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Abstract: The emergence of smart devices and smart appliances has highly favored the realization of
the smart home concept. Modern smart home systems handle a wide range of user requirements.
Energy management and energy conservation are in the spotlight when deploying sophisticated
smart homes. However, the performance of energy management systems is highly influenced by user
behaviors and adopted energy management approaches. Appliance scheduling is widely accepted
as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart
home energy management system that reduces unnecessary energy consumption by integrating
an automated switching off system with load balancing and appliance scheduling algorithm.
The load balancing scheme acts according to defined constraints such that the cumulative energy
consumption of the household is managed below the defined maximum threshold. The scheduling
of appliances adheres to the least slack time (LST) algorithm while considering user comfort during
scheduling. The performance of the proposed scheme has been evaluated against an existing energy
management scheme through computer simulation. The simulation results have revealed a significant
improvement gained through the proposed LST-based energy management scheme in terms of cost
of energy, along with reduced domestic energy consumption facilitated by an automated switching
off mechanism.
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1. Introduction

The evolution of smart appliances has bolstered the “Internet of Things” (IoT) notion by
connecting heterogeneous everyday appliances via the existing networks [1]. Smart devices and
appliances in IoT identify and share valuable information without or with minimal human interaction.
Expansion of the IoT concept has pioneered novel applications, i.e., smart home, smart healthcare,
smart warehouse, smart grid, smart city, etc. [2-6]. The smart home concept was initially proposed to
manage rapidly growing smart domestic appliances [7]. However, the general purpose of smart home
control systems has deviated to explicit purposes, such as energy management, energy conservation,
remote appliance control, etc. Extensive energy demands have drawn the attention of experts in both
industry and academia to implement energy efficient smart home applications. Subsequent to drastic
energy consumption, the world is looking forward to exploring new realms of energy conservation
and generation. Typically, energy consumption of a residential habitat varies with the time of the day,
the day of the week, and season of the year. Therefore, Time of Use (ToU) pricing was introduced in a
number of scenarios to encourage energy consumers to schedule their loads from expensive peak hours
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to cost-effective off-peak hours [8,9]. Currently, value-added smart behaviors of domestic appliances
are capable of adjusting the execution time to gain monetary benefits of smart metering and varying
tariffs [10]. In [11], a web of things based smart control system was proposed for domestic appliances.
This work manages energy consumption based on user behavior, despite the load shifting mechanisms
and variations in tariff. Novel energy management mechanisms reduce the cost of energy by shaping
the usage patterns of appliances to minimize the demand during peak hours. Generation of renewable
energies, appliance scheduling, and load balancing play an important role in this regard. Inspired by
the smart grid notion, experts have worked on substituting peak electricity demand with small-scale
renewable energy generators, e.g., photovoltaic (PV) panels. Thus, it reduces direct electricity usage of
domestic appliances.

Load shifting further reduces the electricity demand during peak hours by flattening the load curve.
In fact, load balancing is essential for energy optimization of modern smart homes [2]. However, simple
load shifting mechanisms can cause adverse effects by creating new peak hours [12]. Hence, a load
shifting strategy is beneficial once the peak load is disseminated over several off-peak hours [13-15].
In [16], the authors proposed a residential load balancing algorithm to schedule multiple users that share
a common source of energy. Minimizing the monetary expense was the main concern of [17], which
occupies a game theory to optimize selfish users at the demand-side. Similarly, in [18], loads were shifted
to more economical periods considering users’ willingness to shift energy consumption. Nevertheless,
frequent interruptions on appliance execution diminish user satisfaction [19]. Thus, load shifting
mechanisms with significant monetary optimization and minimum disruption will be worthwhile.

In the recent past, multiple efforts were made to reduce the cost of energy by scheduling domestic
appliances. A smart home can schedule its devices and appliances to minimize the cost of energy,
with the aid of energy price estimation [20]. In [21], an autonomous appliance scheduler based on time
of use (TOU) and real-time pricing (RTP) was proposed for a single home scenario. Similarly, another
scheduling mechanism based on dynamic pricing was proposed in [22], which further considers usage
patterns of the consumers. Multiple attempts have been made to obtain optimal energy consumption
for single-user scenarios. For example, the authors of [16] considered a single-user scenario along with
known energy consumption values for all appliances that were included in the experimental setting.
Contrastingly, in [23], the authors proposed a scheduling mechanism assuming that operating times
of the appliances are known beforehand. In [20], the authors proposed an optimized scheduler for
appliances based on neural networks. They occupied a greedy approach to determine the order of
energy sources since the proposed architecture consisted of multiple energy sources.

