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Abstract: Through a recent upsurge of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
pandemic, the clinical assessment of most of the coronavirus disease 19 (COVID-19) patients clearly
presents a health condition with the loss of oro-naso-sensory (ONS) perception, responsible for
the detection of flavor and savor. These changes include anosmia and dysgeusia. In some cases,
these clinical manifestations appear even before the general flu-like symptoms, e.g., sore throat,
thoracic oppression and fever. There is no direct report available on the loss of these chemical senses
in obese COVID-19 patients. Interestingly, obesity has been shown to be associated with low ONS
cues. These alterations in obese subjects are due to obesity-induced altered expression of olfacto-taste
receptors. Besides, obesity may further aggravate the SARS-CoV-2 infection, as this pathology is
associated with a high degree of inflammation/immunosuppression and reduced protection against
viral infections. Hence, obesity represents a great risk factor for SARS-CoV-2 infection, as it may hide
the viral-associated altered ONS symptoms, thus leading to a high mortality rate in these subjects.
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1. Introduction

In the month of December 2019, there was an uprising of pneumonia, marked with respiratory
distress, among the residents of Wuhan district, located in the north-east of China [1]. The virus
responsible for this health disaster was identified as severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) which belonged to the single-stranded enveloped RNA viruses, and the disease was
termed as coronavirus disease 2019 (COVID-19) [2]. It is surprising that in the beginning of the
pandemic, most of the COVID-19 patients in Wuhan (China) had some primary health problems,
including obesity [1].

2. Obesity and Reduced Viral Protection

A recent cohort, conducted in 12 hospitals of the New York state on COVID-19 patients,
has proposed that there were 41% obese patients, admitted between March 1, 2020 and April 4,
2020 [3]. The incidence of obesity is increasing steadily in all the corners of the world, with 650 million
clinically ill subjects requiring either a surgical or medical treatment [4]. The management of obesity
has become a challenging task because this pathology is a favorable ground for several chronic diseases,
including cardiovascular complications, type-2 diabetes mellitus, cancer, atherosclerosis, arthrosis
and renal dysfunction, and respiratory tract infections (RTI) in virus-affected patients [5–7]. The RTI
are the main physiological targets in COVID-19 illness [1]. We would like to recall that during 2009
influenza pandemic, obesity was associated with reduced pulmonary immune defenses against the
virus [8]. Indeed, obese subjects were not only more prone to infection with the influenza (H1N1)

J. Clin. Med. 2020, 9, 2158; doi:10.3390/jcm9072158 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0003-4331-5152
https://orcid.org/0000-0002-8930-9332
http://www.mdpi.com/2077-0383/9/7/2158?type=check_update&version=1
http://dx.doi.org/10.3390/jcm9072158
http://www.mdpi.com/journal/jcm


J. Clin. Med. 2020, 9, 2158 2 of 12

virus, but also developed post-infection severity of illness [9]. An increase in adiposity has been shown
to alter the integrity of respiratory epithelium, which might lead to dysfunctional airway fluxes [10].
Due to high weight load with excessive pressure on belly and thorax, obesity will contribute to reduced
pulmonary gas exchange capacities, such as forced expiratory volume (FEV) and forced vital capacity
(FVC). The experiments conducted on mice have suggested that obesity is associated with high lung
permeability [11]. Epidemiological data confirm that there is an increased rate of pneumonia and RTI
in COVID-19 obese patients [12]. In fact, the first report on RTI in obese subjects was published by a
French team wherein 47% of COVID-19 patients were found to be obese with a high degree (nearly
90%) of artificial ventilation [13].

The marked inflammation leading to immunosuppression in obesity seems to favor viral
infections [14–16]. Sheridan et al. [17] observed that high body mass index (BMI) was associated
with a high decline in influenza antibody titers and decreased CD8+ T-cell activation after 12 months
post-vaccination. As far as SARS-CoV-2 infection is concerned, Tan et al. [18] assessed immunological
alterations in COVID-19 patients, wherein they noted an overall decline in CD4+ T-cells, CD8+ T-cells,
B cells and natural killer (NK) cells. Moreover, the number of immunosuppressive T-regulatory,
T-reg (CD4+CD25+Foxp3+) cells and concentrations of IL-6, IL-10, and C-reactive protein (CRP) were
up-regulated in patients with severe COVID-19 [18], suggesting that SARS-CoV-2 infection may lead
to “over-immunosuppression” in the case of obesity (Figure 1).
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Figure 1. The figure shows the immunosuppression in obese subjects. The adipose tissue of the obese is
highly inflamed and, consequently, releases a number of cytokines, particularly IL-6 and TNF-α. whose
secretion is further potentiated by leptin. The lipopolysaccharide (LPS)-triggered endotoxemia further
aggravates inflammatory condition by inducing the release of IL-6 and TNF-α from macrophages via
TLR4 activation. Obesity is also marked with high production of IL-10, which decreases the function
of dendritic cells. The prolonged inflammation will lead to immunosuppression that may favor the
viral infection. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has also been shown
to induce immunosuppression. Once installed, SARS-CoV-2 will aggravate the obesity-induced lung
dysfunctions. (+) and (−) show, respectively, stimulatory and inhibitory actions.

