVID demonstrated that these
genes were significantly enriched in mutagenesis site and
sequence variant (Fig. S8E).

4. Discussion

In this study, we performed the NGS library construction and
sequencing of cfDNA samples with SALP-seq that was developed
by our laboratory [30]. As a new single-stranded DNA library
preparation and sequencing technique, SALP-seq is particularly
suited to construct the NGS libraries for highly degraded DNA sam-
ples such as cfDNA [30,31]. Moreover, by using the barcode T adap-
tors, this technique is competent to analyze many cfDNA samples
in a high-throughput format [31]. In this study, we used the
SALP-seq to analyze as many as 30 cfDNA samples successfully.
Most of samples obtained over 80% mappable reads (Tables S1
and S2). Both ESCA-associated epigenetic and genetic biomarkers
were successfully identified by analyzing the obtained sequencing
data. The results demonstrated that this technique can be reliably
applied to the future cfDNA NGS researches.

This study sheds important new insights on the clinical worth
of cfDNA. In this study, we analyzed the cfDNA NGS reads data
with machine learning algorithms. The results indicated that
the main ESCA-associated epigenetic and genetic markers could
be effectively identified by comparing the cancer and normal
cfDNA samples. Especially, the cfDNA samples could be clearly
classified by using the identified epigenetic markers (Figs. 2
and 4). Moreover, the promoter and genome-wide markers
obtained highly consistent classification results (Figs. 2 and 4),
indicating the reliability of these epigenetic markers in discrim-
inating cfDNA samples. Importantly, the SVM model established
with the epigenetic markers could be used to accurately distin-
guish cancer cfDNA samples from normal cfDNA samples with
a high AUC value, even by using as few as 24 most important
epigenetic markers at low cfDNA sequencing depth (1 � 107

reads/sample) (Fig. 5). These results reveal the important appli-
cation of cfDNA in the systematic finding of cancer-associated
markers, especially epigenetic markers associated with chro-
matin accessibility, at the genome-wide scale.

This study provides a new pipeline for finding new molecular
markers for cancers from cfDNA by combining SALP-seq and
machine learning. In recent years, as a good material for cancer liq-
uid biopsy, plasma cfDNA has been widely analyzed by NGS for
finding new molecular markers for cancer diagnosis such as frag-
ment size [43,44], methylation [45–47], and end coordinate
[48,49]. However, the size-based plasma DNA diagnostics still
faced some limitations that may challenge its wide application
[50]. The methylation detection has to do cell-free methylated
DNA immunoprecipitation and high-throughput sequencing
(cfMeDIP-seq) [45]. In comparison with these reported cfDNA-
based methods, our method is much simpler and easier. Only
two steps are needed. One is SALP-seq and the other is machine
learning. Our method needs no pre-treatments to cfDNA such as
size selection, target enrichment, chemical treatment (e.g. bisulfite
conversion), and immunoprecipitation, which not only avoids the
introduction of more artificial biases in cfDNA analysis, but also
greatly simplifies the detection process. In the pipeline developed
by this study, the cfDNA NGS reads data were analyzed with
machine learning, this is different from the above mentioned pre-
vious studies. These studies did not employ machine learning to
treat the NGS data. The results obtained by this study indicated
that machine learning can play important roles in cfDNA NGS data
analysis.

By using post-operation cfDNA samples, this study showed that
the identified ESCA-associated epigenetic and genetic markers are
tumor-associated. In other words, these markers should come from
tumor but not from other tissues such as leukocytes, because these
markers changed in response to surgical operation. It was found
that most of these markers became disappeared after surgery
(Figs. 2D and 4C), allowing the patient’s cfDNA to be classified into
or near normal cfDNA (Figs. 2D and 4C). If these markers come
from other tissues such as leukocytes, they should have no such
evident response to surgery. Therefore, this study revealed that
these markers not only come from tumor, but also are beneficial
for cancer prognosis. In other words, these markers can be used
to evaluate and track the effects of cancer treatment noninvasively.
In the later visiting, five patients provided the post-operation
cfDNA samples still survive at present after the surgery in 2017,
suggesting the good prognosis with these markers.

