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Opinion statement

Acute lymphoblastic leukemia (ALL) is the most frequent type of pediatric cancer with a
peak incidence at 2–5 years of age. ALL frequently begins in utero with the emergence of
clinically silent, preleukemic cells. Underlying leukemia-predisposing germline and ac-
quired somatic mutations define distinct ALL subtypes that vary dramatically in treatment
outcomes. In addition to genetic predisposition, a second hit, which usually occurs
postnatally, is required for development of overt leukemia in most ALL subtypes. An
untrained, dysregulated immune response, possibly due to an abnormal response to
infection, may be an important co-factor triggering the onset of leukemia. Furthermore,
the involvement of natural killer (NK) cells and T helper (Th) cells in controlling the
preleukemic cells has been discussed. Identifying the cell of origin of the preleukemia-
initiating event might give additional insights into potential options for prevention.
Modulation of the immune system to achieve prolonged immunosurveillance of the
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preleukemic clone that eventually dies out in later years might present a future directive.
Herein, we review the concepts of prenatal origin as well as potential preventive ap-
proaches to pediatric B cell precursor (BCP) ALL.

Introduction

Leukemia is a life-threatening disease caused by uncon-
trolled proliferation of blood and blood precursor cells.
Depending on the cell type of clonal expansion, it can be
segregated into different subtypes that have quite dis-
tinct incidences, pathogenesis, treatment options, and
outcomes [1]. Approximately one-third of all cancers
diagnosed below the age of 18 are leukemia, with about
74% of these being acute lymphoblastic leukemia (ALL,
4.3/100,000 children G15 years) in Germany [2]. ALL

peaks between the age of 2 and 5 years and has a good
outcome inmost cases. However, about 10%of children
present with poor prognosis, based on subtype and risk
factors like advanced age [3, 4]. Herein, we review and
discuss recent studies and concepts of prenatal patho-
genesis of leukemia, with a special focus on infections or
m i c r o b i o t a i n f l u e n c i n g a n t i - l e u k em i c
immunosurveillance.

Genetic susceptibility to childhood B cell precursor ALL (BCP-ALL)

Childhood B-ALL arises through a complex interplay between inherited genetic
background and acquired somatic alterations [4]. The genetic background of
patients includes alterations in cancer-predisposing genes, single nucleotide
polymorphisms (SNPs), and cancer predisposition syndromes that confer sus-
ceptibility to leukemia [5]. In addition to the underlying inherited genetics,
prenatal chromosomal aberrations, such as aneuploidy and interchromosomal
translocations [6], give rise to preleukemic cells. Further oncogenic events in
these clinically silent cell clones, most likely triggered by environmental factors
in early childhood, are required to ultimately lead to overt leukemia [4].

Leukemia-predisposing germline mutations

Several germline mutations which confer susceptibility to leukemia develop-
ment have been described [7••]. Most of the affected genes are also targets of
somatic alterations in ALL.

Cancer-predisposing gene mutations
The transcription factor ETV6 is an important regulator of hematopoiesis [8].
Families with ETV6 germline mutations often present with thrombocytopenia
and susceptibility to hematologic malignancies, among which ALL is the most
frequent [9, 10]. Most ALL cases with germline ETV6 mutations belong to the
hyperdiploid subtype [9]. ETV6 germline mutations include missense, frame-
shift, nonsense mutations, deletions, and insertions, leading to a loss of
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function of ETV6 [5, 11]. A cluster of mutations occurs in the DNA-binding E26
transformation-specific (ETS) domain of ETV6, leading to dominant negative
effects and transcriptional repression [5, 7, 12].