In this paper, we propose a smart home scheduling and load balancing system to minimize
energy wastage and improve the performance level. Each appliance operates according to a defined
state machine. We assumed that smart domestic appliances act as a random variable with random
operational time over a horizon. The load balancing component controls the load of different appliances
and the load of the entire house. A scheduling mechanism operates on top of the load balancing
constraints while adhering to the least slack time (LST) algorithm.

Section 2 of the article presents a brief overview of similar architectures and methods that are
used in appliance scheduling and load balancing. Load shifting models are presented in Section 3.
Descriptive information related to the proposed scheme are outlined in Section 4. Section 5 presents the
results and discussion of the performance evaluation. Finally, the conclusions are outlined in Section 6.

2. Related Works

Recent smart home architectures have focused on improving customer satisfaction, energy usage,
and cost reduction since adjusting energy usage patterns can benefit both consumers and grid operators
by lowering overall peak demand [24]. However, designing a smart home architecture that satisfies
all of the aforementioned goals is a challenging task. Current literature consists of various schemes
for energy efficient smart home architectures that consider varying TOU tariff incentives, renewable
energy generation, and trading of locally generated energy. In fact, power scheduling and load
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balancing can have adverse effects on the customer comfort due to frequent interruptions in appliance
operation and long waiting times for completion. Hence, scheduling mechanisms should guarantee
fewer interruptions and the least possible waiting times.

In [22], an algorithm was proposed to achieve energy efficiency for a reduced monetary expense,
while preserving consumer comfort. The scheme was implemented considering uncertainties in
operation time, energy consumption of household appliances, and renewable energy generation.
The beauty of this uncertainty algorithm is that it reduced 41% of monetary expense on energy
compared to a conventional greedy scheduling algorithm. However, the proposed stochastic approach
suffered from underestimation and overestimation in best-case and worst-case scenarios, respectively.
In [25], the authors proposed a cost minimization approach based on a genetic algorithm. Further,
they reduced the peak-to-average ratio (PAR) assuming that cost of energy is high once the predefined
power threshold is exceeded. Nevertheless, this experiment considered that appliances operate on
a fixed power level throughout their operational cycle. In [26], the authors proposed a scheduling
algorithm for appliances that operate over a communication network. The communication-based
algorithm reduced the monetary expense on energy considering uniform power supply and wind
power generation. The scheme did not consider constraints on starting and ending times for the
execution of domestic appliances. In [27], the authors proposed a demand-side scheduling scheme for
domestic appliances considering PAR. Initially, the scheme optimized the power usage and operation
time of shiftable and throttleable appliances. However, in this study, the uncertain nature of the
appliance operation was not taken into account. In [28], the authors aimed to provide uninterrupted
power supply to homes while flattening the load profile of the grid. The power distribution was
decided upon the energy demand from houses, the remaining energy at the grids, and other energy
generating sources. Although the load profile was flattened, this scheme failed to address the load
scheduling problem.

As stated before, an algorithm for residential energy scheduling in smart grids was proposed
in [16] using game theory. This work presumed the energy consumers were self-interested and selfish.
Thus, the authors proposed a distributed demand management strategy. They solved the game model
using the best response method on current power load and current tariff. Nevertheless, on the other
hand, a frequent load shifting approach can have a negative impact on customer satisfaction. Another
approach for smart home scheduling based on RTP was proposed in [29]. The authors proposed a
versatile convex programming for autonomous load balancing of domestic appliances. They occupied
RTP instead of estimated pricing or day-ahead pricing to alleviate the deviation from the actual cost
of energy. Since the approach converted the problem into a convex programming (CP) problem,
the optimization problem remained convex. Hence, deriving a solution is more efficient. Nonetheless,
the generalizability of this framework, which was originally designed for a single house scenario,
has not been evaluated. In [30], the authors occupied an optimal stopping approach to propose a
real-time demand response (DR) based on the domestic appliance scheduling algorithm. This work
aimed to minimize the cost of energy for a variety of household appliances that have different duty
cycles. The scheme operated in two stages. Initially, the appliances were scheduled based on the
optimal stopping approach and disregarding power constraints. Secondly, the power constraints were
taken into account. However, demand leveling was least considered in this framework.

