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ABSTRACT Proper regulation of anther differentiation is crucial for producing functional pollen, and
defects in or absence of any anther cell type result in male sterility. To deepen understanding of processes
required to establish premeiotic cell fate and differentiation of somatic support cell layers a cytological
screen of maize male-sterile mutants has been conducted which yielded 42 new mutants including 22
mutants with premeiotic cytological defects (increasing this class fivefold), 7 mutants with postmeiotic
defects, and 13 mutants with irregular meiosis. Allelism tests with known and new mutants confirmed new
alleles of four premeiotic developmental mutants, including two novel alleles of msca? and single new
alleles of ms32, ms8, and ocl4, and two alleles of the postmeiotic ms45. An allelic pair of newly described
mutants was found. Premeiotic mutants are now classified into four categories: anther identity defects,
abnormal anther structure, locular wall defects and premature degradation of cell layers, and/or microspo-
rocyte collapse. The range of mutant phenotypic classes is discussed in comparison with developmental
genetic investigation of anther development in rice and Arabidopsis to highlight similarities and differences
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between grasses and eudicots and within the grasses.

Plants differ from animals because they lack a germline set aside early
in embryogenesis. Instead, plant germinal cells develop de novo from
somatic cells late in development. During vegetative growth, shoot
apical meristem activity produces leaves, stems, and lateral buds while
maintaining a population of stem cells at the center (Steeves and
Sussex 1989). Environmental and endogenous cues trigger stem cells
of apical meristem in flowering plants to switch to a floral meristem,
which is entirely used for a reproductive organ formation. One of
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these organs is the stamen, the male reproductive structure, which
is a compound organ consisting of a four-lobed anther supported by
a filament connected to the floral axis.

Clonal analyses have determined that both outer (LI) and inner
(L2) cell layers of the floral meristem contribute to anther morpho-
genesis in maize (Dawe and Freeling 1990), and anther reconstruction
based on confocal microscopy has elucidated the pace and pattern of
cell proliferation and enlargement to explain anther morphology and
cell layer development (Kelliher and Walbot 2011). Anther lobes ini-
tially contain Layer 1-derived (L1-d) epidermal cells and Layer 2-
derived (L2-d) cells. Over the course of several days, three somatic cell
layers plus the premeiotic archesporial (AR) cells differentiate from
the L2-d (Kelliher and Walbot 2011; Wang et al. 2012). Histogenesis is
complete when there are four layers of somatic cells arranged in
a concentric “dartboard” pattern surrounding the central AR cells
(Figure 1A). Each somatic cell layer (epidermis, endothecium, middle
layer, and tapetum) consists of a single cell type only and is one cell
wide. Concomitant with histogenesis, anticlinal cell divisions contrib-
ute to anther growth; in maize, the central AR cells proliferate to
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a population of ~150 per lobe and then mature into pollen mother
cells (PMCs) competent for meiosis. Without the coordinated de-
velopment of these five distinctive lobe cell types, proper meiosis and
pollen production cannot occur, leading to male sterility.
Classically, a lineage model relying on the mechanism of three se-
quential asymmetric cell divisions has been used to explain anther cell
type specification (Davis 1966; Ma 2005). The theory was that in an
immature anther lobe an L2-d hypodermal cell would divide pericli-
nally to produce an inner sporogenous (AR) cell and an outer somatic
primary parietal (transitory pluripotent) cell. Each of these cell types
would proliferate, and then periclinal divisions in primary parietal
cells would yield the endothecium and a secondary parietal layer. Pro-
liferation of secondary parietal cells would be followed by a third peri-
clinal division to generate a thin cell middle layer and a wider cell
tapetal layer. This model is based on examination of transverse sections,
primarily of the later stages in cell type specification. Based on new
observations via confocal microscopy, AR are specified from a group of
~10 L2-d somatic cells within each anther lobe (Kelliher and Walbot
2011) rather than arising from an initial asymmetric division of a single
hypodermal cell, as proposed in the lineage model. However, the model
is certainly consistent for the specification of other cell layers.
Developmental genetic analysis of male-sterile mutants has con-
tributed significantly to our understanding of the molecular mecha-
nisms of anther development in maize, rice, and Arabidopsis. The
earliest confirmed step in anther ontogeny is defined by the Arabidopsis
mutant sporocyteless/nozzle (spl/nzz): the mutant lacks AR cells sug-
gesting that the encoded transcription factor is essential for the
differentiation of germinal cells from the L2-d population within
lobes (Yang et al. 1999). The expression of SPL/NZZ has been
detected as early as stamen primordia initiation and gene expression
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is activated by AGAMOUS (AG) (Ito et al. 2004), connecting SPL/
NZZ to the events that specify stamen identity. Maize and rice lack
obvious orthologs of SPL/NZZ (Xing et al. 2011), and it is possible
that some aspects of anther ontogeny are specific to taxonomic di-
visions. In maize, the earliest anther developmental step is defined
by male sterile converted antherl (mscal); mutants defective in this
gene lack AR and anther cells differentiate as leaf cell types (Chaubal
et al. 2003). mscal encodes a glutaredoxin (GRX; patent US2009/
0038028A1), and a recently described rice GRX mutant MICRO-
SPORELESSI (MILI) also lacks AR cells (Hong et al. 2012).

Another instructive maize mutant is multiple archesporial cells 1
(macl). This mutant has extra AR but fewer somatic cells originated
from an unknown cell type (Sheridan et al. 1999). MACI is a small,
secreted protein initially expressed throughout the lobes and in part of
the connective tissue before AR specification. After germinal specifi-
cation, MACI protein levels substantially increase and localization is
refined to AR cells (Wang et al. 2012). Interestingly, in Arabidopsis,
both the excess microsporocytesl (emsl)/extra sporogenous cells (exs)
and tapetum determinantl (tpdl) mutants exhibit the macl pheno-
types of excess AR and fewer somatic cells. EMSI/EXS encodes a leu-
cine-rich repeat receptor-like kinase (LRR-RLK) (Canales et al. 2002;
Zhao et al. 2002), whereas the TPDI gene encodes a small, putative
ligand (Yang et al. 2003). In rice, the multiple sporocytel (mspl)
mutant has defined an LRR receptor-like kinase required to suppress
excess AR cells (Nonomura et al. 2003), and mutations in the TAPE-
TUM DETERMINANT-LIKEIA (TDL1A) gene define a putative li-
gand with similarity to TPD1 (Zhao et al. 2008). Collectively, these
data have been used to propose that ligand-receptor pairs coordinate
communication between lobe cell layers to ensure proper proliferation
and differentiation of cell types (reviewed by Zhao 2009).

Figure 1 Normal anther development. (A) lllustration
showing normal anther development in B73 maize. A
100-wm anther consists of the L1-derived (L1-d) epider-
mis (EP, red) and L2-d cells (yellow). In a 250-um anther,
the subepidermal L2-d cells start to divide periclinally
generating a pair of somatic cell layers; the outer layer
forms the endothecium (EN, orange) and secondary pa-
rietal cells (SPC, green). In the center of each lobe, the
L2-d cells generate AR cells (purple). In a 700-um an-
ther, the SPC divide periclinally to form the middle layer
(ML, light blue) and tapetal layer (TA, dark blue). AR
(purple) cells differentiate into PMCs competent for mei-
osis. In a 2-mm anther, all five cell types have differen-
tiated and meiocytes (Me, purple) have reached late
prophase I. (B) Transverse section of a single anther lobe
corresponding to the 250-pum illustration in (A). (C)
Transverse section of a single anther lobe consisting
of four cell types, EP, EN, SPC, and PMC, corresponding
to the 700-um illustration in (A). (D) Four layers of so-
matic cells surround the center-located early prophase
meiocytes (Me). TA cells are uninucleate. (E) Tapetal
cells become binucleate, middle layer flattens into a very
thin layer. Meiocytes are at diakineses. Callose accumu-
lates in the center of microsporangia. (F) PMCs are at
the tetrad stage. (G) ML and TA start to degrade. Scale
bar = 0.2 um (B—D), 1 um (E-G).
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In addition, many phytohormones, including auxin, gibberellins,
ethylene, cytokinins, and jasmonic acid, as well as microRNAs, have
been shown to regulate temporal and spatial interactions between
different cell types in Arabidopsis (reviewed by Ge et al. 2010). To date,
most of the factors identified have been inferred to act late in anther
development after the division of the secondary parietal layer, suggest-
ing that final cell fate is stabilized only late in anther ontogeny. This
view is distinct from a strict cell lineage model, in which fate is irrev-
ocably fixed at cell birth; the nature of existing mutants and the dy-
namic interactions among lobe cell types seem to indicate that anther
cell type specification does not rely on strict lineage relationships. In-
stead, current insight favors the concept that cell position and com-
munication plays a large role in somatic and germinal cell fate setting.

