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Abstract

Background: Macrophage migration inhibitory factor (MIF) has special pro-inflammatory roles, affecting the
functions of macrophages and lymphocytes and counter-requlating the effects of glucocorticoids on the immune
response. The conspicuous expression of MIF during human implantation and early embryonic development also
suggests this factor acts in reproductive functions. The overall goal of this study was to evaluate Mif expression by
trophoblast and embryo placental cells during mouse pregnancy.

Methods: Mif was immunolocalized at implantation sites on gestation days (gd) 7.5, 10.5, 13.5 and 17.5.
Ectoplacental cones and fetal placentas dissected from the maternal tissues were used for Western blotting and
gRT-PCR assays on the same gestation days.

Results: During the post-implantation period (gd7.5), trophoblast giant cells showed strong Mif reactivity. In later
placentation phases (gds 10.5-17.5), Mif appeared to be concentrated in the junctional zone and trophoblast giant
cells. Mif protein expression increased significantly from gd7.5 to 10.5 (p = 0.005) and from gd7.5 to 13.5 (p = 0.03),
remaining at high concentration as gestation proceeded. Higher mRNA expression was found on gd10.5 and was
significantly different from gd13.5 (p = 0.048) and 17.5 (p = 0.009).

Conclusions: The up-regulation of Mif on gd10.5 coincides with the stage in which the placenta assumes its
three-layered organization (giant cells, spongiotrophoblast and labyrinth zones), fetal blood circulation begins and
population of uNK cells reaches high proportions at the maternal counter part of the placenta, suggesting that Mif
may play a role in either the placentation or in the adaptation of the differentiated placenta to the uterus or still in
gestational immunomodulatory responses. Moreover, it reinforces the possibility of specific activities for Mif at the

maternal fetal interface.

Background

Macrophage migration inhibitory factor (MIF) is a
widely-expressed pleiotropic cytokine, exhibiting a broad
range of roles that include pro-inflammatory activities in
innate and acquired immunity, glucocorticoid antagon-
ism [1-5], cell proliferation and survival [6-8], cell
migration [9,10], modulation of NK-associated immune
responses [11], DNA damage response and proteasomal
control of the cell cycle [12]. It is constitutively
expressed by a wide variety of cells [2,13] and can be
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either continuously expressed and secreted or stored
intracellularly [2].

MIF has been particularly studied during an inflamma-
tory response. Cytokines such as tumor necrosis factor-
alpha (TNF-a) and interferon-gamma (IFN-y) induce
MIF expression by macrophages [13] and up-regulation
of Toll-like receptors [14], enabling these cells to respond
to microbial infection [13-15] and inducing the expres-
sion of a large panel of pro-inflammatory molecules
(chiefly TNF-a, IFN-y, interleukin (IL)-1 beta, IL-2, IL-6,
IL-8 [1,13]), nitric oxide [16], cyclooxygenase-2 (COX2)
products [17] and several metalloproteinases (MMP)
[18,19]. Evidence also suggests that MIF inhibits gluco-
corticoid action by suppressing mitogen-activated protein
kinase phosphatase-1 (MKP-1), which activates the
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proinflammatory extracellular signal-regulated kinase 1/2
(ERK1/2), c-Jun N-terminal kinase (JNK) and p38 path-
ways [4,20] and inhibits cytokine production.

Activation of the cell surface CD74 by MIF binding initi-
ates a signal transduction cascade resulting in activation of
the ERK-1/2 mitogen-activated protein kinase (MAPK)
cascade, prostaglandin E2 (PGE,) production and cell pro-
liferation [21,22]. However, CD44 seems to be necessary
for CD74 signaling [8,23]. Recent data indicate that MIF
induces CD44-dependent serine phosphorylation of the
intracytoplasmic domain of CD74 and that CD74 and
CD44 are associated with the signaling pathway involving
Syk tyrosine kinase and phosphoinositide 3-kinase (PI3K)/
Akt, leading to cell survival responses and negative regula-
tion of p53, suppressing apoptosis [6,7]. Thus, the func-
tional role of the MIF-activated, CD74-CD44 complex is
to deliver important signals for cell survival [8].