In [21], the authors proposed a smart home scenario where the home setting acts as a consumer
as well as a producer. The residential energy management system consisted of a rooftop PV system
that provides connection to the grid line with minimum disruptions to consumer loads. Even though
this work covers appliance scheduling and renewable energy generation, the whole framework was
designed for a single home scenario. The extendable nature of the framework was not discussed
sufficiently. The authors of [31] proposed a scheme for automatic load scheduling that minimizes
the cost of energy. This work discussed the scheduling of controllable and uncontrollable appliances
and storage handling in centralized and distributed manners. However, the scenario concerned a
single household, which hinders the actual implementation of the framework. Moreover, frequent
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disruptions during controllable appliance scheduling may increase the customer discomfort level.
In [24], an appliance-scheduling scheme was proposed, exploiting time-variable pricing of energy,
which is supported by two-way communication of a smart grid. The authors considered flexibilities
of thermal and non-thermal appliances to minimize cost with the aid of a model predictive control
(MPC) approach.

In summary, the above literature reveals some important challenges that should be addressed
in smart home energy management systems. Firstly, the appliance scheduling should be considered
in single house aspect to community level aspect so that peak demand handling will be efficient and
accurate. This will smooth the PAR curve instead of shifting the peak to another time dimension.
Secondly, appliance scheduling should consider the load characteristics, whether the load is schedulable
or uninterruptible. Thirdly, the appliance scheduling should be completed with minimal discomfort to
the consumer. Finally, the appliance scheduling and load shifting should minimize the cost of energy.
Therefore, herein we propose a smart home appliance scheduling scheme that operates on an LST
algorithm to minimize the cost of energy while serving the users at the earliest possible time frame with
the aid of priority mapping and heuristic function value. To further extend the benefits of this scheme,
we introduce an automated appliance switching off system that reduces unnecessary energy wastage.

3. Load Shift Models

3.1. Appliance Loads

Each domestic appliance belongs to one of the three types of load shift models (LSMs): generic
load shift model (GLSM), flexible load shift model (FLSM), and periodic load shift model (PLSM).
Appliances that initiate operation manually belong to GLSM. In GLSM, the appliances serve a certain
flexibility in load shifting. However, the supported flexibility is limited. Dishwashers and washing
machines belong to the GLSM category. Figure 1 illustrates a typical operational cycle of GLSM [32].
The power consumption of an appliance during time ¢ is denoted by C,(t). Power consumption on a
particular state is denoted by Cy,, and O(t, L) stands for an objective function of time period L, which
starts from t = 0. Switch(f,6) determines the shifted/switched duration of function f(t) by 6.

Cx(t) = CXO (t/ Lx)/ (1)
Switch(Cy, 0)(t) = Cyy(t —6,Ly), where 0 < 6 < Dy, @)

g Power consumption over time
2| (¢
g G

C,
Time
E Power consumption over shifted time
S | Switch(C, (1))
C

&

Figure 1. Shifting behavior of the generic load shift model.
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Energy consumption of an appliance per single execution cycle is determined by I, = Cy,Ly,
which is characterized by the appliance energy consumption for the current state I, time duration
for the power consumption Ly, and maximum permitted delay Dy, . FLSM adds additional time
on scheduling flexibility. Therefore, power load shifting has more controllability over appliances’
power consumption routines. In this load shifting model, a series of delay durations 6 are required.
Consequently, it models shifting according to the series of the length of delays I. As in (1), we can
model the switching function occupying 6 and I.

n
Switch(C<8,1) = Y Cx,O(t — 6, 1;) ®)
i=1
where,
91 ll
1 — 92 7 12
0; +1; < 0iy1,04 + 1y < Dy, and Zli:Lx,f): , 1= ’ 4)
= o cee
en ln

Moreover, FLSM defines an additional parameter I . In fact, lymin defines the minimum
value for the length of the delay period with I; > Iymin. Further, FLSM satisfies Cy = Y/ | Cx,l; =
CxoXiq li = Cy,Ly. Figure 2 depicts the typical behavior of FLSM [32].