In Arabidopsis, differentiation of meiotic cells is inferred to require
coordinated interactions with all anther wall layers and to depend on
products synthesized by neighboring somatic cells (reviewed by Ma
2005; Feng and Dickinson 2010a). This is certainly true for the com-
pletion of pollen maturation, however, the fact that macl AR cells
mature to PMCs that start meiosis successfully without a tapetal cell
layer (Sheridan et al. 1996) indicates that germinal cell differentiation
is autonomous and independent of the presence of any normal so-
matic neighbors. After specification, AR cells proliferate mitotically
before they switch to a meiotic cell cycle. The molecular mechanisms
underlying this switch remain largely elusive. Although basic meiotic
processes are evolutionarily conserved, the regulation of meiotic ini-
tiation is diverse (Pawlowski et al. 2007). In maize, the transition from
the mitotic to meiotic cell cycle can be abolished by mutation of
a single gene, ameioticl (Golubovskaya et al. 1993, 1997). In loss-
of-function aml mutants, cells of sporogenous morphology perform
mitosis instead of meiosis; more than 25% of the anther transcriptome
is aberrant at the initiation of meiosis (Nan et al. 2011), indicating that
many processes associated with meiosis have been disrupted in both
AR and somatic cells. The maize aml gene and a closely related gene
in Arabidopsis, SWITCH1 (SWI1)/DYAD, encode a coiled-coil pro-
tein of unknown function (Mercier et al. 2001; Agashe et al. 2002;
Pawlowski et al. 2009). Surprisingly, in mutants of the rice ortholog,
Osaml, microsporocytes enter meiosis successfully but arrest at the
leptotene—zygotene transition (Che et al. 2011), which is similar to
what is observed in the maize aml-pral partial function mutant
(Golubovskaya et al. 1993, 1997). Transcriptome differences between
aml-pral and fertile sibling anthers define genes required to continue
meiosis (Nan et al. 2011). Recently, the rice MEIOSIS ARRESTED AT
LEPTOTENE2 (MEL2) gene encoding a novel protein with an RNA-
recognition motif was found to be required for the pre-meiotic G1/S-
phase transition. In mel2 mutant anthers, most germ cells fail to enter
meiosis and continue mitotic cycles while a small number of cells
undergo meiosis with a significant delay (Nonomura et al. 2011).

Maize is highly advantageous for studying anther development and
meiosis: there are hundreds of male-only florets on a tassel and anther
development is highly regular. The three anthers in each floret develop
largely synchronously (Hsu and Peterson 1981; Ma et al. 2007, 2008)
and meiosis is also synchronous (Chang and Neuffer 1994). The
exceptionally large size of maize anthers makes it straightforward to
dissect sufficient material for biochemistry. To aid initiation of this
study, there were hundreds of uncharacterized male sterile mutants
resulting from the phenotypic scoring. The historic importance of
male-sterility in hybrid seed production (Duvick 1965; reviewed by
Laughnan and Gabay-Laughnan 1983) motivated researchers to iden-
tify and propagate male-sterile mutants. Despite the plethora of re-
sources, however, only a handful of these male sterile mutants had
been characterized cytologically and even fewer genes had been cloned.
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Among them ms45 encodes a protein similar to strictosidine syn-
thase, an enzyme involved in alkaloid biosynthesis, which is impor-
tant post-meiotically (Cigan et al. 2001). Six genes critical for normal
premeiotic development are cloned: mscal (patent US2009/
0038028A1), outer cell layer 4 (ocl4), encoding the HD-ZIP IV tran-
scription factor (Vernoud et al. 2009), macl (Wang et al. 2012), male
sterile 32 (ms32; J. Moon and D.S. Skibbe personal communication),
ms8 (D.S. Skibbe and V. Walbot personal communication), and
ms23 (G. Nan personal communication). Our goal was to classify
hundreds of maize male-sterile mutants into premeiotic, meiotic,
and postmeiotic classes, and then within the premeiotic group to
further order the mutants as to time of action and severity of phe-
notype to define genes associated with discrete steps underlying
anther locular differentiation.

MATERIALS AND METHODS

Plant materials

A total of 244 male sterile lines were obtained from multiple sources:
(1). 95 lines were obtained from the Maize Genetics Cooperation
Stock Center (http://maizecoop.cropsci.uiuc.edu); (2). 67 EMS mutant
lines segregating for male sterility were found in 2007 and 2008 by
screening M2 populations generated by J. Hollick (Hale et al. 2007);
(3). 23 Mu-insertion lines selected by I. Golubovskaya in screens of the
maize-targeted mutagenesis (MTM) (Brutnell 2002) populations in
1999 and 2000, and (4) 59 RescueMu insertion lines carrying a trans-
genic Mul element containing a pBluescript plasmid (Raizada et al.
2001; Fernandes et al. 2004).

Histological analysis

From families with 20 or more plants segregating 1:1 or 3:1 for fertile
to sterile, a piece of immature tassel was excised from each plant and
fixed in acetic acid:ethanol 1:3 for 2 d, then stored in 70% ethanol.
Approximately 2—3 wk later, the plants were scored for male sterility,
and previously collected anthers from male sterile plants were exam-
ined microscopically using the aceto-carmine squash technique
(Chang and Neuffer 1994). If the mutant exhibited defects in somatic
or microsporocyte morphology, the fixed spikelets and/or anthers
were dehydrated in a graded ethanol series, then infiltrated and em-
bedded into low viscosity Spurr’s epoxy resin (Electron Microscopy
Sciences #14300). Transverse sections approximately 1-wm thick were
cut from the plastic blocks using a Reichert Ultracut E microtome,
stained with 0.1% toluidine blue, and analyzed at 10x or 16X magni-
fication under bright-field illumination.

Genetic analysis

Mutants defective in anther development or meiosis were all recessive
and were propagated by crossing ears of male sterile individuals by
pollen from fertile siblings to derive families segregating 1:1 for fertile
(ms/+) and sterile (ms/ms) or by self-pollination of fertile siblings to
yield families segregating 3:1. Male-sterile individuals were then
crossed by pollen from ms/+ heterozygous individuals to test for
allelism with the known reference mutants as well as to the panel of
novel mutants (Table 1). If the genotype of the fertile plant used in
a cross was unknown, as would occur in families segregating 3:1, the
same plant was self-pollinated, and the progeny was scored for male
sterility in parallel to the scoring of the allelism crosses.

Search for maize orthologs

The sequences of Arabidopsis and rice genes known to be involved
in anther development were used as queries for BLAST analysis
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against Zea mays Reference RNA sequences and the Nucleotide
collection at NCBI (http://www.ncbi.nih.gov), MaizeGDB (http://
www.maizegdb.org), and CoGe (www.genomevolution.org). A sig-
nificance value of >E1-10 was used to identify maize orthologs or
homologs as listed in Table 3. SynMap was used to identify syn-
tenic regions between the genome of maize and rice. The gene was
considered to be a syntenic ortholog when it lay within 20 genes of
location predicted for an ortholog by synteny (J. Schnable and M.
Freeling; www.maizegdb.org). The MUSCLE software (http://www.
ebi.ac.uk/Tools/msa/muscle/) (Edgar 2004) was used to generate
alignments of the predicted full-length amino acid sequences of
homologs. These alignments were subsequently used to construct
phylogenetic trees using www.phylogeny.fr (Dereeper et al. 2008).

