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The global expansion of coronavirus disease 2019 (COVID-19) caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as one of the greatest
public health challenges and imposes a great threat to human health. Innate immunity
plays vital roles in eliminating viruses through initiating type I interferons (IFNs)-dependent
antiviral responses and inducing inflammation. Therefore, optimal activation of innate
immunity and balanced type I IFN responses and inflammation are beneficial for efficient
elimination of invading viruses. However, SARS-CoV-2 manipulates the host’s innate
immune system by multiple mechanisms, leading to aberrant type I IFN responses and
excessive inflammation. In this review, we will emphasize the recent advances in the
understanding of the crosstalk between host innate immunity and SARS-CoV-2 to explain
the imbalance between inflammation and type I IFN responses caused by viral infection,
and explore potential therapeutic targets for COVID-19.
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INTRODUCTION

The global expansion of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has emerged as one of the greatest public health challenges
and imposes a considerable threat to human health. Similar to SARS-CoV and MERS-CoV
infection, SARS-CoV-2 infection frequently induces high levels of proinflammatory cytokines,
leukocyte changes, high D-dimer, and increased lactate dehydrogenase levels (1–3). COVID-19
exhibits varied clinical manifestations, ranging from fever, cough, diarrhea, and fatigue to
pulmonary edema, septic shock, multiple organ failure, and even death. The multiple symptoms
indicate that COVID-19 is a systemic inflammatory disorder rather than a single respiratory
disease (2).

Innate immunity functions as the first line of defense for the host to eliminate invading viruses
through the initiation of type I IFNs (including IFN-a and IFN-b)-dependent antiviral responses and
induction of inflammation (4). As a bridge, it initiates antiviral adaptive immune responses and controls
the intensity of adaptive immunity. Therefore, optimal activation of innate immunity and balanced type
I IFN responses and inflammation are beneficial for efficient elimination of invading viruses. However,
excessive inflammation caused by viral invasion can induce excessive production of inflammatory
cytokines and initiate acute respiratory distress syndrome (ARDS), which is associated with the increased
org April 2021 | Volume 12 | Article 6337691
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risk of death (1, 5–7). In contrast to heightened levels of
inflammation, reduced or delayed type I IFN responses
accompanied by relatively high viral titers have been observed in
COVID-19 patients, particularly in critical patients in intensive care
units (ICU) (8, 9). While each cell population of patients with mild
COVID-19 displays a coordinated interferon signature, those with
severe cases are thought to dampen IFN responses through CD32b
(10). Recent evidence from two translational medical researches
similarly highlighted the importance of type I IFN. They confirmed
that defective IFN signaling stands as the main causes of serious
COVID-19 besides advanced age and underlying diseases and may
account for nearly 13% of severe cases (11, 12). Imbalance between
inflammation and IFN I responses indicates poorer prognosis for
COVID-19 patients, and worse disease outcomes. In this review, we
will emphasize recent advances in understanding the crosstalk
between host innate immunity and SARS-CoV-2, and explain the
imbalance between inflammation and IFN I responses to explore
potential therapeutic targets for COVID-19.
ENTRY OF SARS-COV-2

