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Multiple sclerosis is an immune- mediated disease with an environmental component. 
According to a long- standing but unproven hypothesis dating to initial descriptions of 
multiple sclerosis (MS) at the end of the 19th century, viruses are either directly or 
indirectly implicated in MS pathogenesis. Whether viruses in MS are principally causal 
or simply contributory remains to be proven, but many viruses or viral elements— 
predominantly Epstein- Barr virus, human endogenous retroviruses (HERVs) and 
human herpesvirus 6 (HHV- 6) but also less common viruses such as Saffold and mea-
sles viruses—are associated with MS. Here, we present an up- to- date and comprehen-
sive review of the main candidate viruses implicated in MS pathogenesis and summarize 
how these viruses might cause or lead to the hallmark demyelinating and inflammatory 
lesions of MS. We review data from epidemiological, animal and in vitro studies and in 
doing so offer a transdisciplinary approach to the topic. We argue that it is crucially 
important not to interpret “absence of evidence” as “evidence of absence” and that 
future studies need to focus on distinguishing correlative from causative associations. 
Progress in the MS- virus field is expected to arise from an increasing body of knowl-
edge on the interplay between viruses and HERVs in MS. Such interactions suggest 
common HERV- mediated pathways downstream of viral infection that cause both 
neuroinflammation and neurodegeneration. We also comment on the limitations of 
existing studies and provide future research directions for the field.
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1  | INTRODUCTION

The prevalence of multiple sclerosis (MS) has steadily increased over 
the last five decades. This high socio- economic burden, together with 
its challenging management especially when chronic and progressive, 
underscores the need for further research to determine its exact ae-
tiology. MS is a multifactorial disease that arises from a complex in-
teraction between genetic (notably immunogenetic), autoimmune and 
environmental factors.1-5 Environmental- immune system interactions 
are increasingly recognized as important in MS pathophysiology6,7 and 
are likely to explain the discordant MS incidence in monozygotic twins 
that cannot be attributed to genomic, transcriptomic or epigenomic 

factors alone.8 Furthermore, the environment represents a modifiable 
factor in contrast to the genomic landscape, so it is of particular inter-
est from the perspective of prevention.

MS was initially proposed to be of infectious origin at the end of 
the 19th century, but the development of the experimental allergic 
encephalitis (EAE) model in 1934 shifted attention away from micro-
organisms and towards an allergy- related and then autoimmune basis 
for the disease. However, a myelin- targeting autoimmune model does 
not fully explain the segmental distribution of lesions as myelin is 
ubiquitous in the central nervous system (CNS),9 and auto- antigens 
are neither pathognomonic nor universal in MS.10 In addition, some 
authors have suggested that the EAE model might more closely 
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represent immunologically induced encephalomyelitis rather than 
demyelination.11,12

However, the microbial aetiological theory—in which viruses take 
centre stage—has not been abandoned but has flourished in the light 
of mainly indirect discoveries of different viruses in MS.13 Although 
direct evidence for causative viruses in MS has generally been lacking, 
accumulated evidence from human and animal studies supports a role 
for viruses as at least a trigger for MS.2 Epidemiological evidence in 
support of this theory includes observations of MS epidemics in the 
Faroe Islands in the 1980s, and more recently, MS clusters in Ottawa, 
Canada.14

Although the evidence for a causative viral aetiology for MS in hu-
mans remains inconclusive, viruses appear to play a role in modulating 
the neuro- immunological system of genetically susceptible individuals 
to cause MS. For instance, IgG antibodies against several viruses in-
cluding varicella zoster virus (VZV), cytomegalovirus (CMV), measles, 
rubella, mumps and herpes simplex virus (HSV- 1) have been identified 
in the cerebrospinal fluid (CSF) of patients with MS.15,16 More recently, 
other viruses have attracted attention including Saffold virus (a novel 
human cardiovirus).17,18 With this in mind, this review provides an in- 
depth discussion of the viruses implicated in MS pathogenesis. We 
first consider viruses with the greatest evidence base, namely Epstein- 
Barr virus (EBV), human herpesvirus (HHV- 6), VZV, human endoge-
nous retroviruses (HERV) and then go on to describe the potential 
roles for “minor” viruses in MS. We focus on the connection between 
viruses and MS pathophysiology rather than its clinical progression, 
and we highlight the limitations of existing studies and possible future 
research directions.