Power consumption over time

C. (1)

0 L, Time
’é; Power consumption over shifted time
S| Switch(C, (1))
C

Figure 2. Shifting behavior of the flexible load shift model.

The appliances with periodic operation belong to PLSM. Periodic shifting is allowed when power
consumption constraints are observable. For example, coolers operate periodically between maximum
temperature and minimum temperature. However, this periodic behavior can be disturbed by human
interference, which results in an uncontrollable load. In a typical cooling system, the cooler is turned on
when the internal temperature has reached the maximum temperature constraint. Similarly, the cooler
is turned off once the ambient temperature is at the minimum constraint. Consequent to heat transfer
from the external environment, the ambient temperature fluctuates continuously. Figure 3 illustrates
the typical behavior of PLSM with minimum and maximum constraints on ambient temperature.
Therefore, these appliances present steady duty cycles in on state Dy, and off state Dy, ss. When the
power consumption of a particular state is Cy, and average power consumption is Cy, time related
average power consumption is as below.

Ct) =Cy ¥ Ot~ i(Dxon + Daogy ), Dron ) ®)

j=—00
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Figure 3. Shifting behavior of the periodic load shift model.

PLSM is characterized by on-state power consumption Cy,, timings for on t,,, and off t, ff cycles,
and constraints on the minimum duration for on cycle dy,, and off cycle dy, Ff-

The previously stated load shift models are derived from demand-side management (DSM)
techniques that aim to reduce peak load and cost. Load shifting is highly recognized as one of the best
load management techniques that manipulate peak and off-peak loads [33]. Consequently, experts
in both industry and academia have evaluated various load shifting mechanisms including GLSM,
FLSM, and PLSM in their works to achieve peak load reduction and monetary benefits [30,32-34].

3.2. Cumulative Load Management

Delivering a pre-agreed load for a pre-defined period is one of the approaches that are used to
manage load shifts. A collection of various domestic appliances facilitates a higher flexibility in load
shifting considering time and load parameters. Switching on and switching off loads can provide a
significant control over the load in terms of time. Thus, it enhances the power regulation precision
of appliances. Nevertheless, the previously stated load shifting approaches do not consider dynamic
load properties of appliances. Henceforth, aggregation is introduced to reflect the dynamic load

shift properties.
Aggr(t) = Z Exlg(t - Gi/pi)/ (7)
j=—00
aggr(w) = Y G(w,P;)Cy,E™%, ®)
i=—o00

Assume g(t,7) is the power normalized function, which is applicable to the aforementioned
models. Smart energy parameter excluding overall delay is denoted by 7, G(w, P) is Fourier transform
of 7, Cy is on-state power model, Aggr(t) is the aggregation, and Fourier transform of aggregation is
denoted by aggr(w). Itis clear from (7) that spectral controllability is a linear summation of G(w, P;)
for the aggregated loads.

4. System Architecture

The load balancing part is residing at appliances to control load, incorporating various states and
context of home appliances. Similarly, the scheduling mechanism runs on top of the load balancing
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module incorporating the LST algorithm to efficiently schedule appliance operations in runtime.
In order to control energy pricing and consumption states of an appliance, various strategies such
as load on demand pricing, time of use, etc., are handled through the smart meter functionality of
data agents. The data agents gather various information such as energy pricing and the level of
consumption to perform its operations. This information is provided by the smart meter in order to
control the functionality and the execution time of an appliance. Each appliance is connected to the
Smart Appliance Management System (SAMS) at the physical appliances layer. Data agents are a part
of SAMS. The key functionality of SAMS is to reduce energy wastage. Hence, each appliance is attached
to a dedicated actuator to execute automated switching off commands from SAMS. Turning on an
appliance is a user-initiated random activity. The responsibility of SAMS is to switch off unnecessary
appliances when the user is no longer available on the premises. User availability is periodically
checked by SAMS to generate control commands for appliances. Worthy to note is that SAMS does
not have authority over appliances that operate independently of user presence or user behavior,
i.e., dishwashers, EV, and washing machines. Figure 4 illustrates the overview of the proposed smart
home energy management system.
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Figure 4. Overview of the proposed load balancing scheme and least slack time (LST)-based scheduling

scheme for energy management.