This study sheds important new insights on the potential regu-
latory and molecular mechanisms of tumorigenesis of ESCA. By
analyzing and comparing the cfDNA NGS data, this study identified
49 ESCA-associated promoters and 88 ESCA-associated genome-
wide regions. These ESCA-associated chromatin regions are all
non-coding DNAs. Importantly, all these regions became more
accessible in ESCA, suggesting that these regions play critical regu-
latory roles in tumorigenesis of ESCA. Especially, many of these
ESCA-associated regions are distal intergenic (32, 36.36%) and
proximal regulatory regions (22, 25%) (Fig. 3). Moreover, by com-
paring these regions with a comprehensive human super-
enhancer database, the SEdb database, 17 of these 54 regions were
well known super-enhancer elements. Additionally, it was found
that the SVM model established with the 24 most important
regions could still be used to accurately distinguish cancer samples
from normal samples with a high AUC value. In these 24 regions,
there are 14 distal intergenic regions (58.3%), 8 proximal regula-
tory regions (33.3%), and only 2 intronic regions (8.3%). By compar-
ing with the chromatin accessibility level characterized by the
H3K27ac ChIP-seq of TE7 ESCA cell lines and the ATAC-seq of ESCA
tissues [38,39], it was found that the chromatin accessibility of
these regions characterized by cfDNA is highly consistent with
those characterized by other methods in ESCA cells and tissues
(Fig. S5). Additionally, these regions contain a large number of
TFBSs. Therefore, these non-coding ESCA-associated chromatin
regions should play critical regulatory roles in tumorigenesis of
ESCA. By assigning these regions to genes, 153 (49 plus 104)
ESCA-associated genes were identified, in which 104 and 49 genes
are connected with the genome-wide regions and promoters,
respectively, and 16 are connected with both regions. It was found
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that 15 of 49 genes and 21 of 104 genes have been reported to be
closely associated with ESCA (Figs. 2B and 3). For example, studies
have shown that WHSC1 has oncogenic activity and can cause pro-
tein lysine methyltransferases dysregulated in ESCA and other can-
cers [51]. Targeting WHSC1, specific inhibitors are currently
developed for diagnosis and treatment of cancer, such as MCTP39
and LEM-06, which are in preclinical trials [51]. Furthermore, ele-
vated expression of WHSC1 is often observed in many types of
human cancers, and expression product of WHSC1 is essential for
the growth of cancer cells [52,53]. The gene EIF5A2 was related
to not only ESCA [54–56], but also breast cancer [57], lung cancer
[58,59], bladder cancer [60,61], stomach cancer [62,63], oral cancer
[64], liver cancer [65], and colorectal cancer [66]. By checking the
expression of these genes detected in tumors (RNA-seq data in
TCGA), most of these genes are significantly up-regulated in
tumors (Figs. S3 and S6), in consistent with the increased chro-
matin accessibility of these regions revealed by cfDNA in this
study. These results indicated that these ESCA-associated regions
play regulatory roles in ESCA (Figs. S3A and S6) and other cancers
(Fig. S3B). The gene annotation also revealed that these genes are
also closely related to ESCA and other cancers (Figs. S4 and S7).
Therefore, most of genes identified by this study are newly discov-
ered genes associated with ESCA. For example, the newly discov-
ered ESCA-associated gene, JAG2, plays a role in NOTCH signaling
and Hedgehog signaling [67–69]. Dysregulated NOTCH signaling
and Hedgehog signaling are both closely related to the develop-
ment of cancer (e.g. ESCA) [68,70], further explaining the correla-
tion between JAG2 and ESCA. The TCGA RNA-seq data revealed
that JAG2 was significantly up-regulated in ESCA tissue (Fig. S6).
Importantly, the JAG2-connected region identified in this study
had the highest importance value of MDA (Fig. 3). Thus, targeting
JAG2 may offer a promising therapeutic strategy for ESCA treat-
ment. Other genes could also be potential targets for ESCA diagno-
sis and treatment.