2  | SEARCH METHODS AND SELECTION  
CRITERIA

The PubMed and Google Scholar databases were searched for arti-
cles published (or appeared “Epub ahead of print”) between 1 January 
2006 to 31 December 2016 and the bibliographies examined. For 
initial screening, “multiple sclerosis,” “infectious cause,” “virus” or 
“viral model” were applied through the Boolean operators “AND” and 
“OR”. More specific terms were applied to different sections of the 
review based on their relevance. If and when an infectious agent had 
more than one name, all relevant search terms were applied. Priority 
was given to original research articles and systematic reviews/meta- 
analyses over case reports or hypothesis/viewpoint articles and the 
most recent papers as applicable. Some references prior to the above 
time period were included given their historical importance. Studies 
referring to paediatric MS, infectious agents other than viruses and 
those not published in English were excluded.

3  | EPSTEIN- BARR VIRUS (EBV)

There is a lively ongoing debate on the role of EBV, the prevailing 
MS infectious risk factor and MS pathogenesis.19-21 One hypothesis 

suggests that MS is caused by a genetically predisposed deficiency 
in eliminating previous EBV infection; EBV then persistently accu-
mulates or even establishes itself in the brains of such patients.7,22 
Consistent with this theory, EBV might exercise a strong influence on 
the number of naïve and/or memory B cells and their differentiation 
status.23 A competing hypothesis is that abnormal responses to EBV 
infection are secondary to and not a cause of MS.24

At the epidemiological level, several systematic reviews clearly 
support an association between MS and EBV seropositivity.3,25,26 
Practically, all MS patients are EBV seropositive, raising the question 
of whether EBV- seronegative MS patients even exist.27 EBV seropos-
itivity confers double the risk of MS than infectious mononucleosis 
(IM) (OR=4.56 vs OR=2.17, respectively),3 and IM appears to have 
a stronger genetic component than EBV infection.28 However, the 
reasons for this difference in risk between EBV seropositivity and 
IM might be due to: (i) reporting bias for IM; (ii) the molecular sto-
chasticity of EBV- induced downstream events; (iii) the role of EBV 
latency; or, importantly, (iv) subclinical infection. High Epstein- Barr 
virus nuclear antigen (EBNA) IgG titres are associated with other MS 
risk factors such as non- HLA gene loci and the HLADRB1*15 allele 
(the most important genetic factor in MS).7,29 T cells restricted to 
the HLADRB1*15 allele and linked to MS- related antigens seem to 
cross- react with the immunological response induced by the EBNA- 1 
sequence.30 However, the latest meta- analysis revealed an additive 
but not synergistic effect between the two risk factors, corroborating 
that HLADRB1*15 carriage is not a confounding factor for EBV and 
MS.31,32

A highly synergistic increase (14- fold) in MS risk was reported for 
EBV detection or IM combined with obesity, notably during adoles-
cence.7 However, there are conflicting results on the interaction be-
tween EBV and other well- established MS risk factors (reviewed also 
in33). For instance, a prospective study found a positive association 
between smoking and MS development only in older patients and a 
negative one in patients less than around 30 years old,34 whereas a 
later case- control study reported a negative, multiplicative interaction 
between IM history and a prior history of smoking on MS risk.35 With 
regard to vitamin D, some studies have failed to detect a statistically 
significant interaction,32,36 while others have reported an interaction 
with either EBV antibodies or DNA load.37 Mechanistically, observa-
tions that there is overlap between EBNA- 2a and vitamin D receptor 
(VDR) binding sites within MS- associated genomic regions and that 
EBNA- 3 binds to the VDR may provide further insights.24,38