PAX5, located at 9p13, encodes for the B cell lineage transcription
factor PAX5 which is important for B-lymphoid lineage maturation [13].
So far, only few families with germline PAX5 mutations have been
described, presenting with incomplete penetrance [14, 15]. Reported
missense mutations of PAX5 occur at amino acid positions G183
(c547G9A, p.Gly183Ser) or R38 (c113G9A, p.Arg38His), both resulting
in decreased PAX5-mediated transcriptional repression [14–16]. Carriers
of germline PAX5 mutations are susceptible to acquiring ALL, but the
presence of the mutation does not seem to be sufficient for develop-
ment of overt leukemia. A second mutational hit is required, e.g.,
inactivation of the wild-type PAX5 allele by deletion of 9p, formation
of a 9q isochromosome, or dicentric 9q chromosome [14–16].

IKZF1 encodes for the hematopoietic zinc-finger (ZF) transcription factor
IKAROS. Germline IKZF1 mutations have been described in families with
common variable immunodeficiency (CVID) [17] and in cases of familial and
sporadic ALL [18]. Mutations include missense, nonsense, and frameshift var-
iants and are located mostly outside the ZF motifs [5]. IKZF1mutations within
its DNA-binding domain affect transcriptional activation of its target genes,
whereas truncating mutations may have an impact on dimerization [18]. The
majority of identified IKZF1 germline variants are not restricted to specific
functional domains and were shown to impact subcellular localization, adhe-
sion, and anti-leukemic drug efficacy [18].

Cancer predisposition syndromes
Li-Fraumeni syndrome is an autosomal dominant disorder [19], usually
caused by TP53 germline mutations, that presents with high susceptibil-
ity to cancers like breast cancer, brain tumors, and ALL, predominantly
low hypodiploid ALL [7, 20, 21]. Low hypodiploidy is characterized by
32–39 chromosomes and is present in approximately 1% of childhood
ALL cases [7, 22]. Occurrence of germline TP53 mutations is associated
with older age at diagnosis and poor outcome [23]. TP53 encodes the
tumor suppressor protein p53 and is one of the most frequently mutat-
ed genes in cancer. The majority of TP53 mutations occur in its DNA-
binding or nuclear export domains [7, 20].

Children with Down syndrome or Noonan syndrome are also at
higher risk of developing acute leukemia, primarily acute myeloid leu-
kemia (AML) [24, 25]. Down syndrome is characterized by trisomy of
chromosome 21, which may affect leukemia development [24]. About
1% of children with Down syndrome will develop ALL or AML [24].
Noonan syndrome is an autosomal dominant disorder that belongs to
the family of RASopathies and presents with symptoms including facial
dysmorphologies, growth retardation, heart defects, and skin manifesta-
tions [25]. Rarely, germline mutations in PTPN11, encoding the phos-
phatase SHP2, and in SOS1, encoding the guanine nucleotide exchange
factor SOS1, have been observed in patients with Noonan syndrome,
who subsequently developed ALL [25].
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Leukemia-predisposing SNPs
In addition to the rare but highly penetrant germline mutations and cancer
predisposition syndromes described here, genome-wide association studies
(GWASs) have identified further germline variations that are frequent but show
low penetrance. These are mostly SNPs, which, cumulatively, may confer a
higher risk for ALL development. Although these risk alleles individually pro-
duce a modest effect and may be of limited clinical significance, in aggregate
they can give rise to as much as a ninefold increase in leukemia risk for subjects
with risk alleles inmultiple genes compared to subjects with no risk alleles [26].
Genes involved include IKZF1, CDKN2A, PIP4K2A, LHPP, ELK3, GATA3,
ARID5B, CEBPE,MYC, ERG, and TP63 [7, 27–30], with the SNPs being located
in the vicinity of these genes and influencing gene expression. Some of these
SNPs are associated with distinct ALL subtypes or genetic ancestry. Examples are
an intronic SNP in GATA3 (dbSNP: rs3824662) that is associated with Phila-
delphia chromosome (Ph)-like ALL and poor outcome [31] and a risk locus in
TP63 (dbSNP: rs17505102) that is associated with ETV6-RUNX1+ ALL [28].