RESULTS

Landmark developmental events in fertile anthers

From an initially oval stamen tip, four anther lobes are produced
nearly simultaneously, and each of these is composed of a mass of
undifferentiated L2-d cells encased by a continuous epidermal layer
(Figure 1A). As anther development progresses, the first internal dif-
ferentiation event is specification of the centrally located AR cells. They
are recognizable by their location and large size with a prominent
nucleus and nucleolus, bordered by smaller L2-d cells (Figure 1B).
The L2-d cells sandwiched between the epidermis and AR cells divide
periclinally to form the subepidermal endothecium and the secondary
parietal cells surrounding the AR (Figure 1C). During these cell spec-
ification events the entire anther doubles in length and increases in
girth fueled by anticlinal cell divisions in the epidermis and L2-d pop-
ulation; cell division continues at a rapid pace for several days (Kelliher
and Walbot 2011). Finally, secondary parietal cells divide periclinally
to generate the middle and tapetal layers (Figure 1D). The anther wall
consequently has four layers with an overlying epidermis and three cell
layers derived from the L2-d cells. These somatic cell layers are dis-
tinctive cytologically, and each consists of a single layer of cells. Con-
focal microscopy of inbred line W23 showed that AR cells proliferate
more slowly, reaching a population of ~150 per lobe by 1.0 mm, then
over a 2- to 3-d period the AR mature to PMCs (also called premeiotic
microsporocytes or meiocytes) and meiosis starts by the 1.5 mm anther
length stage. Concomitantly the tapetal layer cells expand and fill with
presumptive secretory materials, giving the cells a dense cytoplasm
(Figure 1, D—F); this cell layer plays a pivotal role in supporting the
meiocytes by secreting macromolecules and nutrients before, during,
and after meiosis. Microsporocytes seem to be connected to the tapetal
layer. Callose first accumulates in the center of microsporangia (Figure
1D) and eventually surrounds each microsporocyte (Figure 1E); aber-
rant deposition or remodeling of callose is an underlying cause of male
sterility in many mutants (Wang et al. 2011). When microsporocytes
reach the pachytene stage of meiotic prophase 1, tapetal nuclei begin to
divide without cytokinesis forming binucleate cells sporadically in the
cell layer ring. By the tetrad stage, all tapetal cells are binucleate (Figure
1F). The middle layer becomes thinner and almost disappears by this
stage. Six days after meiosis starts, microspores are released from the
tetrads, they enlarge, and multiple small vacuoles form (Figure 1G);
later, these vacuoles fuse to form one large organelle. Microsporogen-
esis is completed with the first pollen mitosis.

A screen to identify mutants defective in

anther development

To identify genes involved in lobe cell fate decisions, we exploited the
large collections of nuclear male sterile mutants: a total of 244 defined
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male sterile lines segregating for male sterile mutants were screened.
Anthers from sterile plants were examined microscopically using the
aceto-carmine squash method. While this method is typically em-
ployed to examine meiotic chromosomes, we found that it was also an
excellent way to select mutants with developmental defects (Figure 2,
G and H), although minor defects in lobe wall layers may not have
been detected. Therefore, we have likely underestimated the yield of
premeiotic mutants.

Lines that segregated plants with anthers defective in one or more
cell types were classified as anther development mutants. Male-sterile
plants with aberrant meiotic chromosome segregation were classified

Vascular strand

Figure 2 Mutants with defects in anther identity. (A) lllustration
showing a transverse section of the entire anther in a fertile (normal)
plant after the 700-pum stage. Centrally located meiocytes (Me, purple)
are surrounded by a four-layered anther wall: EP (red), EN (orange), ML
(light blue), and TA (dark blue). The vascular strand is only present in
the anther filament (arrow). (B) lllustration of a single lobe of a mscal-
ems63131 anther showing undifferentiated L2-d cells (yellow) sur-
rounded by EP (red). (C) Transverse sections of the entire anther in
a fertile plant with all five cell types developed. (D) Neither anther wall
layers nor PMCs are differentiated in the mscal-ems63131 mutant
anther; the lobes are filled with parenchyma-like cells at this early de-
velopmental stage. (E) lllustration of modified anther lobe with two
additional vascular strands (arrows) in the mscal-ms6064mutant. (F)
Eight nonfunctional vascular strands are present in modified anther
of the mscal-ms6064 mutant at this later stage. (G) Aceto-carmine
squash of a msca1-ms6064 anther showing vascular strands. (H) Extra-
vascular strand appears to be nonfunctional because vessel cell walls
are maintained intact between adjacent cells rather than remodeling
the wall to permit lateral fluid movement. Scale bar = 1 um (C—D and
F), 0.2 pm (G), and 0.1 pm (H).
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Table 2 Classification of mutants

Phenotype

Mutant

N

. Anther identity defects

Absence of anthers in florets

Anther lobe cell types fail to be specified

2. Anther structure defects
Two-lobed anthers

3. Anther wall layer defects
Undifferentiated cell layers
Additional periclinal division in subepidermal cell layer
Additional periclinal division in the middle layer
Extra cell divisions in “tapetal” layer
Multinucleate tapetal cells

4. Premature layer degradation

A. Failure to maintain anther morphology
Meiocyte and tapetum degradation
Tapetum vacuolization and degradation
Tapetal cell shrinkage and degradation

B. Function failure
Lack of callose deposition
Callose accumulation

ms-si*355, ems71990
mscal-emsé63131, mscal-ms6064

vlo1-ems71924, vlo1-ems72032

ems63089, mtm00-06, tcll1, ems72063
ocl4-mtm99-66

ems72091,

ms*6015, ms32, ms32-ms6066, ms23, ems72063
ems63265, ems71777, RescueMu-E03-23

ms8, ms8-mtm99-56, RescueMu-A60-22b, ems7 1884, emsé64486
ems/1787, RescueMu-P19-47
ems/7 1986, RescueMu-C17-32, RescueMu-A60-35A

ms10,
ms45-msN2499, ms45-ems64409, csmd1, ms8, ms8-mtm99-56

as meijotic mutants and the remaining sterile mutants with normal
premeiotic and meiotic phenotype were classified as postmeiotic mu-
tants. Altogether, 13 novel meiotic mutants and 29 anther devel-
opment mutants heritable as monogenic traits were identified in the
screen. The mutants classified as meiotic were both male and female
sterile. All anther developmental mutants were female fertile, in-
dicating that their defects are unlikely to be meiotic.

Allelism testing: To determine whether we identified new alleles of
known genes and to determine the number of new loci represented,
we completed alleleism tests on nearly all new mutants, with each
other, and with known mutants; a few tests are still in progress. Results
are shown in Table 1. Of 29 male sterile mutants identified as anther
development mutants, 7 are alleles of the previously identified anther
developmental genes (two novel alleles of mscal and single new alleles
of ms32, ms8, and ocl4 and two alleles of ms45). The remaining 18
mutants fall into 16 complementation groups. Because most loci were
represented by only one allele, the screen for male sterility was not
saturated; more anther development mutants may still be found using
this approach.

Classification of anther developmental mutants

To better understand the developmental defects in each mutant, trans-
verse sections were examined microscopically. This analysis allowed
us to classify the 29 mutants into four groups according to their defects
in anther morphology or similarity with known mutants (Table 2).

Anther identity defects: This group consists of four mutants with
anther identity defects. Two mutants, ms-si*355 and ems71990, lack
anthers within spikelets at the time when immature anthers normally
exist (not shown). Anthers may initiate and then regress or may not
initiate properly. Allelism tests showed that these mutations are not
allelic to each other or to known anther developmental mutants
(Table 1). Further characterization of these mutants will allow us to
determine whether defects occur at the time of anther initiation or
afterward during its growth.