The expression of MIF has been described in various
organs of the reproductive system in different species
[24-27]. In humans, it has been demonstrated in villous
and extravillous trophoblast cells and in the endome-
trium, particularly the glandular epithelium [28-30]. In
mice, Mif was identified in the uterus during the pre-
implantation period and throughout the estrous cycle as
well as in early embryos [24,25]. Mif is also expressed in
the trophoblast and maternal epithelium of species with
epitheliochorial placentas, e.g. pig [27]. The presence of
MIF in the uterus varies during the phases of the repro-
ductive cycle in humans and mice [24,30].

In human pregnancy, MIF has been detected at the
site of implantation in both the maternal decidua and
trophoblasts [28,31]. It is noteworthy that MIF mRNA
and protein levels are higher during the very early gesta-
tional stages and decline in the late first trimester. MIF
neutralization using antibodies increases the cytolytic
activity of uterine natural killer cells, suggesting an
immunomodulatory role for this cytokine at the mater-
nal-fetal interface [11]. Using an in vitro model of chor-
ionic villous explants, we have also found that MIF
protein and mRNA are up-regulated by low oxygen ten-
sion, comparable to the values during very early stages
of pregnancy [31].

As regulatory molecules are important components of
a paracrine/autocrine communication network operating
within the fetal-maternal unit, we checked for the
expression of Mif in fetal placental components. Impor-
tantly, our data indicate changes in Mif expression dur-
ing gestation, which may be associated with placental
differentiation and functionality.

Methods

Animals

CD-1 mice aged 3-4 months were housed in the animal
care facility at the Institute of Biomedical Sciences in
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the University of Sdo Paulo. Females were caged over-
night with males (1:1) and successful mating was
checked daily by the presence of a vaginal plug. The
morning when the plug was found was designated the
first half-day of gestation (gd). A total of 120 pregnant
females were used in these experiments.

All pregnant females were killed by cervical disloca-
tion. All procedures and animal handling were per-
formed in accordance with the guidelines provided by
the Brazilian College of Animal Experimentation, and
were authorized by the Ethical Committee for Animal
Research of the University of Sdo Paulo (n° 063/2007).

Samples

Isolation of ectoplacental cones, decidua and fetal
placentas

To evaluate protein and gene expression, the uteri were
dissected in sterile PBS on gestation day 7.5, immedi-
ately after the cervical dislocation. Using a scalpel, the
embryo was separated from the decidua and the ectopla-
cental cone was dissected from the remaining embryonic
tissue.

On gd10.5, 13.5 and 17.5, the uteri were opened longi-
tudinally and the fetal placentas were gently isolated
from adjacent mesometrial decidua under a
stereomicroscope.

Implantation sites and placenta

The uteri of females on gd7.5, 10.5, 13.5 and 17.5 were
collected immediately after death. The implantation sites
(gd7.5) or complete placentas (gd10.5, 13.5 and 17.5)
were removed and manually sliced into thin transverse
fragments under sterile PBS. Representative samples
were immersed in 4% paraformaldehyde in PBS, pH 7.2,
for 24 h, followed by dehydration in ethanol and paraf-
fin embedding in Histosec resin (Merck KGaA, Darm-
stadt, Germany).