Sensors, devices, and appliances constitute the physical appliance layer of the proposed
architecture. As stated before, all these sensors, devices, and appliances are monitored and controlled
via data agents in SAMS in order to achieve energy efficiency and cost reduction. Data agents determine
power consumption Cy, cost per time unit Ry, and the requirement for continuous frame allocation
M. The load balancer checks the constraints mentioned below in Section 4.2 and performs continuous
frame allocation according to the data received from the physical appliance layer. Considering the
available task capacity and deadline, the load balancer solves mixed-integer programming problems
and subsequently transfers T¢*"Y and T'"'¢ information towards the LST scheduling layer. The LST
scheduler occupies previous action records to perform priority mapping of the schedule. Once the rate
calculation is performed with the received information, the scheduler generates the optimal operation
schedule. Moreover, the proposed LST scheduler effectively manages interruptions owing to state
transferring of appliances. The key disadvantage of LST in a multiprocessor environment is missing
deadlines. The rationale behind this deficiency is LST’s tight coupling (intense dependency) with slack
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time. However, we introduced an approach to mitigate this drawback with the aid of a priority factor.
Priority mapping of the LST scheduler is based on previous action records. Accordingly, the priority
factor identifies the jobs to be migrated and the scheduler does the job transferring accordingly. Hence,
the job migration process seamlessly manages the release times of each task. Consequently, the LST
scheduler can handle multiprocessor requests without missing deadlines of accepted jobs as well as
incoming jobs.

4.1. Modeling of Smart Home Appliances

The smart home appliances act as random variables with random operational time over a horizon.
Therefore, we represented these appliances by a finite state machine as shown in Figure 5. The proposed
model presented a complete structure of appliance operations including START state and FINISH state.
In general, an appliance can have many different states depending on the manufacturer specifications
and user context. However, START and STOP are the most common states among all appliance
operational mechanisms. Further, the manufacturer also provides the functionality of manually
switching off and on an appliance using SWITCH ON and SWITCH OFF state. The manufacturer
also provides many constraints to handle the functionality of an appliance. It includes the “Status”,
“Preemption”, “Required Energy”, “Power Load”, and so on. However, to be specific, we defined
several states that are required to control operations, scheduling, and load balancing of various
appliances. The states and descriptions are presented in Table 1.

Current literature reports are rich with real-time scheduling algorithms. However, smart home
appliance control and management with time and energy consumption constraints can be solved
through proposer selection of the appropriate scheduling algorithm. For example, in a recent work,
spring algorithm has been used to handle the home appliance scheduling issues. However, spring
has many limitations, for example, it has a complexity of O(nxn!) in many scenarios. Therefore,
researchers need to modify the algorithm to fit the home appliance scheduling problem. Further,
it cannot guarantee efficient working in many cases, such as handling interruptions, etc. In addition,
it has poor performance in real-time scenarios and can lead to several problems in a smart home
emergency and surveillance scenarios. Therefore, in this work, we used the LST scheduling algorithm
to address the issues present in spring and other scheduling algorithms used for similar purposes.
However, the periodic nature of smart home appliances is always a problem and it must be handled
with great care and properly adjusted to the different scenarios of a smart environment.

Start /_\Switch off
OPERATE / =

Stop \

AN

De-Activate
Switch_Off

Switch_Off

OFF
Switch_Off U Switch_Off

Figure 5. State chart diagram for domestic appliance scheduling.
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Table 1. Appliance states and descriptions.

State Description
OFF The appliance is turned off
ON The appliance is ready to be operational
FINISH The appliance has completed the assigned task
OPERATIONAL The appliance is currently performing a task
SLEEP The appliance is in SLEEP mode due to an interruption or urgent task
INACTIVE The appliance is disabled for operations

Further, the LST does not perform prior assumption on the event rate. Furthermore, one of the
main weaknesses of LST is that it cannot look ahead while working on the current job. That is why LST
has poor performance in handling the interruptions. However, we handle such scenarios by modifying
the state diagram of an appliance as shown in Figure 5. The interruptions are handled by switching
the current job of an appliance from an OPERATIONAL state to either a SLEEP or INACTIVE state
depending on the time to perform the rest of the operation and the severity level of the incoming
interruption. However, in this work, we did not define the severity or priority level of the interruptions.
Further, every interruption is considered as a Boolean variable with value always true. This way the
LST can perform 100% in various smart environments.