Prenatal somatic mutations in childhood BCP-ALL

Fusion genes generated by interchromosomal translocations are recurrent ge-
netic alterations in pediatric BCP-ALL [32]. Several studies indicate that these
translocations frequently arise in utero, giving rise to preleukemic cells. The first
indications that ALL has prenatal origins were reports of concordant BCP-ALL in
monozygotic twins [33–37]. In these cases, preleukemic cell clones arising in
one twin spread to the other twin via themonochorionic placenta, as confirmed
via the identification of shared genetic lesions, immunoglobulin (Ig), or T cell
receptor (TCR) rearrangements in the leukemic cells of both twins [38]. Iden-
tification of genomic breakpoints in neonatal blood spots (Guthrie cards) or
cord blood further corroborates the prenatal origin of preleukemic lesions [39–
45]. Altogether, in utero development has been shown for several BCP-ALL
subtypes, including high hyperdiploid ALL, ETV6-RUNX1, BCR-ABL1, TCF3-
PBX1, and KMT2A rearrangements (as reviewed in [3•]).

Hyperdiploidy
With up to 30% of cases, high hyperdiploidy is the most common genetic
subtype in childhood BCP-ALL, characterized by the gain of chromosomes (950
chromosomes) [22, 46]. While other tri- or tetrasomies have been reported,
chromosomal gains typically include chromosomes X, 4, 6, 10, 14, 17, 18, and
21 [47]. The hyperdiploid genotype is likely generated by a single abnormal
mitosis leading to simultaneous gain of chromosomes [48]. Leukemia suscep-
tibility in high hyperdiploid ALL is driven by gene dosage effects [47, 49, 50]
that impact chromatin architecture, e.g., by weakening topologically associating
domain (TAD) boundaries [51•].

ETV6-RUNX1
Themost common chromosomal translocation of pediatric ALL, accounting for
about 20% of cases, is t(12;21)(p13;q22) [52]. This translocation leads to the
fusion of two transcription factors involved in normal hematopoiesis, ETV6 and
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RUNX1. Although the ETV6-RUNX1 translocation has been detected in a large
number of healthy neonates (1-5%), leukemia incidence among carriers is
much lower (0.2–1%) [3, 43]. The fusion gene has weak oncogenic potential
that manifests itself in a low concordance rate of about 10% in monozygotic
twins [38]. ETV6-RUNX1 acts as an oncogenic transcription factor and leads to a
specific preleukemic phenotype characterized by a partial block of B cell differ-
entiation and aberrant co-expression of myeloid markers [53]. Recurrent post-
natal, leukemia-inducing mutations include ETV6 deletions (≈70% of cases),
RUNX1 gain (23%), and extra der(21)t(12;21) (10%) [54].

BCR-ABL1
BCP-ALL with t(9;22)(q34;q11), also referred to as Ph+ ALL, is present in ≈2%
of pediatric ALL, but is significantly more common in adults [22, 55]. The
majority of pediatric patients with BCR-ABL1 fusion genes harbor the p190
BCR-ABL1 subtype [56]. This chromosomal translocation leads to the forma-
tion of the BCR-ABL1 oncogene, encoding for a tyrosine kinase. While high
hyperdiploidy and ETV6-RUNX1 are associated with a favorable treatment
outcome [57], BCR-ABL1 confers a poorer outcome [58]. A common
cooperating oncogenic lesion in BCR-ABL1+ ALL is the deletion of the B-
lineage transcription factor IKZF1 (in 980% of cases) [59].

TCF3-PBX1
The t(1;19)(q23;p13) translocation encoding the TCF3-PBX1 fusion gene is
present in ≈4% of childhood ALL cases [55, 60]. TCF3-PBX1+ ALL is associated
with a good prognosis but frequent central nervous system (CNS) relapse [61].
Like ETV6-RUNX1, the TCF3-PBX1 fusion protein has low oncogenic potential
and requires secondary, cooperating mutations for overt leukemia to develop
[62].

KMT2A rearrangements
KMT2A (orMLL: mixed-lineage leukemia) rearrangements of 11q23 with other
chromosomes are typically found in infant BCP-ALL (children G1 year) [34, 63].
KMT2A-rearranged leukemia often present with CNS involvement and are
associated with poor treatment outcome [63]. Fusion genes involving KMT2A
are likely sufficient for leukemia development, as suggested by a high concor-
dance rate in monozygotic twins [38] and rare detection of secondary, cooper-
ative mutations [64].