Immunohistochemistry

Paraffin-embedded implantation sites and placentas
were cut into 5-pm sections and incubated for 10 min
at room temperature with 8% acetic acid to block endo-
genous phosphatase. Sections were treated with 3% BSA
diluted in 0.02 mol/l Tris-buffered saline (pH 7.4) for 30
min at room temperature to block nonspecific binding
sites. The samples were incubated for 12 h at 4°C with
rabbit polyclonal anti-MIF antibody (Abcam Inc., Cam-
bridge, MA, USA) at 1:100 dilution. The samples were
then rinsed in Tris-buffered saline and incubated with a
rabbit ExtrAvidin Alkaline Phosphatase Staining kit
(Sigma Chemical Co, St. Louis, MO, USA) according to
the manufacturer’s protocol. The reaction was developed
with Fast red AR/Naphtol AS-MX (Sigma Chemical Co,
St Louis, MO, USA) and counterstained with Mayer’s
hematoxylin. Negative controls were performed by
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replacing the primary antibody with normal rabbit
serum.

The immunostaining for each gestational period and
each group was determined at different times, assessed
by three different observers to obtain the mean scores
on a semi-quantitative ranking system, as follow: no
staining (-); weak staining (+/-); moderate staining (+);
medium staining (++); intense staining (+++). At least
five different areas were examined for each section
(three sections per group and gestational period) using a
light microscope (Nikon, Inc., Tokio, Japan), at the final
magnification of x200.

Protein and gene expression

Collection of samples

Samples were pools of 100 ectoplacental cones randomly
obtained from eight pregnant females at gd7.5, and six
placentas obtained from three pregnant females (two pla-
centas pooled per female) for each of the remaining days
of gestation (10.5, 13.5 and 17.5) per group. A total of
three groups were performed for each gestational period.
The samples were analyzed in duplicate for qRT-PCR
and in triplicate for RT-PCR and Western blotting.
Western blotting

The samples were collected on ice-cold RIPA buffer (1%
NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM
EDTA, 1 mM PMSF, 1 mM Na3VQOy,, 50 mM Tris-HCI,
pH 7.4) supplemented with complete protease inhibitor
cocktail (Sigma Chemical Co, St Louis, MO, USA). Thirty
ug of total protein were subjected to gel electrophoresis
using 15% polyacrylamide gels under denaturing condi-
tions (SDS-PAGE). The separated proteins were electro-
transferred to nitrocellulose membranes (Hybond-ECL,
GE Healthcare, Buckinghamshire, UK). The blotted mem-
branes were incubated in blocking solution (5% non-fat
dry milk in 0.02 M TBS) for 1 h at room temperature and
incubated overnight with primary anti-mouse MIF poly-
clonal antibody (Abcam Inc., Cambridge, MA, USA) at
1:2000 dilution. The membranes were then exposed to
horseradish peroxidase-conjugated goat anti-rabbit sec-
ondary antibody (KPL Inc., Gaithersburg, Maryland, USA)
at 1:2500 dilution. Chemiluminescence was detected using
an ECL Chemiluminescent Substrate kit as per the manu-
facturer’s instructions (GE Healthcare, Buckinghamshire,
UK). Equal loading of the proteins was confirmed by stain-
ing the blots with a 10% Ponceau S solution (Sigma Che-
mical Co., St Louis, MO, USA). Protein expression levels
were determined by densitometry using Scion Image Soft-
ware (Scion Corp., Frederick, MD, USA).

RT-PCR and quantitative real-time PCR

RNA extraction

For PCR, the samples were dissected in cold sterile PBS.
Total RNA was extracted from the samples using TRIzol

Page 3 of 9

reagent (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s protocol. RNA concentrations were
determined spectrophotometrically by absorbance at 260
nm and purity was assessed by the 260/280 and 230/260
nm ratios and on a 1% denaturing agarose gel stained
with ethidium bromide.

Oligonucleotide primers

Primers were designed using PrimerQuest Software
(Integrated DNA Technologies, Coralville, 1A, USA)
with reference to GenBank (Table 1).

Semiquantitative RT-PCR

First strand cDNA was synthesized from 1 pg total RNA
using an Improm-II Reverse Transcription System (Pro-
mega Madison, WI, USA) as recommended by the
manufacturer.