Like many other respiratory coronaviruses, SARS-CoV-2 mainly
infects the host via the respiratory tract and is transmitted via
respiratory droplets (13) (Figure 1). The SARS-CoV-2 genome is
approximately 29.7 kb long and encodes four structural proteins
(spike protein S, envelope protein E, membrane protein M, and
nucleocapsid protein N), 16 non-structural proteins (NSPs), and 9
accessory proteins (14–16), which share high sequence similarity to
their SARS-CoV counterparts.
Frontiers in Immunology | www.frontiersin.org 2
Among all the viral proteins, the S protein initiates the
infection process by mediating the attachment of the virus to
host cells through angiotensin-converting enzyme 2 (ACE2)
(13). ACE2 mainly exists in the intestine, heart, kidneys, and
testes, and it is correlated with the distribution of SARS-CoV-2
(17). According to single-cell RNA sequencing (scRNA-Seq), the
expression of ACE2 in the lungs was primarily observed in the
alveolar type II cells (AT2), which are probably the primary
target of SARS-CoV-2 (18). The latest longitudinal study in
conjunction with airway and blood samples also indicates that
severe inflammation during SARS-CoV-2 infection is mainly
driven by cytokines in the lung rather than systemic (19). Even
worse, the SARS-CoV-2-induced IFN I responses also evidently
increase the cellular ACE2 levels, which may increase
susceptibility to infection (20). In addition, SARS-CoV-2-
encoded N protein, NSP7b, and NSP8 all participate in viral
replication, evolution, and immune evasion during infection (21,
22). Emerging evidence confirms that both structural and
nonstructural proteins of SARS-CoV-2 interfere with host
innate immune responses and participate in the pathogenesis
of COVID-19 (14, 23).
INNATE IMMUNE RESPONSES AGAINST
SARS-COV-2

To effectively defend against viruses, host cells initiate antiviral
innate immune responses by producing a number of IFNs and
other proinflammatory cytokines. IFNs and downstream
interferon-stimulated genes (ISGs) play fundamental roles in
FIGURE 1 | Predicted immune dysregulation in the lung during SARS-CoV-2 infection. After contact with droplets containing SARS-CoV-2, host immune responses are
activated in the lung. Activation of immune cell subgroups such as inflammatory macrophages and neutrophils results in the secretion of massive amounts of inflammatory
cytokines, including TNF-a, IL-6, IL-8, and CXCLs. In contrast to excessive proinflammatory cytokines, IFNs levels are lower during the early phase of infection.
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limiting viral replication (24) (Figure 2). Following invasion,
SARS-CoV-2 releases viral RNA and proteins into cells, which
are recognized by the host immune system as pathogen
associated molecular patterns (PAMPs), thus initiating the
secretion of IFNs and antiviral innate immune responses (25).
Various pattern recognition receptors (PRRs), including Toll-
like receptor 3 (TLR3), TLR7, TLR8, retinoic acid-inducible gene
I (RIG-I), and melanoma differentiation-associated protein 5
(MDA5) are candidates for the recognition of SARS-CoV-2,
since they are considered to sense viral components; particularly
viral RNA (26). Among these PRRs, RIG-I/MDA5 are proven to
be the main sensors in MERS-CoV recognition and
inflammatory cascade initiation (27). TLR7/8 is also reportedly
involved in sensing coronaviruses including SARS-CoV (28).

PRR signaling activated by viral components induces nuclear
factor (NF)-kB activation, which triggers the expression of a
large number of proinflammatory cytokines. Some of the
metabolites as oxidized phospholipid (OxPL) are also increased
during coronavirus infection, further triggering NF-kB activation
via TLR4 (29). NF-kB activation induces the expression of
nucleotide-binding oligomerization domain-, leucine-rich
repeat- and pyrin domain-containing 3 (NLRP3), pro-IL-1b,
and pro- IL-18 ( the pr iming s tage o f the NLRP3
inflammasome). Subsequently, cellular damage or distress
caused by viral infection, leading to the accumulation of
Frontiers in Immunology | www.frontiersin.org 3
reactive oxygen species and ion fluxes (damage associated
molecular patterns, DAMPs), results in the activation stage of
NLRP3 inflammasome (30). NLRP3 inflammasome activation
then mediates the maturation of IL-1b, IL-18, and the
propyroptotic factor gasdermin D (GSDMD), and thus induces
inflammation-associated cell death known as “pyroptosis” and
further amplifies host inflammatory responses (30, 31)
(Figure 2).