In neuroimaging studies, MRI (magnetic resonance imaging) mark-
ers of MS activity and grey matter atrophy were found to be associ-
ated with anti- EBV antibody levels.39,40 At the cellular level, CD8+ T 
cells specific for EBV lytic and latent antigens were more frequent in 
patients with active and inactive MS, respectively.41 Deep sequencing 
of T- cell receptor- β genes (“immunosequencing”) showed intrathecally 
enriched EBV- reactive CD8+ T cells that were specific to patients with 
MS.42 Furthermore, in animal models using lymphocryptovirus (LCV), 
which is a close relative of EBV, LCV- infected B cells lost their ability to 
process the extrinsic pathogenic CD8+ T- cell epitope in myelin oligo-
dendrocyte glycoprotein (MOG). In doing so, they cross- presented this 
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epitope to auto- aggressive cytotoxic T lymphocytes, a reaction that 
can initiate an autoimmune reaction and demyelination.43

With regard to humoral immunity, the high antibody titres against 
EBNA proteins in patients with MS might be due to intrathecal syn-
thesis but it has yet to be clarified whether they result from high- 
frequency latent EBV- infected cells or, alternatively, have a concrete 
pathogenic role.44 Conversely, patients with IM showed activation of 
MOG- specific memory B cells.45

Furthermore, EBV genetic material has been identified in the CSF 
and perivenular infiltrates of brain and spinal cord white matter, and, 
more recently, in the cortical grey matter and cervical lymph nodes of 
patients with MS.44,46 EBV brain infection is likely to be limited to only 
a small number of B cells (approximately 5- 3000 per 107 memory B 
cells).23,47 This could explain why histological studies for their detec-
tion are difficult, and it underscores the need for technologies such as 
massively parallel single- cell sequencing to detect these rare events in 
the future.48 Dual infection with EBV types 1 and 2 is more common 
in patients with MS compared to single infection.49

Mechanistically, EBV might act as an environmental trigger or by 
attacking the CNS.50 With respect to the former, an EAE model with 
the murine EBV homologue gamma- herpesvirus 68 showed more pro-
nounced MS- like clinicopathological features that were dependent on 
the latent life cycle of the virus.51 There are a number of theories with 
regard to the latter mechanism of direct CNS destruction by the virus: 
(i) cross- reactivity of EBV- infected T cells with self- antigens (“molec-
ular mimicry”) causes destruction of CNS tissue but does not explain 
the presence of EBV- infected B cells in the brain; (ii) the bystander 
damage hypothesis proposes that immune responses in the CNS are 
directed towards EBV antigens but does not explain the autoimmune 
component of the disease and the failure to eliminate these cells; (iii) 
MS results from EBV infection of autoreactive B cells, which in turn 
produces pathogenic autoantibodies44; (iv) the “mistaken self” hy-
pothesis based on proteomic analyses shows a higher frequency of 
a peptide corresponding to an EBNA- 1 region sharing homology with 
the N- terminus of αB- crystallin in patients with MS.52 Overall, under-
standing these mechanisms paves the way for novel anti- MS strate-
gies, notably EBV- specific adoptive immunotherapy.22

It is also mechanistically intriguing how EBV plays a role in both 
cancer—a disorder of cellular proliferation—and MS—a disease char-
acterized by neuronal cell death; however, recent reports of a genetic 
overlap between the EBV- related Hodgkin lymphoma and MS could 
shed some light on this.53,54 In parallel, dogma that EBV cannot possi-
bly be found in glial cells or neurons, the host immune response must 
remain the focus of studies,53 or that EBV latency status underpins 
virus- mediated pathogenesis24 should be re- examined in the light 
of recent observations that EBV can cause lytic infection in human 
 primary neurons.55

To summarize, in the context of discordance between the high 
rates of EBV infection vs low rates of MS worldwide, EBV is likely to be 
necessary but not sufficient to cause MS.19 Future studies on shared 
polygenic risk from genomewide association studies on MS cases with 
those with markers of increased EBV levels (eg EBNA- 156) are likely to 
shed further light on such host- pathogen interactions.