PCR was performed in a final volume of 25 pl con-
taining 10x PCR buffer, 1.5 mM MgCl,, 100 mM deoxy-
nucleotide triphosphates, 100 mM each primer and 0.5
U Taq polymerase (Invitrogen, Carlsbad, CA, USA). In
addition, several parallel control reactions were run rou-
tinely, including RT-PCR in the absence of reverse tran-
scriptase to confirm the absence of genomic DNA
contamination, and reverse transcription without RNA
to check for reagent contamination. The PCR conditions
were: step 1, 94°C for 1 min; step 2, 30 cycles at the
annealing temperature indicated in Table 1; and step 3,
72°C for 1 min, using a Mastercycler ep S (Eppendorf,
Hamburg, Germany).

The number of cycles used was selected to allow the
samples to be compared linearly. Cyclophilin was used
as the reference housekeeping gene. Table 1 lists the
primer sequences, product size and amplification condi-
tions for each gene studied. Total amplification in each
reaction primer set was maintained below saturation
level so that the products remained within the exponen-
tial range. The PCR products were separated by electro-
phoresis on 1% agarose gels and stained with ethidium
bromide.

Real-time PCR

To quantify the cDNA generated by reverse transcrip-
tion, real-time PCR with SYBR Green I was performed
using SYBR Green PCR Master Mix in an Applied Bio-
systems 7500 Fast Real-Time PCR System (both from
Applied Biosystems, Foster City, CA, USA). Real-time
PCR was carried out using specific primers for MIF and
B-actin (Table 1). For negative controls, we used a com-
plete DNA amplification mix in which the target cDNA
template was replaced with water. The 2"AACT method
of analysis was used with the B-actin gene for normali-
zation. All samples were run in duplicate in three inde-
pendent experiments. Amplifications were performed
using the default cycling conditions: enzyme activation
at 95°C for 10 min, 40 cycles of denaturation at 95°C for
15 s, and annealing/extension at 60°C for 60 s.
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Table 1 Primers used for RT-PCR and qRT-PCR
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Primer GenBank Accession no. Forward 5'-3’ Reverse 5'-3' PCR(bp) product T °C
Mif NM_001111330 TGCCCAGAACCGCAACTACAGTAA  TCGCTACCGGTGGATAAACACAGA 218 60
Cyclophilin NM_177832.3 CTTGCTGCAGACATGGTC GCAATCCTGCTAGACTTG 660 58
B-actin NM_007393 CTGTGGCATCCACGAAACTA AGTACTTGCGCTCAGGAGGA 199 60

Sequences of oligonucleotide primers, their annealing temperatures (T) and expected product sizes

To assess the linearity and efficiency of PCR amplifica-
tion, standard curves for all transcripts were generated
using serial dilutions of cDNA. A melting curve was
obtained for the amplification products to ascertain
their melting temperatures. GeneAmp software (Applied
Biosystems, Foster City, CA, USA) was used to quantify
the expression levels (Quantitative PCR).

Statistical analysis

For mRNA expression, normalized cDNA copy numbers
for each transcript at different gestation days were com-
pared by ANOVA. The results were considered statisti-
cally significant at P < 0.05; P < 0.1 was considered
indicative of possible trends. Spot densitometry was per-
formed to determine Mif band intensities relative to a
conserved 70 kDa band detected by Ponceau-S staining
[32]. The mean relative ratios and standard deviations
(£ S.D.) were plotted using Excel for Windows 2000
(Microsoft). Mean values for each gestation period were
compared by ANOVA (values statistically significant at
p < 0.05) using Prism for Windows 95, version 4.00
(GraphPad Software Inc.).