The activation of multiple PRRs facilitates the establishment
of antiviral states by recruiting multiple adaptor proteins (e.g.,
mitochondrial antiviral signaling protein (MAVS), TANK
binding kinase 1 (TBK1), tumor necrosis factor receptor-
associated factor (TRAF) 3 and TRAF6) and inducing a variety
of cytokines. On this basis, different immune cells are recruited to
infection sites and initiate adaptive immune responses (32).
Although substantial IFN I responses and optimal
inflammation are beneficial for the eradication of invading
viruses, an imbalance between type I IFN responses and
inflammation induced by different viral proteins can cause
numerous detrimental effects (Figure 1). In a SARS-CoV-2
infection hamster model, significant inflammation occurred in
distal tissues even while productive SARS-CoV-2 replication was
low (33). In the late phase of infection, a large increase in delayed
type I IFN responses occurs, which induces the secretion of
proinflammatory cytokines such as C-X-C motif chemokine
FIGURE 2 | Regulation of type I IFN responses and inflammation by SARS-CoV-2 and SARS-CoV. An outline of IFN signaling (left) and major inflammatory signaling
(right) is shown, annotated with the known mechanisms by which SARS-CoV activates or suppresses signals (gray). Some SARS-CoV-2 proteins have also been
confirmed or speculated to interact with these pathways (orange).
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ligand 10 (CXCL10) found in pulmonary autopsy tissues, and
recruits and activates inflammatory monocyte-macrophages,
resulting in the impairment of T cell responses and lung
immunopathology (34, 35). A similar situation was also
revealed when single-cell RNA-seq was performed using
peripheral blood mononuclear cells obtained from severely
affected COVID-19 patients (36). In addition to type I IFNs,
type II IFN (IFN-g) which is mainly secreted by T cells and
natural killer cells was also increased in the serum of COVID-19
patients (37). In early SARS-CoV-2 infection increased IFN-g
may contribute to antiviral immunity in multiple ways, including
the promotion of antigen presentation, inflammatory cell
activation and even by directly stimulating the expression of
multiple ISGs (38). As the disease progresses however, the viral
infection may destroy T-cells and reduce the production of
IFN-g.
DELAYED IFN RESPONSES IN
SARS-COV-2 INFECTION

Like SARS-CoV, SARS-CoV-2 is also highly sensitive to IFNs in
vitro (35, 39). In a hamster infection model, intranasal IFN I
effectively inhibited SARS-CoV-2 replication and transmission
(33). In a phase 2 COVID-19 trial, a combination including IFN-
b1b effectively alleviated symptoms and shortened the duration of
viral shedding, indicating the critical role of IFNs during SARS-
CoV-2 infection (40). Aging and underlying diseases have a
potentially negative impact upon IFN production (41–43).
Consistent with this, in multiple retrospective cohort studies there
have been higher fatalities in elderly patients with severe COVID-19
(2, 3). Similarly, in macaques pulmonary injury was more
prominent in an aged group than in a group of young adults (41).

Genetic mutations (TLR3-, TLR7- and IRF7-dependent) and
neutralizing auto-antibodies (Abs) that influence type I
interferon signaling were shown in severe COVID-19 patients
(11, 12, 44). All these findings underscore the importance of IFNs
for protection against SARS-CoV-2. During early SARS-CoV-2
infection however, the host type I IFN response can evidently be
low and insufficient, which may be partly caused by immune
escape mechanisms of viruses. In a longitudinal follow-up study
including 32 COVID−19 patients and 16 influenza-associated
pneumonia patients who had similar clinical characteristics to
the COVID-19 patients, SARS-CoV-2, but not influenza virus,
could trigger an untuned immune response that presented as
suppressed and delayed IFN responses and a persistent
inflammatory response (45). Delayed type I IFN signaling not
only provides a key window for viral replication but could induce
tissue damage as observed in SARS-CoV infection (35, 46).