4.2. LST Scheduler

The proposed LST-based scheduler performs three main tasks: priority mapping, rate calculation,
and interruption handling. For task priority mapping, the LST scheduler refers to historic operation
records. Once the priorities are defined, the scheduler calculates the cost of operation based on the
expected energy consumption. Hence, the maximum energy consumption threshold is defined to gain
monetary benefit. Upon arrival of a new task request, the scheduler evaluates the expected energy
consumption against the maximum energy consumption threshold. The set of task requests are ordered
in descending order of heuristic value Hr. The heuristic function is introduced to ensure computing
traceability of the algorithm. A heuristic function is applied on each request k that remains to be
scheduled. Since we propose LST scheduling, Hr is a function of deadline d; and earliest available
time a;. Priority is & and v is a weighted parameter that is constant for a certain environment.

Hr =ad;+v.4a; )

If the tasks are non-preemptive and currently at the OPERATIONAL state, the LST scheduler
opts to continue its operation. If the tasks are preemptive, task operation feasibility is decided by the
maximum energy consumption threshold. If the power consumption of a currently operational task
adheres to the maximum power consumption threshold, the LST scheduler continues its operation.
Similarly, if a task can complete its work within a maximum power consumption threshold value,
LST accepts the incoming task and schedule for operation.

Most of the algorithms in the literature possess uniprocessor capabilities. LST is also a uniprocessor
based scheduling algorithm. Nevertheless, we modified the working of LST to work with multiprocessor
scenarios such as smart homes in a community, smart city, and smart hospital. The basic LST always has
a problem of missing the deadlines due to its dependency on slack time or release time. The multi-job
processing functionality is added by migrating jobs based on the priority of an appliance or job as
shown in the state diagram. The priority of an appliance is handled by the previous working time of an
appliance. Thus, the rate (R) between remaining time and execution time is used to handle the idle
state problem. Equation (10) shows the working of the modified LST scheduler.

E"

R(Job;) = 7TTF1«Z— T (10)
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where T denotes the current time of a task i, E] represents the remaining execution time and TTF
represents the time to finish a job at time T.

Each appliance is assigned a maximum time to complete during a time T. However, if a job does
not complete in the maximum allowable time, the job is removed from the operational state and is
moved to either a SLEEP or INACTIVE state in order to handle the incoming jobs. Thus, in this way,
the modified LST returns optimal results in a smart environment. A modified LST-based scheduling
algorithm (Algorithm 1) for domestic appliances is presented below.

Algorithm 1 Algorithm for appliance scheduling

Variables:
R: collection of requests
k: request where k € R
I(k): theoretical appliance power consumption corresponding to request k
pwr: total power consumption of accepted requests
L: maximum power consumption threshold
Goal: Initialize the request set (R) in descending order of heuristic value
pwr =0
forallk € Rdo
if task is non-preemptive and operational then
accept request k
remove request k from R
pwr = pwr + I(k)
end if
end for
forallk € Rdo
if pwr + I(k) < L and request k is operational then
accept request k
remove request k from R
pwr = pwr + I(k)
end if
end for
forallk € Rdo
if pwr + I(k) < L then
accept request k
remove request k from R
pwr = pwr + (k)
end if
end for

4.3. Load Balancing

The load balancer is liable for the distribution of electric load among various tasks in order
to schedule the tasks that are denied by the scheduler. Accordingly, it minimizes the cost function
associated with the energy price. Each trigger on the load balancer solves a mixed-integer programming
problem, such that it minimizes the cost function adhering to the deadline and consumption capacity
of the task.

Each task is assigned with an appropriate number of continuous time frames. In load balancing,
two main assumptions are made: (1) The power consumption load for each appliance operation is
given for its scheduled time period; (2) The demand response module provides necessary information
on energy price and power limits.