Results

Immunohistochemistry

There was Mif immunoreactivity on all gestation days
examined (7.5, 10.5, 13.5, and 17.5, Fig. 1). On gesta-
tion day 7.5, trophoblast giant cells in the ectoplacental
cone (Fig. 1A) and from the mural trophoblast (Fig.
1B) were strongly reactive. Some decidual cells, mainly
those located near the embryo, were also immunoreac-
tive. Mif immunostaining was observed in both giant
and preplacental cells at gd10.5 (Fig. 1D and 1E), but
positive decidual cells were rare. At gd13.5 Mif immu-
nolocalization was restricted to the juncional zone and
in some trophoblast giant cells (Fig. 1G and 1H),
whereas on gd17.5 the immunolabeling was widespread
in these layers (Fig. 1J and 1K). Particularly on gd17.5,
spongiotrophoblast characteristically exhibited intru-
sions into the labyrinth, also immunolabeled for Mif
(Fig. 1J).

Immunoreactivity was estimated on a semi-quantita-
tive ranking system: no staining (-); weak staining (+/-);
moderate staining (+); medium staining (++); intense
staining (+++). The results are summarized in Table 2.

Western blotting

Mif protein was identified by Western blotting of the
homogenates of ectoplacental cones (gd7.5) and placen-
tas (gd10.5, 13.5 and 17.5) (Fig. 2). A specific anti-MIF
antibody recognized a single band of approximately 12.5
kDa in all specimens tested (Fig. 2A). The level of Mif
expression increased significantly from gd7.5 to 10.5
(p = 0.005) and from gd7.5 to 13.5 (p = 0.03) (Fig. 2B).
As gestation progressed, Mif remained at a high concen-
tration (there were no statistically significant differences
among the remaining days of gestation).

PCR

A band corresponding in size to the Mif RT-PCR pro-
duct was obtained from cDNA in each of the specimens
examined (Fig. 3A). Mif gene expression was quantified
by qRT-PCR (Fig. 3B). The higher mRNA expression
was found on gd10.5, and this was significantly different
from gds 13.5 (p = 0.048) and 17.5 (p = 0.009). Indeed,
comparison with gd10.5 and gd7.5 showed a possibly
significantly increasing trend (p = 0.064).

Discussion

The post-implantation mouse embryo is completely
lined by different types of trophoblast cells with distinct
spatial localization and gene expression [33]. The polar
trophoblast of the blastocyst gives rise to the ectopla-
cental cone and chorion trophoblast associated with the
development of the fetal counterpart of the placenta
[34]. The fusion of the allantois to the chorionic tropho-
blast originates the labyrinth structure [35] that plays a
fundamental role in molecular exchanges between
maternal and fetal organisms. The ectoplacental cone
originates the trophoblast giant cell layer and junctional
zone that comprises both spongiotrophoblast and glyco-
gen cells and is involved with trophoblast proliferation,
differentiation and hormone synthesis [36,37]. Glycogen
cells also exhibit a migratory pattern into the decidua
(from day 12 of gestation) for vessel remodeling and
immunomodulatory functions [36,38]. The ectoplacental
cone also develops a multitude of giant cells [34] that
participate in pivotal processes such as remodeling of
the decidua and arterial vessels, immunoregulation and
at later stages (after gd 9.5) secretion of regulatory hor-
mones members of the prolactin/growth hormone
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250 um in E-F and 150 ym in B and H.

Figure 1 Immunolocalization of MIF in implantation sites on days 7.5 (A-C), 10.5 (D-F), 13.5 (G-I) and 17.5 (J-L) of gestation. MIF
reactivity (pink to red color) is seen in trophoblast cells and some cells in the mesometrial decidua. Numbers on the left represent gestation
days. (ec) Ectoplacental cone; (d) Decidua; (g) Trophoblast giant cells; (j) Junctional zone; (L) Labyrinthine zone; (S and *) Spongiotrophoblast. The
boxed areas within low magnifications panels (A, D, G) indicate similar areas of focus in B, E and H. Figures C, F, | and L are negative controls in
which the primary antibody was replaced with non-immune serum. Bar in A =1 mm in C, J and L, 500 ym in A and G, 350 um in D, | and K,

T

family of proteins [39]. Moreover, trophoblast giant cells
and junctional zone cells establish extensive communi-
cation with decidual cells, maternal vascular cells and
immune cells.