Viral Proteins of SARS-CoV-2 Inhibit
Type I IFN Secretion
Four non-structural proteins of SARS-COV-2, including NSP13,
NSP15, open reading frame (ORF) 7b, and ORF9b, were identified
as interactors of host proteins involved in IFN signaling by affinity-
purification mass spectrometry (23, 47). At least eight proteins
Frontiers in Immunology | www.frontiersin.org 4
(NSP1, NSP3, NSP12, NSP13, NSP14, ORF3, ORF6, and M) have
also been proven to inhibit IFN-b production by gene reporter
assays (16). Genetic and clinical data revealed that deletion
mutations in NSP1 of SARS-CoV-2 coding region is a variant
hotspot that could lead to lower IFN response (48). These studies
indicate the existence of a complex regulatory network between
SARS-CoV-2 and the host immune system. Viruses tend to
downregulate the host immune system by direct disruption of
antiviral-associated proteins.

RIG-I activation is dependent on ubiquitination by tripartite
motif containing (TRIM)25, of which the interaction could be
blocked by NSP5 of SARS-CoV-2 and N protein of SARS-CoV
(Figure 2) (26, 49). The M protein of SARS-CoV-2 and SARS-CoV
prevents the formation of the TRAF3-TBK1/IKK∈ complex, thus
suppressing IFNs production (50, 51). SARS-CoV-2M protein even
affects the formation of the RIG-I–MAVS–TRAF3–TBK1 multi-
protein complex and subsequent phosphorylation of IFN regulatory
factor 3 (IRF3) (51). As well as steric hindrance, viral components
also directly target critical adaptors in antiviral immunity. SARS-
CoV-2 ORF6 inhibits IFN signals by preventing IRF3 nuclear
translocation (16). As a key protease of SARS-CoV-2 that
regulates viral replication and spread, papain-like protease (PLpro,
a part of NSP3) attenuates IFN responses via the cleavage of ISG15
from IRF3 (52). SARS-CoV-2 also affects the host through the
translational level. NSP1 binds to 40S ribosomal subunits and
obstructs host mRNA translation, thus effectively inhibiting RIG-
I-mediated IFN responses (Figure 2) (53).

Although a large number of regulatory proteins have been
identified via high-throughput screening, their underlying
mechanisms with respect to relationships with SARS-CoV-2 are
poorly understood. Fortunately, there are great similarities in
sequence between SARS-CoV-2 and SARS-CoV, and continued
comparison may reveal additional useful information regarding
regulation. The N7-methylguanosine (m7G) cap is the defining
structural feature of eukaryotic mRNA that distinguishes it from
viral RNA. SARS-CoV NSP14 is a novel cap N7-methyltransferase
that processes the cap structure of viral RNA to mimic host mRNA
and evade recognition (54). ORF9b degrades MAVS, as well as
TRAF3 and TRAF6, by usurping poly(C)-binding protein 2 and
AID4, a gatekeeper and E3 ligase, thus controlling MAVS
expression levels (55). As a crucial adaptor of the antiviral
signaling pathway, IRF3 is also a key target of multiple SARS
proteins including PLpro, N, ORF3b, and ORF6 protein (Figure 2)
(56, 57).

SARS-CoV-2 Proteins Inhibit
the JAK-STAT Pathway
As a downstream signaling pathway of IFN, JAK-STAT pathway
is crucial for type I IFNs triggered ISGs expression and antiviral
responses. During viral infection, responder cells produce and
secrete type I IFNs which subsequently bind to their receptor
IFNAR (IFN-a/b receptor) to initiate JAK-STAT signaling
cascades (58). Both SARS-CoV-2 and SARS-CoV infection
affect JAK-STAT signaling, thus inhibiting host antiviral innate
immunity independent of the level of IFNs (16, 49, 59–64). Up to
now, at least four SARS-CoV-2 proteins (NSP5, ORF7a, N,
April 2021 | Volume 12 | Article 633769
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ORF6) and three SARS-CoV proteins (ORF3a, NSP1, ORF6)
have been proved to directly affect the activation of JAK-STAT
pathway by multiple mechanisms including mediating STAT1/2
degradation and suppressing their phosphorylation and nuclear
translocation (16, 49, 59–64). Resultantly, the expression of ISGs
reduced, and antiviral effects get impaired.
EXCESSIVE INFLAMMATION
CAUSED BY SARS-COV-2