Two other mutants, ms*6064 and ems63131, exhibit highly irregular
anther differentiation (Figure 2, D—H). Microsporangia and all cell
layers typical of the wild type anther wall fail to differentiate. Four
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modified lobes are characterized by an extended oval cross section,
rather than the round shape typical for fertile anthers. Each aberrant
lobe contains two symmetrical nonfunctional vascular strands in addi-
tion to the vascular strand continuous with the anther filament (Figure 2,
E and F). In a squash specimen, these additional parallel vascular
strands are not connected to the vasculature in the central connective
zone of the anther (Figure 2G). Transformation of cells to vascular
strands is incomplete: cell walls between cells forming vascular strand
are still maintained, dividing strands to sections (Figure 2H). Multiple
parenchymal cells surround the vascular strands filling the locules. The
epidermal surfaces of both ems63131 and ms*6064 mutants contain
stomata; a characteristic not normally found in anthers. This suite of
phenotypes resembles the mscal (male sterile converted antherl) mutant
(Chaubal et al. 2003). Allelism tests confirmed that both newly discov-
ered mutants are alleles of mscal (Table 1). Thus, we designed ems63131
as mscal-ems63131 and ms*6064 as mscal-ms6064. To date, the pheno-
types of mscal are unique in flowering plants; the anther lobe cell types
fail to be specified. The existence of this mutant strongly supports the
theory that leaf cell differentiation is the default program in a lateral
floral organ. Furthermore, mscal illustrates that overall organ shape
does not depend on normal cellular composition, at least in maize
anthers, as does the tangled-1 mutant in the leaves (Smith et al. 1996).

Anther structure defects: This group consists of two mutants:
ems71924 and ems72032. Both mutants contain fewer anthers per
floret than wild type. A single anther, rather than three, per floret is
the most common in both ems71924 and ems72032 florets. In addi-
tion, anthers have a reduced number of lobes. Unlike the normal
bilaterally symmetrical four-lobed fertile anthers (Figure 3A), most
mutant anthers have a two-lobed structure: the abaxial lobes are de-
veloped properly with all wall layers, while adaxial lobes fail to form
(Figure 3, B and C). Although meiosis seems to progress regularly in
the abaxial locules, microspores degenerate and mutant plants exhibit
complete sterility. Allelism tests showed that ems72032 and ems71924
are allelic; however, they are not allelic to any other mutants (Table 1).
The allelic pair designated variable lobes1-ems71924 (vio1-ems71924)
and vloI-ems72032, resembles the Arabidopsis roxyl, 2 double mutant
in which the adaxial lobes are defective very early and later PMCs are
disrupted in the abaxial lobes as well (Xing and Zachgo 2008).
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Anther wall layer defects: Mutants of this group fail to properly form
the four layers within each anther lobe. The class is the most numerous
from the screen with 12 mutants divided into two subcategories.
Undifferentiated cell layers: In the ems63089 mutant, there are
four or five somatic wall layers, but neither the middle nor tapetal
layer cell types are observed (Figure 4, A—C). Instead, the locular
volume is filled with parenchyma-like cells; these remain undifferen-
tiated, and they do not form concentric cell layers. Only the epidermis
appears unaffected by the mutation. Disorganized cells in two or three
subepidermal layers contain substantial starch, a typical characteristic
of the subepidermal endothecium. Because multiple starch-containing
layers occur in ems63089, we conclude that endothecial specification is
affected as well as defects in periclinal division control. The PMCs do

Figure 3 Anther structure defects. (A)
Transverse section of a normal four-
lobed anther in a fertile plant. (B) Two-
lobed anther in vloT-ems7 1924 and (C)
in vloT-ems72032. Scale bar = 1 pm.

not complete meiosis and degrade in meiotic prophasel. The
ems63089 mutant shares some similarity with the macl mutant, which
also fails to differentiate tapetal and middle layers. In contrast to macl
in which there are excess meiocytes, the number of meiocytes in
ems63089 appears to be reduced.

The novel mutant mtm00-06, obtained from a Mu transposon
population, develops small transparent anthers. Neither middle nor
tapetal cells differentiate (Figure 4, D—F). Instead, vacuolated cells not
organized into discrete layers are observed in the anther wall. The
subepidermal endothecium lacks starch granules suggesting that this
layer is also functionally defective in mtm00-06 or that anther nutritive
status is very poor preventing storage of materials. Microsporocytes
enter meiosis but are unable to proceed through it and degrade.

Figure 4 Anther wall layer defects. (A)
lllustration of generalized anther wall
defects demonstrating multilayered
SPCs (green) between endothecium
(EN, orange) and meiocytes (Me, pur-
ple) (B) Transverse section of an
ems63089 mutant anther showing un-
differentiated cell layers surrounding
AR cells (traced in red). Only the epi-
dermis and a subepidermal layer are
arranged in concentric layers. Neither
the middle nor tapetal layer cell types
differentiate. (C) Only a few meiotic
cells can be observed in ems63089
mutant anthers at later stages. Vacuo-
lated cells of unknown origin form mul-
tiple disorganized cell layers around
meiocytes. Callose starts to accu-
mulate between meiocytes. Several
subepidermal layers include cells con-
taining substantial starch (arrows). (D)
Undifferentiated cell layers surround
the PMCs in mtm00-06 anthers. Unlike
normal endothecium, the subepider-
mal layer has no starch granules. The
lobe consists of four or five layers but
complete middle and tapetal layers
are not observed. (E) Cells adjacent
to the microsporocytes become vacu-
olated and disorganized. Meiocytes
start to degrade before completing
meiosis. (F) Meiocytes are completely
degraded. Cells of all layers become
vacuolated and lose their layer-specific
shapes. (G) Undifferentiated cell layers
in tc/17 mutant anthers. (H) Vacuoliza-

tion of cell layers adjacent to PMCs in tcl1. Starch granules can be observed in subepidermal layer (endothecium). () The five-layered anther
wall in ems72063 suggests an additional periclinal division has occurred. Scale bar = 0.2 pm

2G3-Genes| Genomes | Genetics

Volume 3 February 2013 |

Maize Anther Developmental Mutants | 237



Another novel mutant ftcll (tapetal cell layerl) also fails to form
coherent middle and tapetal layers, and there are extra cells between
the endothecial and AR cells. Cells adjacent to microsporocytes be-
come vacuolated (Figure 4, G—H). Despite phenotypic similarities
among tcll, ems63089, and mtm00-06, these three mutants are not
allelic and define three loci involved in acquisition or maintenance of
the differentiated state in secondary parietal cell derivatives.

Extra cell layers: The ems72063 mutant displays an additional
periclinal division in tapetal initials ultimately forming a five layered
anther wall (Figure 4I). Interestingly F1 progenies from crosses of het-
erozygous ems72063 plants with heterozygous tcll or ms23 segregated
for sterility while these two mutations were found to be not allelic
(Table 1). The testing of possible additive effect of mutations is in
progress.

An additional cell layer, restricted to the outer portion of each lobe,
was apparent in the Mu-insertion line, mtm99-66 (Figure 5, A—D).
The phenotype of extra subepidermal cells only in the lobe overlain by
epidermis resembles the phenotype described for the ocl4 (outer cell
layer4) mutant; these mutants define a new axis of anther organization
in which subepidermal events are controlled differently depending on
whether there is overlying epidermis or cells are bordered by the
connective parenchyma at the center of the anther. ocl4 encodes
a HD-ZIP IV transcription factor (Vernoud et al. 2009), and

mtm99-66 was found to be a new allele of this locus. In the original
report, the additional divisions in ocl4 were interpreted as deriving
from the endothecial layer. Markers for each cell layer are needed to
clarify the origin of this ectopic partial layer caused by mutations in
ocl4 and its allele mtm99-66 designated as ocl4-mtm99-66.

Extra periclinal divisions in the middle layer were detected in
ems72091 (Figure 5, E—H). Initially, all wall layers, including the
tapetal layer, are formed. Later, cells of the middle layer divide peri-
clinally to form a five-layered anther wall. By the tetrad stage, cells of
both the middle and tapetal layers become vacuolated and the micro-
sporocytes degrade. Unlike macl and ems63089 mutants, however,
where regular cell layers fail to differentiate, ems72091 is able to form
all four layers but fails to maintain them in their normal differentiated
state because the defective, vacuolated cells lose their layer-specific
shapes (Figure 5, G and H).