4  | HUMAN HERPESVIRUS 6 (HHV- 6)

A recent, inconclusive, non- systematic summary of evidence on the 
role of HHV- 6 in MS57 highlighted the need for a formal meta- analysis 
on this topic. Furthermore, although HHV- 6 has been detected mostly 
in acute demyelinating brain lesions in MS, detection rates are highly 
variable (HHV- 6 DNA in the CSF ranging from 3% to 46% of pa-
tients).58 Additionally, other markers such as B-  or T- cell reactivity, 
higher antibody responses or higher viral loads have not been con-
sistently observed in MS patients’ serum in different ethnic groups or 
prospective studies.57,59

Some specific single nucleotide polymorphisms (SNPs; eg in CD46 
and MHC2TA) are strongly associated with active replication of HHV- 6 
and, together, with worse clinical prognosis in MS.60 At the edge of 
such gene- environment interactions lie the HERVs (see below). One 
of their subtypes (HERV- K18) was shown to be activated by HHV- 6A, 
mainly in cell lines productively infected with the virus and followed 
by those with latently infected virus. These observations reinforce the 
notion that there is a common HERV- mediated pathway downstream 
of viral infection in MS,61 which might be therapeutically exploitable.62

The marmoset (Callithrix jacchus) HHV- 6 model has been used to 
study viral neurotropism.63 Interestingly, in contrast to how the virus 
seems to gain entry to the human CNS via olfactory pathways,64 find-
ings in marmosets revealed that only those with intravenous (and not 
intranasal) inoculation of HHV- 6A (and not HHV- 6B) developed neu-
rological disease.63 Furthermore, in contrast to the global seropreva-
lence of >95% for HHV- 6B, HHV- 6A is more frequent in patients with 
MS than HHV- 6B, which is certainly worthy of further investigation.57 
HHV- 6A infection leads to apoptosis in the brain, induces autoimmu-
nity in several ways65 and activates antiviral genes in human astro-
cytes including some genes upregulated in MS.66

5  | VARICELLA ZOSTER VIRUS (VZV)

Varicella zoster virus (VZV)- induced encephalomyelitis is character-
ized by demyelination similar to that seen in MS, so VZV is suggested 
as an MS- triggering factor.67 However, while some epidemiological 
studies reported no association between a history of varicella infection 
in childhood and MS risk,68 others have observed an association, most 
notably for relapse- remitting (RR) and secondary progressive types.69 
A fourfold increase in MS risk in the year following herpes zoster in-
fection has been observed in a region with a low MS prevalence.70

Regrettably, serological and molecular studies have not helped 
much in this area. VZV seropositivity was not significantly higher in 
patients with MS vs controls in two studies.71,72 Moreover, while VZV 
DNA was identified in the CSF of patients with MS (particularly of RR 
type) in some studies,73,74 others failed to confirm these findings in 
the CSF, blood or in acute MS lesions.58,75-77 More consistently, how-
ever, are the observations that the high levels of VZV DNA in CSF 
and PBMCs during relapse ultimately disappear during clinical remis-
sion.78,79 Interestingly, the progressive MS type has been associated 
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with VZV DNA at levels between those found during the relapse and 
remission periods of the RR- MS type.79,80

The median fraction of intrathecal VZV- specific IgG of total IgG can 
differentiate patients with MS from those with VZV reactivation (35- fold 
higher in the latter).81 This observation implies that low- level infection is 
present in at least some MS cases. It also helps address whether or not 
VZV detection in MS is due to reactivated, previously latent VZV infec-
tion; that is, “centripetal infection” from the neural ganglia towards the 
CNS.82 Another theory suggests that VZV in MS is purely epiphenomenal 
due to leakage from destroyed sensory neurons; however, experimental 
evidence is lacking.83 Also, VZV has not been identified in “traditional” 
autoimmune diseases, implying a more specific connection with MS.82 
Finally, VZV antigens induced and maintained activity of HERVs in pe-
ripheral lymphocytes from patients with MS compared to controls; retro-
viruses, as explained below, are implicated as causal in MS.84

6  | HUMAN ENDOGENOUS RETROVIRUSES 
(HERV)

Although initially both were implicated in MS pathology since the 
1980s, subsequent studies have continued to support a role for en-
dogenous rather than exogenous retroviruses in MS.85 HERVs were 
integrated into the human genome relatively recently in evolutionary 
terms, that is some 30- 40 million years ago, as a result of ancestral 
retroviral infections. In humans, they form up to 8% of the genome and 
constitute a notable category of long terminal repeat (LTR) retrotrans-
posons. These transposable elements, also known as “jumping genes,” 
change position within a genome and have repetitive sequences, ex-
plaining why it is more difficult to investigate their inheritance with 
classical genetics approaches.86 Despite these difficulties, the esti-
mated 320 000 transcription factor binding sites (TFBSs) regulated by 
HERVs underscore their genomewide role. Deciphering their patho-
physiological roles will offer further insights into the molecular basis of 
disease beyond that offered by focusing exclusively on the exome.87,88