During SARS-CoV-2 infection, aberrant inflammatory cytokine
responses and the induction of a cytokine storm is closely
associated with extensive lung damage and disease severity
(65). Compared to mild-to-moderate affected patients, in these
severe cases higher levels of pro-inflammatory cytokines
(including IL-6, IL-10, and TNF-a, etc.) are secreted, and their
secretion is correlated with a high serum titer of SARS-CoV-2
and an increased risk of death (66–68). The disrupted secretion
of proinflammatory and anti-inflammatory cytokines in severely
ill patients results in vascular leakage and fluid accumulation,
which is the main cause of ARDS (69). Thus, the seriousness of
clinical symptoms may be highly correlated with the
inflammatory status of COVID-19 patients.

NF-kB-Associated Inflammation
Abnormal NF-kB activation is vital for the initiation and
progression of multiple inflammatory respiratory diseases and
ARDS (70, 71). For SARS-CoV, the S, N, and E proteins as well as
ORF3 and ORF8 can activate NF-kB signaling, leading to the
secretion of proinflammatory cytokines (72–75). During SARS-
CoV-2 infection, two non-structural proteins, NSP13 and ORF9c
interact with NF-kB signaling proteins (TLE1, TLE3, TLE5,
NLRX1, F2RL1, and NDFIP2), suggesting that SARS-CoV-2
can regulate the NF-kB signaling pathway (23). The
vasoconstrictor angiotensin II (AngII) is also a key factor
involved in the pro-inflammatory responses. As the substrate
of ACE2, AngII overexpresses after S protein-induced ACE2
internalization (76). After binding with angiotensin receptor 1
(AT1R), AngII initiates numerous kinase activations that result
in subsequent inflammatory factor production (76).

NLRP3 Inflammasome-Associated
Inflammation
Higher numbers of NLRP3 and ASC puncta have been observed
in COVID-19 patients, and IL-18 and Caspase-1 p20 levels are
correlated with disease severity and clinical outcome (77).
Specifically, ion fluxes, protein aggregates, and reactive oxygen
species (ROS) are all activators of the NLRP3 inflammasome,
which can be induced by viral replication and proliferation (30).
For SARS-CoV, the E protein activates the NLRP3
inflammasome by forming an ion channel in host ERGIC/
Golgi membranes, and inducing Ca2+ ionic fluxes (78).
Similarly, SARS-CoV 3a induces K+ efflux and mitochondrial
ROS via ion channel activity (31). ORF8b activates the NLRP3
inflammasome by forming an insoluble complex, as well as direct
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binding with NLRP3 (79). The E protein, with its unique domain
containing three macrodomains (N, M, and C), promotes the
production of several cytokines, including IL-1b, TNF-a, IL-6,
CXCL10, and C-C motif chemokine ligand (CCL)5, in a NLRP3-
dependent manner (78, 80). Such positive feedback loop induced
by a pro-inflammatory cytokine eventually results in ARDS,
which is a primary contributor to the development of SARS-
CoV-induced pulmonary inflammation (30, 81). Moreover,
activation of the inflammasome can consequently induce
cellular pyroptosis and further aggravate the inflammatory
process, leading to extensive tissue inflammation and damage
(30). Thus, the NLRP3 inflammasome plays a key role in ARDS
and cytokine release syndrome. With the discovery of regulatory
proteins for SARS-CoV-2, thorough studies will be conducted to
determine the mechanisms governing inflammasome activation.
POTENTIAL THERAPEUTIC TARGETS
BASED ON THE VIRUS-HOST
INTERACTION

COVID-19 has rapidly caused a worldwide health crisis, partly
because SARS-CoV-2 infects people regardless of age, sex, and
race, and no specific antiviral drugs are currently available. Given
this situation, effective and specific drugs need to be developed
urgently. Innate immune responses in COVID-19 patients can be
divided into two phases-early phase (inhibited antiviral innate
immunity and low levels of IFNs) and late phase (amplified
innate immunity and high levels of IFNs and proinflammatory
cytokines), and treatment needs to be administered carefully.
Serum IFNs and viral loads need to be detected to determine the
suitable timing of treatment administration.