Table 2 MIF in placental cell populations

Gestation day 7.5 10.5 13.5 17.5
Trophoblast giant cells + + + +
Spongiotrophoblast + + ++
Labyrinth + +/- -

The presence (+) or absence (-) of immunohistochemically detected MIF in
placental cell populations at different gestational periods as indicated (++,
means many cells immunostained, +/-, only a few reactive cells, - no
reactivity).

The present study showed that Mif mRNA is detect-
able in fetal placental components on gestation day 7.5
and its expression increases after gd10.5. Data from
gene expression, protein expression and immunolocali-
zation of Mif were consistent through all periods stu-
died. The immunolocalization results also suggested that
the main source of Mif at the maternal-placental inter-
face is peripheral giant and junctional zone cells after
gd10.5 and trophoblast giant cells from gd7.5 onwards.
Coincidentally, day 10 of gestation is also the stage at
which the placenta assumes its three-layered organiza-
tion (giant cells, junctional and labyrinth zones) [38] the
fetal blood circulation begins [40], trophoblast cells
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Figure 2 Western blotting of ectoplacental cone (gd7.5) and
placental (gds 10.5, 13.5 and 17.5) homogenates. The top panel
(A) is a representative Western blot showing the detection of MIF
protein at different gestational days (numbers on the top). Equal
amounts of total cell lysate protein from each sample were
separated by SDS-PAGE and immunodetected by Western blotting
using anti-mouse MIF antibody. Equivalence of protein loading was
confirmed by Ponceau S staining (lower bands). Panel B shows the
MIF level by densitometry, presented as mean + SD of three
samples from three separate experiments. *P < 0.05 in relation to
the gd7.5.

invade and remodel maternal arterial vessels and uterine
killer cells increase the population density at the mater-
nal counterpart of the placenta [41]. The increase in Mif
expression and the location at the placental-maternal
interface after gd10.5 gathered to the functions pre-
viously described for this regulatory factor suggest that
Mif may participate in these placentation-associated
processes.

One of the most known actions of MIF is its ability in
promoting cell proliferation and suppressing apoptosis
[6-8]. In fibroblasts, MIF stimulates survival [7]. Coher-
ent with this, MIF mRNA is upregulated in wound heal-
ing process [42]. One hypothetical explanation for the
high levels of Mif production at maternal-fetal interface
may be causally associated with maintenance of decidual
cells and, as such, acting as a gestational protective
factor.

Several studies provide strong evidence that MIF is a
central player in inducing angiogenesis and as a che-
moattractant for human vascular endothelial cells [9,10].
Angiogenesis in turn is a fundamental process during
chorioallantoic placentation, particularly from embryo-
nic day 10.5, after decline of the vitelline circulation
associated with the yolk sac [43]. Thus, it seems reason-
able to propose that increased Mif expression on the
giant and junctional zone cells, cells in close proximity
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to the basal decidua and consequently to the maternal
vasculature, may participate together other angiogenic
factors also produced by these cells with the augment of
vessels in the endometrium for placental functioning.

MIF also appears to be an important mediator in the
production of extracellular matrix-remodeling factors
such as metalloproteinases [18,19] and granzyme B [44].
These enzymes are closely related to migration in tro-
phoblast cells [45-47] and therefore also enable to estab-
lish an autocrine correlation with Mif expression and
secretion at the maternal counterpart of the placenta.
Invasive trophoblast cells are a specialized lineage in
rodents [48]. During the second half of gestation these
cells exit from the chorioallantoic placenta, invade the
mesometrial endometrium to a degree that differs
among rodent species and, remodel and colonize the
uterine vessels [36,38,49-51].