The preleukemic cell of origin in childhood BCP-ALL

Investigation of early BCP-ALL development is invaluable in identifying
new targeted treatment options and approaches to preventing leukemic
transformation. BCP-ALL originates in a single cell, with subsequent
clonal expansion of premalignant cells that may acquire more malignant
traits. Due to the covert early etiology of the disease and the complexity
of prenatal leukemic development, identifying and characterizing the
BCP-ALL cell of origin remains challenging. Several studies have tried
to narrow down the cell in which the first preleukemia-initiating event
preferentially occurs (Table 1). Although B cell blasts of different BCP-
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Table 1. BCP-ALL preleukemia-initiating cells suggested by different studies (selection)

ALL
subtype

Year Study Methods Proposed
preleukemia-initiating
cell

Hyperdiploid 1997 Quijano et al.
[67]

FISH detection of hyperdiploid cells in
FACS-sorted cell populations

Stem cell
(CD34+CD33−CD38−CD19−)

1999 Kasprzyk et al.
[68]

FISH detection of hyperdiploid cells in
FACS-sorted cell populations

Lymphoid-committed
progenitor cell

ETV6-RUNX1 2002 Hotfilder et al.
[69]

FISH and RT-qPCR detection of ETV6-RUNX1 in
FACS-sorted cell populations,
colony-forming assays

CD19+ lymphoid progenitor

2004 Cox et al. [70] Long-term in vitro culture and
transplantation of FACS-sorted cell
populations into mice

CD34+CD10− or CD34+CD19−

cell

2008 Hong et al.
[71]

FISH detection of ETV6-RUNX1 in FACS-sorted
cell populations, transplantation of sorted
cells into mice

CD34+CD38−/lowCD19+ cell

2014 Alpar et al.
[72]

Sequencing of Ig/TCR loci in blast cells of
monozygotic twins

Pro B cell or stem cell upstream
of RAG1/2+ B-lineage cells

2018 Böiers et al.
[53]

In vitro differentiation and transcriptome
analysis of an ETV6-RUNX1+ hiPSC model

CD19-IL7R+ fetal cell
(lympho-myeloid
potential)

BCR-ABL1 2005 Hotfilder et al.
[73]

FISH and RT-qPCR detection of BCR-ABL1 in
FACS-sorted cell populations,
colony-forming assays

lymphoid-committed stem
cell (CD34+CD19−)

2005 Castor et al.
[74]

FISH detection of BCR-ABL1 in FACS-sorted
cell populations, transplantation of sorted
cells into mice

Committed B cell progenitor
(p190 BCR-ABL1)

2017 Hovorkova
et al. [75]

MRD analysis by PCR and detection of Ig/TCR
rearrangements

Multipotent hematopoietic
progenitor (in cases of
CML-like disease)

TCF3-PBX1 2002 Wiemels et al.
[65]

detection of breakpoint sequences (DNA from
Guthrie cards), analysis of Ig/TCR loci

Pre B cell (potential
postnatal origin)

2008 Tsai et al. [76] analysis of publicly available breakpoint
sequences

Pro B/pre B cell

2015 Fischer et al.
[66]

FISH and RT-qPCR detection of TCF3-PBX1 in
FACS-sorted cell populations

Lymphoid-committed cell

KMT2A-r 2005 Hotfilder et al.
[73]

FISH and RT-qPCR detection of KMT2A-AFF1+

in FACS-sorted cell populations,
colony-forming assays

Lymphoid-committed stem
cell (CD34+CD19−)

2016 Barrett et al.
[77]

Analysis of fetal cell populations of
KMT2A-AFF1+ mice, colony-forming assays,
repopulation assays

Fetal liver lymphoid-primed
multipotent progenitor
(LMPP)