In the ms*6066 mutant (Figure 5I), tapetal cell precursors fail to
differentiate normally and become highly vacuolated (Figures 5]). In
fertile anthers, tapetal nuclei divide without cytokinesis to form bi-
nucleate tapetal cells, a process initiated at the start of meiosis and
finished by the tetrad stage. Binucleate cells were not observed in the
layer adjacent to microsporocytes in ms*6066. Instead, extra periclinal
cell divisions occur resulting in a multi-layered tapetum. As anther
development progressed, defects became more severe. The vacuolated

Figure 5 Defects in cell proliferation. (A—D) Cartoon
and transverse sections of the ocl4-mtm99-66 mutant.
(A) lllustration showing an extra periclinal division of the
subepidermal cell layer (orange). (B) An additional sub-
epidermal cell layer is restricted to the outer portion of
anther lobe in the ocl4-mtm99-66 mutant (arrows). (C)
Tapetal cell layer development and callose accumula-
tion around meiocytes appears normal at this stage. (D)
After meiosis, microspores are able to release from tet-
rads, suggesting that the anther somatic cells provide
what is needed to complete meiosis. (E—H) Cartoon
and transverse sections of the ems72091 mutant. (E)
Cartoon demonstrating an additional periclinal cell di-
vision in the middle layer (light blue). (F) While younger
anthers appear normal, extra periclinal divisions leading
to an additional cell layer can be seen in this cross sec-
tion (arrows).(G) Cells in the middle and tapetal layers
become vacuolated and disorganized by the tetrad
stage. Microspores start to degrade. (H) Microspores
are degraded and cell layers become even more disor-
ganized. (I-L) Cartoon and transverse sections of the
ms32-ms*6066 mutant. (I) Cartoon showing excess pro-
liferation of cells in the position of the tapetal cell layer
("tapetal” cells, dark blue). (J) Uninucleate "tapetal”
cells enlarge and become vacuolated. (K) Modified
“tapetal” cells start to divide periclinally and protrude
into the microsporocytes. (L) Extra periclinal cell divi-
sions result in a multilayered “tapetum,” which appears
to crush the meiocytes. Scale bar = 0.2 pm
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tapetal zone cells enlarged, eventually crushing the sporogenous cells
(Figure 5, K—L). Microsporocytes enter meiosis but do not complete
the meiotic division. We found ms*6066 to be allelic to ms32 (Table 1).

In the ms*6015 mutant, tapetal cells undergo additional anticlinal
divisions with irregular wall placement resulting in extra and abnor-
mal cells in the “tapetal” layer (Figure 6A). Like ms*6066, binucleate
tapetal cells were never found in ms*6015. Allelism tests showed that
ms*6015 is not allelic to ms32/ ms*6066 or any known gene tested
(Table 1).

Three nonallelic mutants, ems63265, ems71777, and RescueMu-
E03-23, share several phenotypes. First, nuclei of a few tapetal cells
undergo multiple divisions without cytokinesis forming huge multi-
nucleated cells with up to eight nuclei (Figure 6, B—H). Alternatively,
cell wall degradation between tapetal cells followed by fusion of several
tapetal cells could result in this phenotype (Figure 6, I—K). The in-
ward facing wall of tapetal cells is partially degraded just before mei-
osis; however, degradation of the lateral walls separating adjacent
tapetal cells is not part of normal development. Interestingly, only
a few tapetal cells become multinucleate, a feature that may reflect
the intrinsic growth potential of a subset of cells (Feng and Dickinson
2010a). During tapetal ontogeny there is a period of rapid cell pro-
liferation anticlinally, however, not all cells divide an equal number of
times (Kelliher and Walbot 2011); one hypothesis to explain the pres-
ence of a few multinucleate cells is that the last few nuclear divisions
occur without subsequent cytokinesis. Subsequently, microsporocytes
and tapetal cells degenerate, and the middle layer cells become vacu-
olated (Figure 6I).
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Figure 6 More defects in cell prolifer-
ation. (A) Additional anticlinal divisions
with irregular wall placement result in
extra and abnormal cells in the “tape-
tal” layer in the ms*6015 mutant anther.
Extra microsporocytes are also present.
(B—H) Cell defects in ems63265 mutant
anthers. (B) Transverse section showing
several enlarged and rounded “tape-
tal” cells; a close-up can be seen in
(C). (D) Some “tapetal” cells undergo
multiple nuclear divisions without cyto-
kinesis, forming multinucleated cells
that can be observed in aceto-carmine
squashes of anthers from the pachytene
stage through the late microspore stage.
Most microspores become multinucle-
ate. (E—Q) Images of different focal
planes from a single multinucleated cell
with 10 nuclei, two of them are pyknotic
(arrows). (H) lllustration of the same cell
with traced nuclei: from the image E in
red, from the image F in blue and from
the image G in green. (|) Disorganized
tapetal cells in transverse section of the
ems7 1777 mutant anther. Some of these
cells have additional nuclei. (J) Disorga-
nized “tapetal” cells with different num-
bers of nuclei in RescueMu-E03-23
mutant anther. (K) Enlarged fragment
of image J showing “tapetal” cell with
six nuclei (arrows).

Premature layer degradation: The 14 mutants in this class are
divided into two subcategories (Table 2):

Failure to maintain anther morphology: The 10 mutants in this
class develop normal cell layers and reach an appropriate number of
sporogenous cells but are not able to maintain cell identity throughout
development and cells die prematurely. As development proceeds, the
tapetal cells either become abnormally vacuolated and enlarged or
shrink, depending on the mutation. Chromatin in tapetal nuclei
undergoes irreversible condensation (pyknosis) and tapetal cells
degrade. These processes impact meiotic cells, which fail to complete
meiosis. It is formally possible that the fundamental defect is in the
meiocytes—these cells show nuclear abnormalities and cytoplasmic
shrinkage, and these events could trigger tapetal cells degradation.

In ms8 (Figure 7, A and B) and mtm99-56 (Figure 7C), which we
found to be a new allele of ms8 (Table 1), as well as in RescueMu-A60-
22b (Figure 7, D—F), ems71884 (Figure 7, G—H), and ems64486
(Figure 7I) mutants, meiocytes collapse completely after the tetrad
stage. Tapetal cells become vacuolated and subsequently degrade. In-
terestingly, ms8 also exhibits several mild defects: an excess number of
epidermal cells that are shorter than normal, but fewer tapetal cells
that are larger than normal, and an excess callose accumulation during
meiosis (Wang et al. 2010). Excess callose also accumulates in 7s8-
mtm99-56 allelic mutant (Figure 7C). Unlike the ms8 mutants, callose
accumulation is normal in RescueMu-A60-22b mutant (Figure 7F).
Vacuolization and premature degradation of cell layers was detected
in EMS-induced mutant ems71787 (Figure 8A) and in the RescueMu-
P19-47 transgenic line (Figures 8, B and C).
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Figure 7 Microsporocyte and microspore degradation.
(A—C) Transverse anther sections of the ms8 mutant. (A)
Meiocytes start to degrade at the tetrad stage (ms8-ref
allele). Binucleate tapetal cells look normal at this stage;
however, cells of the middle layer start to become vac-
uolated. (B) Later, cells in the tapetal layer degrade.
Vacuolated cells in the middle layer enlarge. Excess cal-
lose accumulates in the anther locule. (C) Transverse
section of entire anther of the ms8-mtm99-56 mutant.
Meiocytes and tapetal cells are completely degraded;
the remaining cell layers become vacuolated. Subse-
quently more callose accumulates in anther locules.
(D—F) Meiocytes and tapetal cells degrade in the Res-
cueMu-Ab0-22b transgenic anther (compare D, E, F
with A, B, C, respectively). Unlike the ms8 mutants, cal-
lose accumulation in RescueMu-A60-22b anther locules
appears to be normal. (G—H) ems71884 mutant. (G)
After release from tetrads, microspores degrade. Note
that the tapetal cell layer looks normal and microspore
cell walls do not shrink. (H) At latter stages, microspores
are completely degraded. (I) Microspores also degrade
in the emsé4486 mutant anther. Scale bar = 0.2 um
(A—B and D—E), 1 um (C and F)