We presumed a scenario with 7 appliances and a period of m time frames. Corresponding sets
for appliances and time frames are denoted by N = {1,...,n} and M = {1,...,m}, respectively.
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Let x5, u € N,v € M be a binary variable that represents the status of the appliance, i.e., ON and OFF
with value 1 and 0, respectively. Assume C, is the power consumption of appliance x and cost per time
unit is denoted by R,. Hence, Cost,, = C; R, calculates the cost of energy for appliance x to operate
over a time frame of v. We introduced an additional variable m,,,, Vit € N, Vv € M to distinguish the
appliances that require contiguous time frames for operation. When m,,,= 1, it ensures the allocation
of continuous time frames. Generally, we can define a startup cost S, for each m,,. This scheme
adheres to capacity constraints and balances and schedules the electric load over a time period with the
utmost goal of minimizing cost of energy. We attained this goal by solving the following mixed-integer
programming problem:

min Y CostyoXuo + Y SuoMuo, (11)
u,o u,o

st. ) Cuotuo < Lo,V €M, (12)

u

Myy < xuj

j=jj+1...j+T—1YoEMVucN, (13)
Y muo=1Vu €N, (14)

v
Xup = 0,Yu € N, Vo ¢ (T@””y, T’“ff), (15)
Mmyy > 0,Yu € N,Vo € M, (16)
Xuo € {0,1},Vu € N,Vo € M, 17)

where L; denotes the available capacity for time frame v and T, calculates the number of continuous
time frames required for appliance u that operates with Total, total energy. Earliest and latest possible
start times for appliance u are represented by T¢"%¥ and T'*¢, respectively. Furthermore, we considered
four sets of constraints in solving this problem as shown below.

o = {Totalu"l (18)

e  Constraint 1: Total power consumption of a particular time slot should be limited to the allotted
load capacity.

e Constraint 2: Allocate consecutive time frames to each request in all possible scenarios;
this provides sufficient operational time and to finish the operational cycle within the deadline.

e  Constraint 3: Schedule each task once only. Worthy to note that schedule number is subject to
changes based on its requirements, characteristics, and priorities.

e  Constraint 4: Schedule each task in the applicable operation period, such that it assures operation
during a specific time period.

The first set of constraints ensures the load capacity of time frame v is always below the stated
capacity limit L,. The next set of constraints enforces the allocation of 7, continuous frames for x;,
when 1, value is set to one. Accordingly, the best time frame v to start appliance u between T¢"
and T to continue operation of Xy, Xy 41, - - - Xy,p+1,—1 i decided by the optimizer. The third set
of constraints guarantees that each task is scheduled only once. The final set of constraints serves
conformance to appliance execution within the allocated period by assigning x,, to zero in time
frames before T°”" and after T'*. The beauty of the load balancing scheme is it manages the
total power consumption of all manageable appliances. The proposed load balancing mechanism is
appropriate for time-dependent appliances with variable power demands, i.e., heating, ventilation,
and air conditioning (HVAC) and electric vehicle (EV) charging.
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5. Results and Discussion

A dramatic increase in the domestic energy demand has motivated experts to implement energy
efficient domestic appliances and environments. Even though appliance scheduling is incorporated
in many proposed works, the applicability is hindered by the user comfort level. Thus, we have
proposed a user-friendly LST-based scheduling mechanism that operates on cumulative load balancing.
The performance is evaluated using C# programming language. The smart home environment is
designed with multiple smart home appliances and smart home users. The users of the smart home
randomly switch on appliances. User activity initiation is a random variable since a prior prediction
of user behavior is not feasible. An automated switching off component monitors user behavior
and generates control signals accordingly. Simultaneously, load balancing and appliance scheduling
algorithm manage power consumption levels of the household to minimize monetary cost of energy.
All electronic appliances of the smart home environment were tested for a duration of 1 h. One hour
simulation replicated ToU patterns of a single day. Energy consumption of appliances was evaluated as a
random variable between 5 to 30 s. In this section, we evaluate the performance of the proposed scheme
in terms of energy utilization and cost reduction. Energy utilization results obtained from the automated
switching off system and cost reduction attained with the LST-based scheduling are elaborated on in
the following sections. The results of the proposed scheme are compared with the results obtained
from the scheme proposed in [2]. The scheme in [2] proposed a ZigBee coordinator-based smart energy
management system. It manages the operation of household appliances based on previous records.
However, the above mechanism does not support load balancing-based scheduling of appliances.
Moreover, the scheme of [2] does not consider monetary benefits gained from smart home energy
management. Henceforth, we proposed scheme schedules of smart home appliances on the basis of an
LST algorithm.