Putative mechanisms of HERV- related pathophysiology in MS are 
illustrated in Figure 1. For example, several SNPs are associated with 
MS corresponding to genes implicated in immunological or vitamin 
D regulation. These SNPs occur more often in the vicinity of HERV- 
related open reading frames (ORFs) than non- MS- related SNPs.89 
Conversely, SNPs in regions around HERVs (such as the  X- linked 
HERV- Fc1) are associated with MS, primarily the RR and second-
ary progressive types.90,91 Furthermore, HERVs might “bridge” the 
environmental- genetic interaction in MS given that any trigger (includ-
ing viruses) may reactivate HERVs and enhance their expression.92 Of 
recent note—given that interferon signalling is implicated in MS—is the 
observation that HERVs contain binding sites for interferon- γ- induced 
transcription factors and therefore affect the expression of other 
genes, notably ones with immune function.93

There is also an established body of evidence that the envelope 
protein of the “MS- associated retrovirus” (MSRV- Env) in the HERV- W 
family is causal for MS.94 Initially observed in leptomeningeal cells, 
the MRSV- Env protein has been detected in MS plaques containing 

macrophages, microglia and perivascular cells in actively demyelinat-
ing lesions and in the astrocytes of inactive areas but not in control 
brains.95 High MRSV- Env DNA copy number, transcript and antigen 
levels have recently been detected in the blood of over 70% of pa-
tients with MS96; the increased DNA copy number is indicative of 
HERV- related reverse transcriptase activity. Earlier studies suggested 
potential MRSV- Env selectivity for the MS brain after observations of 
viral genetic material present at higher levels in the brain than in the 
blood of the same patients.97

HERV- W Env expression is also increased on the surface of B cells 
and monocytes during the active phase of MS and parallels MS exac-
erbations.98 This protein, a Toll- like receptor 4 (TLR4) agonist, stimu-
lates immune cells and enhances expression of markers of leucocyte 
adhesion to endothelial cells. The above raises interesting questions 
about the effect of MRSV- Env on blood- brain barrier integrity.99 In 
parallel, HERV- W Env impairs remyelination by inhibiting the differ-
entiation of oligodendrocyte precursors to myelin- producing oligo-
dendrocytes, potentially due to nitrosative stress.100 The HERV- W 
glycoprotein syncytin- 1 also seems to be implicated in MS via a similar 
mechanism; it causes an endoplasmic reticulum stress sensor to in-
duce inducible nitric oxygen synthase and, concomitantly, the  release 
of oligodendrocyte cytotoxins by astrocytes (for further details, 
see101). Also, HERVs can induce EAE in mice, implying a role upstream 
of other  mediators.102 Therefore, HERVs seem to be implicated in both 
the neuroinflammatory and neurodegenerative components of the 
disease, rendering them promising therapeutic targets.

The autoimmune mechanism may also lie in the fact that common 
viruses (including but not limited to HSV- 1, HHV- 6, EBV or influenza) 
can activate HERV proteins84,103 (Table 1). As a “dual infection,” EBV 
may be an exogenous and delayed cause for MS, with HERV- W acting 
as a precipitant.104 However, the mechanisms of transcriptional acti-
vation of HERVs are generally obscure, as are the downstream events 
in human cells. A general framework might be that HERVs and, more 
broadly, endogenous transposons act as a genomic defence response 
to external stimuli.105 Only a few studies have failed to find differ-
ences in the presence of HERV nucleic acids or antibodies between 
MS cases and controls.106,107 In,108 no difference was detected in 
HERV- K113 levels between patients with MS and healthy controls, 
but this study did not investigate the retroviral families most related 
to MS. However, other studies favour a relationship between HERVs 
and MS pathobiology. For instance, MOG shares similarities with five 
regions in the envelope protein (ERVWE2), with one region consisting 
of B-  and T- cell epitopes capable of mediating antibody production 
and T- cell function in vivo, respectively.109