Premature degradation of tapetal cells can also occur without cell ~ (Figure 8D) and in two transgenic lines: RescueMu-C17-32 (Figure 8,
vacuolization. Chromatin in the tapetal nuclei irreversibly condenses, E and F) and RescueMu-A60-35A (Figure 8, G—I). Degradation of
the cytoplasm shrinks, and cells undergo degradation in ems71986  tapetal cell layers followed by degradation of meiocytes and vice-versa

Figure 8 Premature anther wall layer degradation. (A)
Transverse section through the ems71787 mutant an-
ther shows degraded cells of the tapetal layer, while
cells of middle layer become highly vacuolated. (B—C)
Transverse sections through the RescueMu-P19-47 mu-
tant anthers. (B) Cells of the endothecium and tapetum
become vacuolated when microsporocytes are at the
tetrad stage. (C) At latter stages, the tapetal layer lose
their borders and microspores degrade completely. (D)
In the ems71986 mutant when meiocytes are in meiotic
prophase, chromatin in the tapetal nuclei irreversibly
condenses, their cytoplasm shrinks, and tapetal cells un-
dergo degradation. (E—F) Transverse sections of the
RescueMu-C17-32 mutant anthers. (E) The mutant an-
ther displays a similar phenotype: irreversible conden-
sation of chromatin in the tapetal nuclei. (F) Degradation
of anthers involves all cell layers. Anther lobes shrink.
(G—1) Transverse sections of RescueMuA60-35A mutant
anthers. (G) In RescueMuA60-35 transgenic anthers,
microspores and some tapetal cells dramatically enlarge
in size. (H) Microspore degradation in anthers is not
accompanied by middle layer and/or tapetal cell vacu-
olation. (1) Degradation of cell layers leads to a shrinkage
of anther locules. Scale bar = 0.2 um (A—B, D—E,
G—H), 1 um (C, F, and I).
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suggests that there is close coordination between these two cell layers
or that loss of integrity in one layer triggers general processes that
result in anther abortion. Degradation of cell layers results in anther
shrinkage (Figures 7, C and F and Figure 8, C, F, and I) and may be
a contributing factor to growth arrest observed in male sterile
mutants.

Functional failure: Our definition for mutants in this subcategory
is that anthers differentiate all cell layers but exhibit a functional defect
that is independent of cell identity. One example is the historic mutant
ms10, which is deficient in callose deposition. We identified new
alleles of existing genes in this category, but no new loci. Two newly
identified alleles of ms45, ms*N2499 and ems64409, (designated as
ms45-msN2499 and ms45-ems64409) display an irregular pattern of
callose deposition. In fertile anthers, callose first accumulates in the
center of microsporangia and eventually surrounds each microsporo-
cyte, whereas in ms45-msN2499, callose deposition starts at the pe-
riphery of microsporangia. These two mutants also have slight post-
meiotic defects in the tapetal layer and are completely male sterile.

Search for maize orthologous or homologous genes
matching genes in other species known to be required
for proper anther development

As part of our analysis of the steps in maize anther development, we
were curious to determine if maize contains orthologsor homologs of
genes already identified through genetic analysis as critical for anther
ontogeny in rice or Arabidopsis. Despite the high conservation of
anther structure in flowering plants, as highlighted previously, the
grasses lack SPL/NZZ, a key regulator in dicots. To what extent will
clade-specific or even species-restricted gene types contribute to
anther development? BLAST analysis followed by phylogenetic
analysis of the sequences of Arabidopsis and rice genes known to
be involved in anther development identified maize orthologs or
homologs for several key rice and/or Arabidopsis genes; as expected,
some genes such as genes encoding the LRR-kinases are present in
gene families in maize and suggesting multiple putative homologs
(Table 3). Reconstruction of phylogeny of MSCAI and SPL suggests
that a mscal ortholog is missing in Arabidopsis (Figure 9) and that
maize lacks the orthologous gene of Arabidopsis SPL.

DISCUSSION

The value of well-constructed genetic screens is immense, because
a comprehensive list of genes involved in a complex process provides
multiple entry points for further analysis, particularly when an allelic
series is available for a locus. Maize anther development requires
approximately one month, from primordium inception through
pollen shed. Our focus was on the early events during this interval,
the period of initial anther formation into a four lobed structure, cell
fate specification, rapid cell proliferation, acquisition of cell-type
specific differentiation, and maintenance of these special character-
istics through successful initiation of meiosis. To date, most maize
male sterile mutants exhibit post-meiotic defects (Skibbe and Schnable
2005), and this was also the result in this screen: about 10% (29
mutants/244 lines screened or 25 loci/244 lines) of the presumptively
male—sterile lines screened exhibited phenotypes in early anther de-
velopment. One explanation for the lack of proportional representa-
tion of premeiotic mutants could be that many genes involved in
controlling anther cell fate, proliferation, and expansion are also re-
quired in earlier steps in the lifecycle. It is a fact of life that the genetics
of floral development is restricted to studying those genes with little or
no impact earlier in the life cycle. Pollen development, on the other
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hand, involves expression of many genes (Ma et al. 2008) that are not
expressed in young anthers or in leaves. Mutations in these genes
would thus be expected to result in viable plants with normal flowers
bearing normal anthers containing defective pollen.

Using the collection of historic and newly identified loci involved
in anther lobe cell fate specification and differentiation, we can now
recognize four categories of defects and provide microscopic evidence
and allelism test data to define distinct loci within each of these
categories. With this categorization it is clear that successive steps in
anther development each require multiple genes. Within each layer,
cells divide anticlinally and expand in stereotyped patterns to add
girth and length to the growing anther (Kelliher and Walbot 2011),
but overall growth is not coordinated by a meristem or any detectable
gradient with an anther. Instead, there are local controls visualized as
patches of cells synthesizing DNA coordinately and local structural
constraints that keep the middle layer and tapetal cells aligned after
periclinal division of the secondary parietal layer despite differences in
cell division frequencies (Kelliher and Walbot 2011). The many cases
of multiple defects, particularly the cases in which one layer fails
followed by consequences in other locular layers support the concept
that there are complex signaling networks coordinating growth and
differentiation within and between the layers. This facet of local
growth controls within maize anthers is paralleled by observations
in Arabidopsis sepal epidermis in which as yet undefined local growth
controls operate to result in continued cell division in some zones vs.
polyploidy and substantial cell expansion in neighboring patches
(Roeder et al. 2010).

Control of anther identity
The initiation of anther development begins as stamen primordia
emerge from the floral meristem. Only two of 244 mutant lines
lacking anthers in spikelets were found in the screen. Stamen organ
identity in Arabidopsis is conferred by combined action of APETALA
(AP3), PISTILLATA (PI), SEPALLATA1-4 (SEP1-4), and AG
(reviewed by Ma 2005 and Chang et al. 2011). In maize, stamen organ
identity is regulated by the AP3 ortholog SILKY1 (SI1), by putative P
orthologs Zmm16 and Zmm?29, as well as by AG homologs Zmm?2,
ZAG1-ZAG3 (Whipple et al. 2004). In silkyl mutant plants, stamens
are converted to carpels (Ambrose et al. 2000). AG, a plant-specific
transcription factor, is activated by WUSCHEL in the presence of
LEAFY (LFY) to generate the stamen primordium (Lenhard et al
2001; Ikeda et al. 2009). LFY is an ortholog of the meristem identity
gene FLORICAULA from Antirrhinum, plays an important role in the
reproductive transition by establishing the expression of ABC floral
organ identity genes (Weigel et al 1992; Weigel and Meyerowitz
1994). Mutations in the maize duplicate FLORICAULA/LFY ortho-
logs, zfll and zfl2, cause disruption of floral organ identity and pat-
terning, as well as defects in inflorescence architecture; no stamens or
two abnormal twisting stamens develop in male spikelets of double
zfll zf2 mutant (Bomblies et al. 2003) suggesting a role of these genes
in maize anther development. WUSCHEL is also known to control
the stem cell activity of the Arabidopsis floral meristem by antagonis-
tic activities with CLAVATAs (CLVs) (Bhalla and Singh 2006). In-
terestingly, maize orthologs of CLV1I, thick tassel dwarfl (tdl), and
CLV2, fasciated ear2 (fea2; Table3) exhibit extra anthers (Bommert
et al. 2005; Taguchi-Shiobara et al. 2001). Lack of anthers in ms-si*355
and ems*71990 suggests that these genes can be involved in any step of
anther identity control.