Thus, it improves the user comfort level during scheduled operations. Moreover, scheduling
of appliances adheres to load balancing restrictions to minimize the monetary expense of energy
consumption. As illustrated in Figure 6, the proposed scheme is tested with the energy management
scheme proposed in [2]. Figure 6a—d represent the results of an air conditioner, a television, a fan,
and an iron, respectively. As illustrated, the energy consumption is significantly reduced in the
proposed scheme owing to the automated switching off mechanism, which avoids unnecessary
energy wastage. In [2], the switching on and off was purely based on the user context. Nevertheless,
the proposed scheme associates a random user initiation supported by an automated switching
off context. Subsequently, this approach minimizes unnecessary energy consumption of domestic
appliances. In addition, the proposed scheme gives the opportunity to users to monitor and manage
energy consumption proactively. In an LST-based scheduling mechanism on top of the cumulative
load balancing approach, the cumulative load of the smart home is managed and the appliances are
scheduled accordingly.

We evaluated the total energy consumption of a household after applying the proposed scheme
and the energy management scheme in [2]. The obtained energy consumption results are depicted in
Figure 7. Figure 7a reveals that the integration of the switching off scheme has significantly reduced
the energy consumption of the respective appliances. The load balancing approach has utilized the
aforementioned four constraints to optimize the energy efficiency of a smart household. Since the
scheme proposed in [2] manages its services solely on the user context, the energy consumption of
the appliances is higher than the proposed approach, which embeds LST scheduling, load balancing
constraints, and automated control system. Figure 7b illustrates the energy consumption of three
appliances—fan, television, and air conditioner—in the proposed scheduling mechanism and in the
energy management scheme in [2]. As depicted in Figure 7b, the proposed LST-based scheduling has
reduced the total energy consumption of the smart home compared to the other simulated approach.
In addition to the energy efficiency, the proposed LST scheme is modified to operate in multiprocessor
scheduling environments. Such that, unlike other existing scheduling algorithms, the proposed work
is easily extendable to a smart community that consists of many smart homes.
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Figure 6. Energy consumption comparison with the scheme proposed in [2]. (a) Air conditioner results;
(b) television results; (c) fan results; (d) iron results.
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Figure 8. Consumption load profile and cost profile (a) consumption load profile of general appliance
operation and scheduled appliance operation; (b) consumption cost profile of general appliance
operation and scheduled appliance operation.

We have evaluated the energy consumption profile and cost of energy for the total household
energy consumption. Appliance operation was simulated for 60 min and the simulation replicated
off-peak, mid-peak, and peak durations accordingly. Figure 8 illustrates the consumption load profile
and consumption cost profile of the household. As clearly presented in Figure 8a, the proposed load
balancing embedded LST scheduling algorithm has significantly reduced the peak load demand of
the smart home. A peak load of 77.89 kW of general appliance operation was reduced to 28.99 kW,
which claims to be a 62.781% peak load reduction. In fact, the peak load reduction influenced the cost
of energy consumption during peak hours. As illustrated in Figure 8b, we analyzed the cost profile of
energy consumption. Cost optimization of the load balancing component has effectively transferred
peak load to off-peak hours with the aid of LST scheduling. The total monetary benefit gained from
the proposed work is 20.423% and peak hour monetary benefit is 62.781%, which is similar to peak
load reduction.

6. Conclusions

Energy management is one of the major concerns in modern smart home implementations.
This paper presented an LST-based appliance scheduling scheme that operates on load balancing.
In terms of load balancing, the proposed scheme defined four constraints to manage the cumulative
energy consumption of a smart home. The scheduling mechanism runs on the load balancing scheme
while adhering to the LST algorithm. The utmost goal of employing LST in appliance scheduling
was to ensure user comfort during the scheduling process. The LST algorithm was modified to fit a
multiprocessor scheduling environment. Thus, it can easily manage multiple smart home scenarios
simultaneously. The proposed scheme was tested for energy consumption with the aid of computer
simulation. The simulation results clearly reveal the efficacy of scheduling and load balancing with
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respect to the energy consumption. Moreover, the results depict the superiority of the proposed scheme
compared to an existing home energy management scheme in terms of appliance energy consumption.
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