2019 O’Byrne et al.
[78•]

single-cell transcriptomics, colony-forming
assays

Fetal pre-pro B progenitor
(CD10−)

FACS fluorescence-activated cell sorting, FISH fluorescence in situ hybridization, Ig immunoglobulin, KMT2A-r KMT2A rearrangements, RT-qPCR
reverse transcription quantitative polymerase chain reaction, TCR T cell receptor, RAG recombination activating gene, hiPSC human induced
pluripotent stem cell, IL7R interleukin-7 receptor, MRD minimal residual disease, CML chronic myeloid leukemia
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ALL subtypes often correspond to distinct developmental stages of nor-
mal B cell hematopoiesis, the first oncogenic event might occur at a
different developmental stage. A subsequent differentiation arrest at a
later cell stage or dedifferentiation of preleukemic cells place them
downstream or upstream of their cell of origin. Dedifferentiation of
preleukemic cells was for instance proposed for TCF3-PBX1 transloca-
tions [65, 66].

An increasing number of studies provide evidence for the in utero origin of
common BCP-ALL chromosome aberrations (as reviewed in [3•]). This suggests
that preleukemic cells may arise in an early progenitor cell during fetal devel-
opment, e.g., in the bone marrow or fetal liver.

Ig and TCR gene rearrangements in BCP-ALL blast cells have been
used as markers to investigate the clonal origin of leukemic cells. These
markers have been identified in a large number of BCP-ALL patients
(990%) [79, 80]. However, given that recombination activating gene
(RAG)-driven rearrangements take place continually during clonal evolu-
tion of BCP-ALL [81], Ig/TCR gene status may not reflect the
preleukemia-initiating cell. Shared clonal Ig and TCR gene rearrange-
ments in twins with concordant BCP-ALL might give better insight, as
shown in studies of twins with concordant ETV6-RUNX1+ ALL that
identified pro B cells or RAG1/2− stem cells as potential cells of origin
[72, 82].

Lineage switching upon relapse has been described in BCP-ALL, mostly for
KMT2A-rearranged or BCR-ABL1+ ALLs [83, 84]. In the latter case, a subgroup of
patients carrying the fusion gene presented with chronic myeloid leukemia
(CML)-like disease, pointing to a multipotent progenitor cell [75]. Likewise,
ambiguous expression of lymphoid and myeloid lineage markers, as observed
in many BCP-ALL patients [85], might point to an early progenitor cell with
lympho-myeloid potential. Recently, lympho-myeloid precursor origin has
been suggested for ETV6-RUNX1+ ALL, due to aberrant co-expression of mye-
loid markers observed in an ETV6-RUNX1+ human-induced pluripotent stem
cell (hiPSC) model [53].

Interleukin-7 receptor α (IL-7Rα) mutations in BCP-ALL
development

IL-7Rα (encoded by the IL7R gene) is an important factor for lymphoid
development. Together with the interleukin-2 receptor gamma (IL-2Rγ),
it forms the IL-7 receptor (IL-7R) [86]. Recently, several groups have
described activating mutations in IL7R as being involved in the initia-
tion and development of BCP-ALL [87–89]. Inactivating mutations of
IL7R are associated with severe combined immunodeficiency (SCID).
SCID patients lack T cells. In mice, SCID manifests in both B and T
cell absence [90]. In contrast, activating IL7R mutations have been
observed in ALL, especially in Ph-like and PAX5 P80R subtypes. Using
a conditional knock-in mouse model, Almeida et al. showed that phys-
iological levels of mutant IL-7Rα were sufficient to generate preleukemic
B cell precursors and to initiate leukemia resembling the human Ph-like
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and PAX5 P80R ALL subtypes [87]. Thomas et al. generated a genetically
engineered mouse model with B cell-intrinsic expression of mutant IL7R
that presented with development of BCP-ALL [88]. In an elegant study,
Geron et al. transduced human CD34+ hematopoietic cells with mutant
IL-7Rα. After transplantation into NOD/LtSz-scid IL-2Rγnull mice, a
preleukemic state with retained self-renewal capacity developed [89••].
In all three studies, additional mutations acquired during leukemia
development were observed. These led to upregulation of IL-7R signaling
(via the JAK/STAT5 or the PI3K/mTOR pathway), upregulation of onco-
genes (e.g., MYC, BCL2), and downregulation of tumor suppressors
(including IKZF1) [87–89]. Additionally, CDKN2A was silenced [89••],
and recurrent somatic KRAS mutations which cooperate with mutant
IL7R were observed [87, 88].