7  | HUMAN IMMUNODEFICIENCY VIRUS 
(HIV)

Human immunodeficiency virus (HIV) is an exogenous retrovirus and 
HIV infection contributes to HERV activation, possibly via TLR- 4 
 stimulation.110 This association is exemplified by post- mortem stud-
ies of brains from HIV patients and their epitope cross- reactivity in 
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F IGURE  1 Putative mechanisms of human endogenous retrovirus (HERV)- related autoimmunity in multiple sclerosis. (A) HERV- encoded 
RNAs with intact open reading frames (ORFs) can be translated into proteins. Some of these (eg HERV- K, HCML- ARV) are in close proximity to 
SNPs shown to be associated with MS in genomewide association studies and representing genes involved in immune responses and vitamin 
D metabolism. (B) Some HERV proteins, notably MASP- 3, HERV- H and HERV- W, are expressed on the surface of normal cells including B 
cells. This serological response may be associated with autoimmunity, although causality has yet to be established. (C) HERVs are integral to 
the human genome but are epigenetically inactivated under normal conditions. HERV expression may be induced by environmental triggers 
including HSV- 1, HHV- 6, VZV and EBV viruses to stimulate an immune response and autoimmunity. (D) The MRSV- Env protein has been 
identified in MS plaques and is brain selective and immunopathogenic so may directly stimulate an autoimmune response.1 Furthermore, this 
protein inhibits differentiation of oligodendrocyte precursors so may have a negative feedback effect in the brains of patients with MS2

Virus HERV element Downstream effect References

HSV- 1 Matrix protein 
Gag protein

Oligodendrotoxic and 
immunopathogenic

Ruprecht 
et al.,144

HHV- 6 HERV- W Env and 
pol proteins

Synergy; interaction with HHV- 6 U94/
rep and DNA- pol

Nexo et al.,145 
Perron et al.,146

EBV HERV- W genes Increased HERV- W Env transcripts in 
PBMCs of IM patients; correlation of 
EBNA IgG levels with HERV gene 
expression levels in healthy, latently 
infected individuals (ie with anti- 
EBNA- 1 titres >600)

Perron et al.,146

EBV HERV- K18 env 
protein

Endothelial permeability; 
Proinflammatory reactions

Tai et al.,147

TABLE  1 The association between 
environmental viruses and HERV elements 
and the downstream effects
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T- cell responses to HIV.111 There have been, to our knowledge, less 
than twenty HIV cases reported that describe demyelinating CNS dis-
eases including MS, with a disturbance in the CD8+ cytotoxic T- cell 
and CD4+ T regulatory cell ratio implicated as causal.112,113

This rarity of documented cases of HIV and MS is consistent with 
the largest relevant record linkage study, in which HIV patients—all 
presumed to have undergone highly active antiretroviral therapy 
(HAART) therapy—were at a statistically significant reduced risk (rel-
ative risk=0.38)) for developing MS, with this relative risk including 
all recorded time intervals from first HIV record to the first MS re-
cord.114 One explanation for this finding could be that HIV- induced 
immunodeficiency is protective against MS. Alternatively, HAART 
usually employs competitive or non- competitive reverse transcriptase 
(RT) inhibitors, and due to suspected similarity between the HIV RTs 
and those of other viruses like HERVs, these inhibitors might suppress 
expression of the latter.115

8  | CYTOMEGALOVIRUS (CMV)

The majority of epidemiological studies on CMV in MS are under-
powered and inconclusive.7,116 Two synchronous but different meta- 
analyses suggested a protective role for CMV seropositivity in MS.117,118

At the molecular level, it seems that CMV is present in the CNS in-
cluding in some MS cases, but both exacerbating and protective roles 
are proposed.116 For example, CMV-  and brain- specific B cells are 
correlated in patients with MS,119 while concurrently CMV infection 
might indirectly exacerbate MS by inducing specific T cells with proin-
flammatory properties.116 Conversely, some studies have shown that 
higher anti- CMV antibody titres in patients with MS are positively as-
sociated with improved MS- related neuroimaging and disability status 
markers.120 In addition, human CMV- induced natural killer cell expan-
sion reduces the risk of disability progression in patients with MS.121