Mutation of the cfDNA samples was analyzed in this study. The
C > T and T > C transitions were the major SNVs (Fig. 6B). The C > T
transitions may arise by replication of uracil generated by APOBEC
cytidine deamination [71,72], while the cause of T > C currently has
no clue. The C > G, C > A, and potentially additional C > T substitu-
tions may be introduced by error-prone polymerases following
uracil excision and generation of abasic sites by uracil-DNA glyco-
sylase (UNG) [71,72]. Further analysis revealed that the differences
between pre-operation ESCA samples and normal samples reached
statistically significant level in the frequencies of Ti and Tv
(Fig. 6D). Moreover, there was significant difference in the frequen-
cies of Ti/Tv ratio between pre-operation ESCA samples and normal
samples (Fig. 6E). These mutation characteristics of post-operation
ESCA samples were closer to the normal samples, although they
did not reach the same level (Fig. 6C–E). These results revealed that
seven features, including the frequencies of C > T, T > C, C > G, C > A,
Ti, Tv, and Ti/Tv ratio, could be developed as diagnostic markers for
ESCA liquid biopsy. By analyzing mutations of cfDNA NGS data, this
study finally identified 37 genetically altered ESCA-specific genes.
The functional enrichment analysis showed that these genes have
close relationships with the occurrence and development of cancer
(Fig. S8).

In this study, to find the reliable differential characters between
normal and cancer cfDNA samples, we used all mappable reads
with a mean depth of 6 (Table S1). In the validation experiment,
we sequenced 10 more cfDNA samples with a mean depth of 2.9
(Table S1). Clearly, the validation samples were sequenced with
half depth of first 20 samples. At this seqeuncing depth, the valida-
tion samples were accurately identified (Figs. 2D and 3C). More-
over, the first 20 samples and 10 validation samples were
sequences with various depth, ranging from 10.9 (cfDNA20) to
0.9 (cfDNA22) (Table S1), however, all samples were accurately
differentiated (Figs. 2D and 3C), indicating that as low as mappable
reads of a depth of 0.9 could be used to differentiate normal and
cancer cfDNA samples. This is also in agreement with the subse-
quent result of the effect of the reads number on the classification
model, which indicated that the model still maintained a good pre-
dictive effect at a sequencing depth as low as 1 � 107 reads (about
a depth of 1.0) (Fig. 5D–E).

The study was performed with a relatively small sample size at
a single institution. This study analyzed 20 cfDNA samples includ-
ing 4 cfDNA samples from normal people, 5 cfDNA samples from
post-operation cancer patients, and 11 cfDNA samples from pre-
operation cancer patients, in which one normal cfDNA sample
could not be used in the subsequent bioinformatics analysis due
to too limited sequencing depth. In the verification study, only
10 new cfDNA samples from pre-operation cancer patients were
used. Therefore, more normal and post-operation cfDNA samples
should be included in the future study for the further validation
of the current findings. It would be of value if future studies could
be designed to address the clinical value of the detection of cfDNA
biomarkers in larger sample cohorts. Additionally, only the cfDNA
samples from one kind cancer, ESCA, were investigated. Therefore,
this study only identified ESCA-associated markers, whether these
markers are ESCA specific should be further investigated by analyz-
ing cfDNA samples from various cancers. However, this more com-
plex investigation can be effectively performed using the same
pipeline, SALP-seq plus machine learning.
5. Conclusions

We have successfully analyzed many cfDNA samples from ESCA
and normal participants by combining SALP-seq and machine
learning, identifying both epigenetic and genetic biomarkers of
ESCA. These biomarkers can be used to effectively classify cfDNAs
from ESCA patients and normal participants. These biomarkers also
shed important new insights on the potential regulatory and
molecular mechanisms of tumorigenesis of ESCA. This study thus
provides a new pipeline for finding new molecular markers for
cancers from cfDNA by combining SALP-seq and machine learning.
Finally, this study sheds important new insights on the clinical
worth of cfDNA.
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