Taking all this together, a clear leukemia-initiating effect of constitutively
active IL-7Rα could be observed in different mouse models as well as in human
hematopoietic progenitors, with similarities to Ph-like and/or PAX5 P80R BCP-
ALL subtypes. However, further studies are needed to fully understand how the
interplay with other mutations leads to the development of overt leukemia.

External factors for the development of leukemia

For the development of overt leukemia, a multifactorial etiology is proposed
where a combination of genetic susceptibility and external factors induces
leukemic transformation. External factors such as radiation, smoking, and
infections, amongst others, can play a role in utero or postnatally. Radiation
and smoking have already been reviewed elsewhere [91, 92], associating high
doses of ionizing radiation with ALL development and paternal smoking
preconception and during pregnancy with an elevated risk for ALL.

Infection
Infection has been suggested to be a likely trigger for ALL development. As
postulated in the two-hit or delayed infection hypothesis by Mel Greaves [4],
overt BCP-ALL requires an initiating mutation in utero (first hit) as well as a
second postnatal mutation (second hit) [4]. In this model, the second hit is
triggered by a dysregulated immune response towards common infections.
Depending on the timing, infections were suggested to either have a protective
(early) or detrimental (late) effect [4]. Pre- and postnatal infections have
therefore been investigated as potential risk factors for triggering ALL.

In utero cytomegalovirus (CMV) infection was found to be more prevalent
in children who later developed leukemia compared to healthy controls [93].
CMV is a member of the herpesvirus family and is known to cause hearing loss
and/or growth retardation in the developing child [94, 95]. CMV can cross the
placenta and thus infect the child in utero. Maternal reactivation or reinfection
can also play a role, probably due to influences on immune crosstalk between
mother and fetus [95]. Interestingly, CMV degrades the neonatal Fc receptor
(FcRn) which is responsible for the transfer of IgG through the placenta.
Thereby, CMV interferes with the immunity that is conferred from mother to
child [96].
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Other herpesviruses, like Epstein-Barr virus (EBV) and varicella zoster virus
(VZV), may also play a role in the development of childhood BCP-ALL. A
significantly increased risk for ALL development could be detected for maternal
EBV infection [97]; however, significant correlation of EBV infection and ALL
development could not be shown in a follow-up study [98]. A higher childhood
leukemia risk was also observed when the mothers were infected with varicella
or rubella during pregnancy [99•].

A link between maternal influenza infection and an increased risk of
leukemia development was found in several studies as early as the
1970s [100, 101]. In a current meta-analysis by He et al., maternal
influenza infection was significantly associated with higher risk of devel-
oping ALL [99•].

In terms of postnatal infections, a possible connection to influenza
was observed in two space-time clusters [102, 103]. In the UK, increases
in ALL incidence were observed in the years 1976 and 1990, following
winter influenza epidemics [102]. In Milan, Italy, seven newly diagnosed
ALL cases occurred within 4 weeks. All of these children were seropos-
itive for the AH1N1 swine flu virus, whose outbreak occurred 3 to 6
months prior to leukemia diagnosis [103]. A possible explanation could
be that influenza infection led to a strong dysregulated inflammatory
response in the predisposed children, resulting in leukemic transforma-
tion of preleukemic cells. However, it is unlikely that influenza plays a
unique role in the development of childhood ALL. It seems to be more
important that predisposed children show an abnormal immune re-
sponse to common infections. Other space-time clusters with a high
incidence of childhood leukemia cases, e.g., the one in Fallon, USA
(1997–2003), were not linked to influenza epidemics [104].