During the early phase, emphasis could be put on inducing IFNs
and improving antiviral immunity. In a phase 2 trial for the
treatment of SARS-CoV-2 infection, patients receiving SNG001
(nebulized IFN-b1a) exhibited greater improvement and more
rapid recovery (82). This phenomenon indicated that local
administration of IFN might have different significance from
systemic administration. The location, time and duration of IFN
exposure may be the key parameters to determine the outcome of
viral infection. It also suggested that there may be a substantially
greater window (more than 7 days) for beneficial IFN I treatment
than initially thought (82). Notably however, in some patients who
have neutralizing auto-antibodies against IFNs possibly because of
recombination-activating genes (RAG) deficiency, IFNs especially
IFN-a administration, is likely to be useless (12). Viral PLpro may
cleave proteinaceous post-translational modifications on host
proteins as an evasion mechanism against host antiviral immune
responses. Given this, GRL-0617 couldmaintain host IFN responses
by targeting SARS-CoV-2 PLpro (52). Similarly, a recent study
revealed that famotidine, a histamine receptor-2 blocker, could bind
and inhibit the SARS-CoV-2 NSP5 and restore the activation of
RIG-I and STAT1 as described above (83). Moreover, in a recent
retrospective cohort study, the administration of famotidine in
hospitalized COVID-19 patients reduces the risks of severe
disease outcomes (84). Currently, the randomized controlled trial
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of famotidine (NCT04370262) is still underway, whose results are
awaited with interest (58).

During the late phase, a primary goal of treatment is to
maintain inflammation and antiviral immunity at a moderate
level. As mentioned above, the activation of NLRP3
inflammasome during COVID-19 could promote excessive
release of inflammatory cytokines. To address this, NLRP3
inflammasome inhibitor (Tranilast) in the treatment of
COVID-19 is undergoing clinical trial in China (85). Another
potential therapeutic agent is resveratrol which has the ability to
suppress NF-kB and inhibit NLRP3 inflammasome activation.
Existed studies demonstrated that the administration of
resveratrol could inhibit SARS-CoV-2 infection in vitro and
ameliorate the pulmonary inflammation and lung injury
induced by respiratory viruses in vivo (86, 87). In order to
relieve the excessive inflammatory responses, targeted drugs
are an extremely important strategy in COVID-19 clinical
therapy. Currently, the IL-1 receptor antagonist anakinra,
monoclonal antibodies against IFN-g and IL-6 are all
candidates for relieving excess inflammatory responses, and
their curative effects in COVID-19 patients were highly
anticipated (88, 89).
CONCLUSION

In this review, we focused on recent advances in interactions
between host immune system and SARS-CoV and SARS-CoV-2,
Frontiers in Immunology | www.frontiersin.org 6
with special emphasis on the imbalance of type I IFNs and
inflammation caused by viral infection. At present, IFN therapy
was suggested as only beneficial at the early stages of SARS-CoV-
2 infection, but has little effect on hospitalized patients. Several
recent studies have also found that IFN signaling could interfere
with lung epithelial repair during recovery from viral infection,
thus aggravating the lung injuries (90, 91). In COVID-19, the
role, dosage and time of IFN in the treatment are worth further
examination. Better understanding of the crosstalk between host
and SARS-CoV-2 will help to optimize treatment regimens and
explore more potential therapeutic targets for COVID-19.
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