AG also activates expression of SPL/NZZ, a key regulator of anther
identity and currently the first gene involved in anther cell fate
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specification in Arabidopsis (Ito et al. 2004). In maize, however, the
first defined step is defined by the glutaredoxin encoded by mscal, not
by a transcription factor. Early anther lobes are composed of equiv-
alent, multipotent L2-d cells and any of them can acquire an AR fate.
AR cell specification is determined by redox status (Kelliher and
Walbot 2012). It has been proposed that MSCAl-mediated events
are triggered by hypoxic conditions arising naturally within growing
anther tissue (Kelliher and Walbot 2012). During the screen, we iden-
tified two novel alleles of maize mscal (Figures 2D, F). Like spl/nzz
mutants, mscal mutants do not form AR cells, anther wall layers do
not develop and locules are filled with parenchyma-like cells. In con-
trast to spl/nzz mutants, nonfunctional vascular strands are present in
each lobe of mscal anther and stomata are present in the epidermis
(Chaubal et al. 2003); neither structure is present in normal maize
anthers. BLAST and phylogenetic analyses did not identify a mscal
orthologous gene in Arabidopsis despite the large number of GRX
genes in this species (Figure 9). An orthologous gene was found in
rice, Os07g05630 (Table 3). An insertion in this gene was recently
discovered in a rice spontaneous male sterile mutant microsporelessl
(mill; Hong et al. 2012). Like mscal, MILI encodes a plant-specific
CC-type glutaredoxin; mutations in MILI result in anther lobes that
lack microspores and normal wall layer cell types. However, the mill
rice mutant shows defects later in anther development than the early
step disrupted by mscal in maize. In mill, sporogenous cells appear to
be specified normally, but subsequent steps fail. No vascular strands or
stomata were reported for the rice mill mutant.

Abaxial/Adaxial patterning of anthers

Once plant organs initiate as a bulge at the flank of a meristem, growth
occurs in three different directions: proximal—distal, abaxial —adaxial,
and medial —lateral axes. Organs elongate along the proximal-distal
axis. The surface of the organ facing the meristem is the adaxial
surface, while the organ surface facing away from the meristem is
the abaxial surface. In a developing spikelet, the proximal (nearer the
meristem) filament connects the distal anther to the plant body; the
two anther lobes facing the meristem are the adaxial lobes whereas
the other two lobes are abaxial. In anthers from both mutants of the
allelic pair viol-ems71924 and vioI-ems72032, the abaxial lobes de-
velop properly with all wall layers, while the adaxial lobes fail to
form (Figure 3, B—C), suggesting defects in abaxial-adaxial polarity.
Maize mutants with defects in abaxial/adaxial patterning of leaves
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Figure 9 Reconstruction of phylogeny of MSCAT.
mscal (a gene model GRMZM442791) ortholog is pres-
ent in rice (Os07g05360) but is missing in Arabidopsis;
the most related are Arabidopsis ROXY2 (At5G14070)
and ROXYT (At3G02000) encoding glutaredoxin-C8
and C7, respectively. Numbers show branch support
values.

have been isolated previously (Timmermans et al. 1998; Juarez et al.
2004; Candela et al. 2008). These studies elucidated the mechanisms
of regulation of adaxial-abaxial identity in leaf development
(reviewed by Husbands et al. 2009) whereas mechanisms underlying
establishment of adaxia—abaxial polarity in stamens remain largely
unknown. Although the stamen is morphologically different from the
leaf, it may be modified leaf because stamens are considered to have
evolved from sporangium-bearing leaves (sporophylls) (reviewed by
Feng and Dickinson 2010a). It is not clear to what extent mechanisms
established in modern leaves are applicable to anthers.

In Arabidopsis, the roxyl roxy2 double mutant, tga9 tgal0 double
mutant, and several other mutants including jagged (jag) and wus1 also
exhibit two-lobed anthers. The TGA9 and TGA10 genes encode basic
leucine-zipper transcription factors that are activated by glutaredoxins
ROXY1 and ROXY?2; plants lacking TGA9 and TGA10 have defects
similar to those in roxyl roxy2 double mutants (Murmu et al. 2010).
JAGGED encodes a putative zinc finger transcription factor required
for proper lateral organ shape. Together with NUBBIN, it is involved in
both stamen and carpel development (Dinneny et al. 2006). The leu-
cine-rich receptor-like protein kinases ERECTA (ER) and ER-Likel
and 2 (ERLIL, 2) as well as the mitogen-activated protein kinases
MPK3 and MPK6 also were shown to be important for proper anther
lobe formation (Hord et al. 2008). However, only triple mutants (er105,
erll-2, erl2-1) fail to form one or more of the four anther lobes; none of
the single mutants causes a severe anther phenotype. In rice, a mutation
in SHOOTLESS2 (SHL2) causes defects in the establishment of anther
adaxial/abaxial polarity (Toriba et al. 2010). SHL2 encodes an RNA-
dependent polymerase that is involved in posttranscriptional gene si-
lencing. Further studies on the vlol maize mutant, including cloning
this, gene will help us to understand whether it defines a novel step in
the abaxial-adaxial patterning of anthers in maize.

Anther wall layer differentiation

Intercellular signaling pathways play significant roles in cell-cell
communication required for plant organ development. Locally acting
signals and receptors regulate anther wall layer patterning in
Arabidopsis (reviewed by Zhao 2009), rice (Zhang et al. 2011), and
probably in maize. The membrane-localized leucine-rich-repeat re-
ceptor-like kinases EMS1/EXS in Arabidopsis and MSP1 in rice were
shown to interact with their corresponding ligand TPD1 or TDL1A
respectively (Jia et al. 2008; Zhao et al. 2008).

Maize Anther Developmental Mutants | 245



The maize ortholog of rice TDLIA, macl, encoding a small secreted
protein not only suppresses AR cell proliferation, but also promotes
periclinal division in the adjacent L2-d cells (Wang et al. 2012). macl
mutant anthers contain excess AR cells but lack the tapetal and the
middle layers. It has been speculated that MAC1 may play dual roles
by binding to different receptor kinases in the AR cells and L2-d cells
(Wang et al. 2012). To date, receptors with an ability to bind MAC1
have not been isolated in maize. BLASTS of rice MSP1 mRNA against
Zea mays B73 Refgen_v2 sequences uncovered the maize putative
orthologous gene GRMZM2G447447 (Table 3) located on chromo-
some 3 between molecular markers IDP3115 and IDP6021. Its pre-
dicted product possesses motifs assigned to serine/threonine kinase and
phosphorylation activities. Further experiments will be required to de-
termine whether this locus is required for maize anther development
and functions as the receptor for the MACI ligand.

The newly discovered mutant ems63089 displays some features of
the macl phenotype: absence of tapetal and middle layers (Figure 4,
A—C). However, an excess of microsporocytes has not been observed
in ems63089; instead, the mutant has even fewer microsporocytes
than wild type. It is unknown to what extent the phenotypes of
mutated alleles of the orthologous genes may vary. Some species-
specific differences in signaling pathways are expected, for example,
both anther and ovule are affected in rice mspl mutant plants (Non-
omura et al. 2003) whereas only the anther is affected in Arabidopsis
emsl/exs mutant (Zhao et al. 2002). Cloning and further character-
ization of ems63089 could define a novel member of a signaling
pathway in maize.