In light of the current severe acute respiratory syndrome coronavirus type 2
(SARS-CoV-2) pandemic, it will be interesting to see the influences of the virus
and the infection-prevention measures (e.g., lockdown, increased hygiene) on
the development of ALL cases in the future. The critical second hit for the
development of overt leukemia could be infection with SARS-CoV-2, leading
to an aberrant immune reaction [105]. However, it is also possible that the
measures taken to prevent the spread of the disease, like closing nurseries and
schools, may provide a means for reducing ALL cases. A similar scenario
occurred during the SARS-CoV-1 outbreak in Hong Kong in 2003 [106]. Here,
a marked decline in common infectious diseases, like chickenpox, as well as a
decline in ALL incidence were observed in the same year [106]. However, the
same measures could also lead to an increase of ALL cases in the next years, as
children born during the current pandemic have fewer social contacts and are
less exposed to common infections during the critical time period where the
immune system has to be trained in order to avoid ALL development, according
to the delayed infection hypothesis [4]. Thus, the next years will show the
influence of the pandemic and of the lockdown measures on the development
of ALL cases and may give initial insights into how to prevent the development
of leukemia in the future.

Taken together, infectionsmay promote leukemia at two different stages: (1)
in utero due to the oncogenic potential of a virus or due to immune responses
of a not yet fully developed fetal immune system or (2) after birth due to a
dysregulated immune response.
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The in utero and early-in-life development of the immune sys-
tem has long-term consequences for efficient control of the
preleukemic clone

The double-hit scenario of secondary events, such as infections, triggering
leukemic progression is supported by epidemiological data [4]. Additionally,
animal studies showed that genetically predisposed mice developed leukemia
only in a pathogen-containing environment [4, 107]. The exact mechanism
remains unclear, but the lack of efficient immune cell training by microbial
colonization and pathogens in utero and early in life has been suggested to be
crucial for the development of ALL [5, 108].

Infections shape the immune system and thereby indirectly affect the
preleukemic clone. In this context, among other innate immune cells,
natural killer (NK) cells have been shown to be modulated by trained
immunity. Infectious stimuli induced epigenetic reprogramming towards
enhanced killing capacity of NK cells [109]. Furthermore, NK cells
combine an antiviral and anti-tumor killing capacity and are thus prom-
ising candidates for modulation of preleukemic cells. NK cells were
shown to gain memory functions after viral infections or after stimula-
tion with pro-inflammatory cytokines [110, 111]. Interestingly, NK cell
cytotoxicity against a leukemic cell line was also significantly enhanced
after CMV infection, mediated by the NKG2C(+) NK cell subpopulation
[112]. In contrast, single cell RNA sequencing of ETV6-RUNX1+ ALL
cases revealed significant inhibition of NK cell activity in the tumor
microenvironment [113••]. This suggests that the dual role of NK cells
can be explained by taking the different NK cell subtypes into account.
Recent genetic studies have provided proof that a certain genetic consti-
tution of NK cells controls BCP-ALL [114]. Killer immunoglobulin re-
ceptors (KIR) on NK cells interact with human lymphocyte antigen
(HLA) class I molecules. The inhibitory NK cell receptor KIR2DL1—a
high-affinity ligand for HLA-C2—is significantly increased in BCP-ALL
patients. In another study, five NK cell-related factors (KIR2DL5A,
NKp46, FasL, granzyme B and PI-9) were positively associated with
detection of minimal residual disease at the end of induction therapy
[115]. How the inhibitory NK cell receptors’ control of the preleukemic
clone is determined by genetic factors or modulated by infections
should be part of future studies.