In animal models, cross- reactivity between human CMV peptide 
and MOG has been detected, while secondary CMV infection following 
vaccinia virus infection can worsen T- cell autoreactivity and white mat-
ter lesions. In contrast, murine CMV infection prior to Theiler’s murine 
encephalomyelitis virus (TMEV) infection in the TMEV murine model of 
MS appears to improve symptoms both clinically (ie motor performance) 
and histologically (ie the severity of the inflammatory cell infiltrate).122

Finally, CMV (betaherpesvirinae subfamily) and EBV (gamma-
herpesvirinae subfamily) might oppose each other with regard to the 
downstream immune cascade (the so- called “immune response com-
petition”), which might explain their inverse epidemiological patterns in 
MS.118 It has been also suggested that these herpesviridae viruses could 
both be required to elicit a “primate- specific autoimmune pathway”.116

9  | MEASLES AND OTHER MORBILLIVIRUSES

The association between the measles virus and MS has been in-
vestigated for over 50 years, with MS postulated to be a host re-
sponse to later measles infection. However, measles vaccination is 

not associated with MS, indicating that the measles virus is prob-
ably not connected with MS and supporting the evidence that mea-
sles vaccines are safe despite unjustified and well- publicized claims 
to the contrary.123 However, it is worth mentioning that two CNS 
complications of measles virus infection manifest with features of 
demyelination: acute disseminated encephalomyelitis, a differential 
diagnosis of paediatric MS and the very rare subacute sclerosing 
panencephalitis.124

To our knowledge, recent research in this area has focused on the 
association between virus- specific CSF- to- serum antibody indices 
(AIs) and MS, not on virus detection using molecular techniques. The 
AIs for measles, rubella and VZV, which form the “MRZ reaction”—
high- specificity markers for “ruling- in” MS (reviewed in125)—are two-
fold higher than that for EBV.126 In particular, the measles AI is higher 
in patients with ≥6 lesions on MRI than those with fewer lesions in 
early MS.127 Another study showed that antimeasles virus antibody 
titres in the serum and CSF of patients with MS increase according to 
the age and duration of the disease.128

The phylogenetically close rinderpest virus has not been shown 
to be demyelinating or even neurotropic in its ruminant hosts.124 In 
contrast, infection with the more distant canine distemper virus (CDV) 
causes CDV demyelinating leukoencephalitis and serves as an estab-
lished animal model of MS. In that model, demyelinating lesions and 
initial and later phases are characterized by direct infection of astro-
cytes and excess inflammation with myelin loss, respectively.124,129 
Interestingly, axonal damage precedes demyelination, prompting 
questions on the role of inflammation and astrocytes as intermediate 
players.130

10  | LYMPHOCYTIC CHORIOMENINGITIS 
VIRUS (LCMV)

Lymphocytic choriomeningitis virus (LCMV) can affect the human CNS 
to cause paralysis and reduced consciousness. However, investigating 
its role in MS is more difficult due to low titres and short presence of 
LCMV in the CSF.131 In our opinion, this might indicate a “hit- and- run” 
mechanism. On the other hand, recent in silico predictions show high 
sequence and structural similarity between LCMV’s nucleoprotein and 
specific myelin basic protein (MBP) residues.132

Murine models of chronic LCMV infection have given rise to two 
Nobel Prizes.131 The virus is thought to activate microglia and astro-
cytes in the CNS via a TLR2- mediated cascade.133 Moreover, LCMV 
blocks induction of type 1 interferon and consequential upregulation 
of HLA class II. This observation supports a potential virus- induced 
disturbance in the interferon- tumour necrosis factor balance, which is 
already known to trigger autoimmunity.132

Interestingly, LCMV infection limited to the periphery with con-
current CNS measles virus infection can induce CNS pathology via 
LCMV- specific CD8+ T- cell recruitment to the brain without the need 
for LCMV replication. The underlying reason why the brain, broadly 
considered “immuno- privileged”, attracts these mis- recruited cells 
needs further exploration.134
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11  | CORONAVIRUS