Lose of cell proliferation control

Control of total cell numbers within an anther cell layer requires
modulation of anticlinal cell division patterns. Generation of a new
cell layer requires cells in the original layer to divide periclinally only
one time. Our screening of maize male sterile mutants showed that
cell divisions and cell differentiation during anther development are
coupled and genetically controlled. Finite numbers of divisions within
each cell lineage are essential for fertile anther development. Most
striking are mutants with defects in periclinal division control which
generate patchy, partial, or complete novel rings of somatic cells
(Chaubal et al. 2000; Vernoud et al. 2009). The identity of these
ectopic cells is not clear, and often neighboring layer cells mis-differ-
entiate as well. mtm99-66 is a novel allele of ocl4, which is exclusively
expressed in epidermal cells. The transcription factor encoded by this
gene plays a role in suppressing additional division in endothecium
precursor (Vernoud et al. 2009). An additional periclinal division in
the middle layer precursor results in five-layered anther wall in
ems72091 (Figure 5, E—H). The wild-type allele of this gene probably
controls the number of cells in the middle layer suppressing additional
periclinal division. The ems72091 mutant phenotype is opposite to
that of Arabidopsis receptor-like protein kinase2 (rpk2) mutant, which
lacks the middle layer. Only three layers surround microsporocytes in
the rpk2 anthers. The RECEPTOR-LIKE PROTEIN KINASE2 pro-
motes the periclinal division and differentiation of middle layer cells
from inner secondary parietal cells (Mizuno et al. 2007). The maize
RPK2 ortholog has not been isolated to date. Although the middle
layer has no precisely ascribed functions and is not adjacent to the
sporogenous cells, nevertheless middle layer defects result in aborted
microgametogenesis and male sterility. We suggest that unknown
aspects of cell—cell communication coordinate cell proliferation and
differentiation within the entire anther such that defects in one cell
type cause organ growth arrest.
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Shortly after the periclinal division of the secondary parietal cells,
ms*6015 tapetal initials exhibit extra divisions. Typical tapetum mor-
phology has been never observed in this mutant (Figure 6A). “Tape-
tal” cells divide anticlinally and/or with abnormal (randomized new
cell walls) division orientation generating cells that remain uninucleate
and lack characteristics of normal tapetum. In ms23, the tapetal initials
divide precisely once to generate a bilayer in which the cells remain
uninucleate and fail to acquire other tapetal characteristics (Chaubal
et al. 2000). In contrast, in ms32-ms*6066, there are one to two or
more extra layers sandwiched between meiocytes and middle layer
initials; no cells exhibit any characteristics of maturing tapetal cells.
It is possible that in these three mutants, tapetal initials and later
tapetal precursors fail to enter terminal differentiation and therefore
do not stop dividing. If so, the wild-type alleles of these genes may
suppress cell proliferation by triggering terminal differentiation. In
contrast, the LRR receptor kinase signaling complexes described in
the previous section can stimulate tapetal initial proliferation specifi-
cally promoting only periclinal division in L2-d cells. In mutants with
disrupted genes, tapetal initials fail to divide and differentiate. Induc-
tion of expression of EMSI in the few tapetal initials in emsI plants
can restore both proliferation and differentiation cells into normal
tapetal cells (Feng and Dickinson 2010b). Analysis of transgenic lines
with restored tapetum in different patterns varying from the normal
monolayer to clumps of multilayered tapetum demonstrated that in-
tegrity of the tapetal monolayer is crucial for the maintenance of the
polarity of divisions within it (Feng and Dickinson 2010b). Exclusively
anticlinal divisions of tapetal initials took place if promoter drove
EMSI transcription to attain an effective threshold before the frag-
mentation of the monolayer of tapetal initials. A mixture of anti- and
periclinal divisions occurred to generate tapetal layering if EMSI ex-
pression was triggered after the fragmentation of monolayer (Feng
and Dickinson 2010b). Spatial and temporal relationships of gene
function may also explain the exclusively anticlinal divisions in
ms*6015 and one or two periclinal divisions in addition to anticlinal
divisions in ms23 and ms32. The tapetum adjacent to the sporogenous
cells plays a crucial role in supplying nutrients to microsporocytes and
providing their release form tetrads. Therefore most mutations with
defects in the tapetum cause male sterility.

Cell layer degeneration
Cell death occurs in plants but is an uncommon mechanism shaping
plant organs and tissues; however, it is a common end point when
development goes awry. In many of the mutants described here,
aberrant cells are recognizable by their extensive vacuolization, failure
to maintain a dark-staining cytoplasm, and lack of cell wall rigidity. It
is presently unclear whether abnormal development triggers the
general cell death program (Jones 2001; Lam 2004) or whether de-
velopmentally abnormal cells die in cell type—specific processes.
Normal anther development includes a temporally coordinated
crushing of the middle layer and later tapetal degeneration mediated
by the general programmed cell death (PCD) pathway. Although
tapetal degeneration occurs in the wild-type tapetum after microspore
mitosis 1, the first hallmarks of PCD were observed in tapetum as
early as the premeiotic stage (Varnier et al. 2005). Decisions about cell
death based on the integration of various signals are probably made
long before visible signs of cell degradation. In addition to vacuoliza-
tion, tapetal cell deterioration is marked by cell shrinkage, polarization
of cytoplasmic material, thinning of cell walls that become less distinct
between adjacent cells, and DNA fragmentation. Several key genes
required for the establishment of PCD have been identified (Li et al.

= G3-Genes | Genomes | Genetics



2006, 2011; Phan et al. 2011). Quantitative reverse-transcription poly-
merase chain reaction analysis showed that most genes implicated in
PCD are up-regulated as anthers mature (Skibbe et al. 2008). Failure
to properly regulate cell death results in plant sterility: both premature
cell layer degradation and abolition of the tapetum suicide program
lead to microspore abortion (Kawanabe et al. 2006; Vizcay-Barrena
and Wilson 2006; Shi et al. 2009). The Arabidopsis MALE STERILITY
I (MS1) and ABORTED MICROSPPORES (AMS) and the respective
rice orthologs PERSISTENT TAPETAL CELLI (PTCI) and TAPE-
TUM DEGENERATION RETARDATION (TDR; Table 3) control pro-
grammed tapetum degeneration. Mutations in MSI and PTCI
encoding PHD-finger protein as well as in AMS and TDR encoding
bHLH transcription factor display delayed tapetum degeneration and
lack of tapetal DNA fragmentation (Sorensen et al. 2003; Li et al. 2006,
2011; Ito et al. 2007). Tapetal cells are abnormally vacuolated and
enlarged in many mutants that display their defects at the late stages
(during or after meiosis). Sometimes the middle layer and endothe-
cium become vacuolated as well. Microspore death may also be caused
by poor nutrition or defects in pollen coatings secreted by tapetal cells.
It is unclear if a PCD signal can also be conveyed from the microspore
toward the peripheral cell layers when meiosis fails.

Functional failure

Functional failure is an inability to perform a cell type regular function
due to low synthetic or metabolic level of some components required
for normal plant development. Formation of callose walls in prophase
meiocytes is a characteristic feature of normally developing anthers
(Abramova et al. 2003). Callose is essential for sequestering the PMCs
from each other and from tapetum. Too little or too much callose is
associated with degeneration of developing microspores and plant
sterility (Chen and Kim 2009; Wang et al. 2010). Callose dissolution
is under strict regulation in anther development. Callase is secreted
from the tapetal cells to degrade callose and to release microspores
from tetrads. The newly detected maize mutant csmdl (Wang et al.
2011), the historic mutants ms10, ms8 (Wang et al. 2010) and its new
allele ms8-mtm99-56, as well as both newly identified alleles of ms45,
ms45-msN2499, and ms45-ems6440, show impaired patterns of callose
deposition.

CONCLUSION

Although some newly documented maize mutants illustrate a pheno-
typic and probably functional conservation of mutated genes
compared to their orthologs in rice and Arabidopsis, most maize
mutants had distinctive phenotypes representing the divergence
between monocots and eudicots and between rice and maize during
higher plant evolution. The screen of nearly 250 maize male sterile
mutants has yielded cases with new types of anther failure and
permitted definition of four classes of pre-meiotic defects. As the
genes corresponding to each mutant are cloned, a more sophisticated
comparison of the steps in eudicot and grass anther development can
be conducted. The screen and accompanying allelism tests are an
essential first step in elucidating loci for future analysis of the
evolutionary context of developmental regulation.
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