The overall action of MIF also includes the induction
of a large range of pro-inflammatory cytokines (TNF-a.,
IFN-y, IL-1B, IL-2, IL-6, IL-8, 2, macrophage inflamma-
tory protein [13]), nitric oxide [16] and COX2 products
[17], and counter-regulation of glucocorticoid action on
the immune response. Arcuri et al. [28] also argued for
a putative immunosuppressor role of MIF, inhibiting
uterine natural killer (NK) cell activity in the decidua
[11]. The expression of NKG2 D, a NK known activat-
ing receptor, is down regulated by MIF decreasing its
lytic capacity [52]. In the eye aqueous humor, a site
with immune special characteristics as the pregnant
uterus, MIF also inhibited NK cell mediate cytolysis in a
dose dependent manner by reducing perforin granule
exocytoses, in vitro [53]. Interestingly, a coincident pro-
file between the Mif gene/protein expression by fetal
placenta components and the variation in the popula-
tion of uNK cells in the decidua can be observed. Both
began to increase by gd7.5, peak about gd10-12 when
they decline toward term [current results; [41,54]].
Moreover, Mif immunolocalization showed a consistent
pattern in trophoblast giant and spongiotrophoblast
cells. Particularly mouse giant cells also secrete a large
number of hormones closely related to prolactin (PRL),
including the placental hormone prolactin-like protein
A (PLP-A) at midgestation [55]. PLP-A specifically
interacts with uNK cells, decreases its cytolytic activities
[56] and thus, regulates the activity of this class of T
lymphocytes at the implantation site. In this context,
our findings seem to bolster the use of different pro-
grams by trophoblast cells to interact with NK cells and
to prepare an adequate immune microenvironment for
embryo development.

Immune privileged site can also be induced by proges-
terone, a best-known mediator at maternal-fetal inter-
face [57]. As MIF and PLP-A, early studies suggest that
progesterone can inhibit lymphocyte proliferation and
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Figure 3 PCR analysis of Mif mRNA in ectoplacental cone and placentas at different gestational periods. Panel A. Representative agarose
gel photograph showing ethidium bromide-stained RT-PCR products of Mif and cyclophilin genes (internal control, cyclophilin). 1 and 2, 7.5 gd;
3 and 4, 105 gd; 5 and 6, 13.5 gd; 7 and 8, 17.5 gd. Panel B. Mif mRNA expression using RT-gPCR. Mif mRNA levels relative to B-actin were
measured in all gestational periods indicated using RT-gPCR; the values are given as means + SEM of three independent experiments. All
comparisons were two-tailed. The RT-gPCR results revealed that placentas from gd10.5 show significant up-regulation (*) of Mif mRNA levels

Gestation days

suppress NK cytolytic activity in a dose-dependent man-
ner [58-60]. The progesterone action, however, might
also be mediated by MIF. A significant positive correla-
tion has been found between MIF levels and progester-
one receptors [61]. In addition, MIF is also a target of
sex steroids in some inflammatory models; progesterone
increases MIF production in the female rat colon in
experimental colitis [62], which may be another reason-
able hypothetical triangulation during placental
development.

Key cellular MIF functions are mediated through
CD74/CD44 receptors and are closely related to the
phosphoinositide-3-kinase (PI3K)/Akt signaling pathway
[6-8,10]. In this context, the distribution and activation
of Mif receptors is now being further investigated in our
laboratory. The results may also help to elucidate its
paracrine and autocrine actions.

As learned of MIF knockout animals, reproduction is
not impaired. However it does not demonstrate that
MIF expression can be functionally despicable or

unworthy. Genetic redundancy, in which the disruption
of one gene is compensated by others leading to no
phenotypic effect, is a common finding in different
models [63,64] and wouldn’t be an isolated example in
which different mechanisms would plot to gestation
success [63].

In conclusion, our findings provide a global view of
Mif expression in trophoblast cells during placental
development, highlight correlations among Mif expres-
sion, Mif putative functions and important steps of pla-
cental development and provide a basis for new
approaches to the study of its function(s).
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