In rodents, certain coronavirus- family mouse hepatitis virus strains 
are neurotropic, disrupt the blood- brain barrier and cause immune- 
mediated demyelinating- like lesions.135 Human coronaviruses (HCoV) 
predominantly cause upper respiratory tract infections and are also 
neurotropic. Recent epidemiological studies are lacking, while molec-
ular analyses have shown the HCoV- specific surface glycoprotein acts 
as a trigger for programmed cell death in a murine model of neurode-
generation. In addition, HCoV- 229E/MBP cross- reactive T cells have 
been isolated from patients with MS in single- cell analyses, implying a 
molecular mimicry mechanism (for a review, see136). In a mouse model 
of encephalomyelitis/demyelination induced by gliatropic murine cor-
onavirus, the initial activation and accumulation of self- reactive CD4+ 
T cells were followed by a mechanism of host- mediated suppression 
that consequentially led to their decline, thus diminishing autoimmune 
phenotypes.137

12  | SAFFOLD VIRUS

Saffold virus (SAFV), a picornaviridae family member identified in 
2007, was the first human virus in the Cardiovirus genus to be de-
scribed.138 SAFV has a seroprevalence of over 90% in the adult 
population and is known to cause infection early in life.139 SAFV is 
associated with both enteric and extra- intestinal diseases and, due to 
homology with TMEV, is implicated in MS.138

However, its ubiquity has created difficulties in deciphering any 
association between SAFV and MS.17 SAFV was not detected in CSF 
samples from patients with MS.138 One hypothesis is that SAFV might 
cause low- grade persistent infection followed by inflammation rather 
than act as a “hit- and- run” trigger for autoimmunity. However, a recent 
study failed to find any SAFV in MS brains and only rare SAFV- specific 
oligoclonal bands in patients with MS and not different from controls.17

13  | LIMITATIONS OF EXISTING DATA

Several methodological issues could explain the described inconsist-
encies between studies in the MS- virus arena: (i) not choosing ap-
propriate healthy matched controls following a specific study design 
but instead samples simply available at the time of study (ie an “op-
portunistic” approach); (ii) even though quantification of viral load by 
real- time PCR is helpful, there seems to be a failure to use positive 
PCR or serology to distinguish active from latent infection (ie earlier 
infection during childhood in the case of serology). The enigmatic na-
ture of MS poses challenges in the interpretation of the results as, 
according to some authors, detecting some antibodies under certain 
circumstances, that is in worsening MS, could be due to a hyperacti-
vated immune system and not real infection140; (iii) conversely, inter-
preting absence of evidence of virus infection as evidence of absence, 
especially in the genomic era, may be a mistake.141

14  | CONCLUSIONS AND SUGGESTIONS 
FOR FUTURE RESEARCH

There is, therefore, accumulated evidence that viruses may trigger or 
cause MS, with these organisms and the immune system interacting in 
several, potentially overlapping, ways. Deciphering the epidemiologi-
cal contribution of viruses to MS along with their pathogenic mecha-
nisms may help in the development of effective targeted therapies 
to develop vaccines, treat the disease, prevent relapses and maintain 
remission.

Possible future research avenues include prospectively studying 
and monitoring carefully defined groups of patients, such as comparing 
patients with clinically isolated syndrome (CIS) who went on to convert 
to MS with those that did not. Although EBV has been studied in such 
cases, a broader causative role for viruses would be strengthened if any 
marker of viral presence (ie increased viral load and/or higher antiviral 
response) was observed in the first category. Furthermore, the B-  and 
T- cell receptor repertoires in MS samples need to be fully character-
ized, preferably in relation to viral detection and burden and perhaps 
using newer high- throughput technologies such as deep sequencing. 
This would be facilitated by the enrichment of immunosequencing da-
tabases with extensive experimental data on the repertoires induced 
by different human viruses. It would also be sensible to examine latent- 
to- lytic switching of potentially existing viruses in MS biopsies. To com-
plement previous efforts focusing on EBV- specific markers,23 it would 
be interesting to analyse more recently proposed markers of cellular 
antiviral response with respect to the above switch.142 Finally, given 
that many viruses, not least EBV, express several proteins during dif-
ferent viral life cycle stages, the full spectrum of antibody responses to 
viruses over their infective course needs further exploration, perhaps 
using protein arrays methods for novel antigen discovery to overcome 
the limitations of current techniques.143
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