The importance of early and even prenatal immune training with
microbial antigens is underlined by epidemiological data that refer to
the hygiene hypothesis [116•]. Interestingly, the same epidemiological
factors leading to a clean and hygienic environment, such as late intro-
duction into day care, order and number of siblings, and early antibiotic
treatment [117], have been associated with a higher incidence of auto-
immune diseases and allergies as well as with a higher incidence of
BCP-ALL [4, 118]. These are all diseases that are predominantly
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mediated by T helper (Th) cells, suggesting a certain role of Th re-
sponses in the control of the preleukemic clone. Atopic disease and
childhood ALL are negatively correlated. A Th2 phenotype might be
protective against ALL development [119], while pro-inflammatory Th1
cells with high interferon gamma (IFNγ) levels have been shown to
migrate towards BCP-ALL cells and favor their proliferation via upregu-
lation of CD38 and IFNγ-induced protein 10 (IP-10) production
[120••] mediated by activation-induced cytidine deaminase (AID) up-
regulation [121]. But, what driving force skews the immune response
towards one or the other direction, given the fact that early immune cell
priming is lacking in both scenarios? Miedema and colleagues attributed
this to a particular genetic predisposition, since they found two SNPs in
the TLR6 gene associated with BCP-ALL, leading to an altered Th1/Th2
balance upon microbial exposure [122]. The immunosurveillance mech-
anisms are summarized in Figure 1.

Figure 1. Immunosurveillance of the preleukemic clone. Germline and acquired somatic mutations predispose towards leukemia
and define distinct ALL subtypes. Via a dysregulated immune response, infections can trigger transformation of the preleukemic
clone into overt leukemia. This process is under constant immunosurveillance. T helper (Th) 1 cells can favor leukemia development
via upregulation of CD38 and interferon gamma-induced protein 10 (IP-10), mediated by activation-induced cytidine deaminase
(AID). Th2 cells on the other hand can inhibit leukemia development. Natural killer (NK) cells play an important role in cancer
surveillance. They can favor development of overt leukemia by up- or downregulation of different factors, such as HLA-C2, KIR2DL1,
KIR2DL5A, PI-9, NKp46, FasL, and granzyme B. Apoptosis of the preleukemic clone can be mediated by NKG2C(+) NK cells. SNP,
single nucleotide polymorphism; IL7R, interleukin-7 receptor alpha.

In Utero Development and Immunosurveillance of B Cell Acute Lymphoblastic Leukemia Rüchel et al. 553



Treatment options and outlook

Diagnosis of a severe underlying germline ALL predisposition with a high
penetrance, such as TP53mutation/Li-Fraumeni syndrome, offers the opportu-
nity to monitor the patient closely for early cancer occurrence and clearly
improves overall survival [123]. By contrast, diagnosis of a more common
predisposition, like an in utero occurring somatic ETV6-RUNX1mutation, does
not provide such a benefit, as the mutation confers only a minor risk of a child
developing ALL, a disease for which current chemotherapy treatment protocols
achieve 80–90% overall survival without early detection being critical for its
outcome. However, successful treatment comes at the price of significant acute
and late toxicities, which account for a large proportion of deaths. Acute adverse
effects during chemotherapy for childhood cancer can affect all organs, and
two-thirds of childhood cancer survivors live with long-term effects of the toxic
treatment, which can be severe (e.g., cognitive impairment, osteonecrosis,
secondary cancers, infertility, depression) [124]. Therefore, there is an urgent
need to employ strategies aimed at preventing children from getting cancer in
the first place. In the absence of means to directly target and eliminate the
preleukemic cells, general training of the immune system early in life (e.g., in
child day-care, through contact with pets) is recommended and promising.
More targeted approaches currently include (1) training of the innate immune
response via specific vaccination or (2)modulation of themicrobiome (by, e.g.,
probiotics) to achieve a healthier, more complex state [5]. Targeting Th1/Th2
lineage determination to prevent the clonal expansion of the preleukemic clone
may be a promising alternative treatment approach to follow up on. However,
differentiation programs are complex and intricately cross-linked. Side effects of
pharmacologic modulation in genetically predisposed children can be severe
and may outweigh potential benefits.

We believe that further studies employing larger cohorts of predisposed
children are clearly necessary to understand the complex interplay of genetic
predisposition and environmental factors and to finally enable us to develop
targeted preventive approaches.
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