Since dendritic cells (DCs) are the key players in the regulation of Th1/Th2 dichotomy and T-cell
tolerance, their importance to trigger an anti-viral response has been considered primordial [19].
O’Shea et al. [20] have demonstrated that obesity impacts the functions of these cells to trigger
appropriate T-cell responses. This interesting report further showed that not only the number of
circulating DCs were significantly lower in obese participants than lean subjects, but also in vitro
activated-DCs from obese participants expressed less CD83 (a DCs maturation marker) and also
produced, in high quantities, the IL-10, an immunosuppressive cytokine [21]. The IL-10, in turn,
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has been shown to inhibit the ability of DCs to stimulate CD4+ T-cells and to downregulate MHC-II,
CD86 (a co-stimulatory signal protein), and antigen presentation to CD4+ T-cells [21]. Obesity is
also marked with high concentrations of leptin, which is also known to trigger the production of
IL-6 and TNF-α from adipose tissues (Figure 1) and to increase the risk for viral infection. Indeed,
TNF-α administration in mice favors the induction of an experimental autoimmune disease [22].
The adipose tissue is the main source of circulating TNF-α in obesity, as its synthesis is increased by
adipocytes in obese subjects and a weight-loss results in its low concentrations [23]. In obesity, leptin
further decreases the secretion of adiponectin, an anti-inflammatory adipokine. In fact, the adipose
tissue of obese subjects is an inflammatory “hot spot” that is also infiltrated by macrophages [24].
Besides, obesity is also marked with a change in gut microbiota that leaks the entry of lipopolysaccharide
(LPS) into blood circulation. The LPS is directly responsible for endotoxemia, so-called, “low grade
inflammation”, via Toll-like receptor-4 (TLR-4), by inducing the production of IL-1β, TNF-α and
IL-6 from macrophages and, at the same time, some of the adipocytes are also differentiated into
“macrophage-like” cells [25]. Finally, we can state that IL-6 and TNF-α are the main players of
inflammation in obesity (Figure 1). These two cytokines, along with IL-1β via the NF-kB pathway,
have been proposed to be the major cause of immunosuppression [26] as they induce accumulation and
activation of myeloid-derived suppressor cells (MDSCs) whose expansion interrupts the maturation of
macrophages, DCs and granulocytes [27].

Obesity is also associated with other immunosuppressive landmarks, such as low lymphocyte
subset counts and their decreased polyclonal proliferation and oxidative burst activity of monocytes,
increased thymic aging, and reduced T-cell repertoire diversity, which lead to increased risk for viral
infections and RTI both in experimental models and clinical studies [28]. Luzi and Radaelli [29] have
proposed that there would be high viral shedding in obese subjects, thus increasing the probabilities of
spreading the viral infection. It is also noteworthy that obesity, complicated by diabetes, may further
aggravate the patient’s health status. Indeed, Bello-Chavolla et al. [30] have tried to establish a link
between obesity and diabetic condition in SARS-CoV-2 infection. These investigators concluded that
obesity might increase the lethality of COVID-19 in diabetic subjects. Diabetes, due to the deleterious
role of hyperglycemia on immune responses, represents a risk factor for COVID-19 infection in
obesity [31,32]. A French nationwide study, CORONADO (Coronavirus SARS-CoV-2 and Diabetes
Outcomes), has clearly shown the deleterious role of obesity in life-threatening outcomes in a large
diabetic population with COVID-19 [33,34].

A perusal of above-mentioned studies clearly demonstrates that chronic inflammation, leading
to immunosuppression, may contribute to decreased protection against viral infections in obese
subjects [35].

3. COVID-19 and Reduced Oro-Naso-Sensory (ONS) Perception

It has been recently reported that a significant number of COVID-19 patients suffer from a sudden
loss of their senses of smell and taste, even in clinical conditions that are not marked with common
viral symptoms such as fever, dry cough or thoracic oppression [36,37].

A large number of COVID-19 patients (from 60% to 80%) from Iran have complained of a complete
loss of their sense of smell or taste [38]. A multicentric European study conducted on COVID-19
patients demonstrated that nearly 87% of patients reported olfacto-gustatory dysfunctions [39]. A recent
meta-analysis on COVID-19 patients, incorporating 10 research articles from 7 countries, has reported
that nearly 52% and 43% of them had, respectively, gustatory and olfactory dysfunctions [40]. In France,
Gautier and Ravussin [41] reported that there was a sudden appearance of anosmia and/or ageusia in a
small number of COVID-19 patients. Similarly, almost two-thirds of COVID-19 patients from Germany
also complained of anosmia [42]. In the USA, a survey was performed in the month of April 2020 on
COVID-19 patients, and 37.7% of participants complained of altered smell and taste perception [43].
Interestingly, the changes in gusto-olfactory perception in COVID-19 patients were more prevalent
in home-quarantined subjects, independently of age and gender [44]. It is important to mention that
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SARS-CoV-2 does not generate clinically significant nasal congestion or rhinorrhea as seen in general
nasal infections [45–48]. Does SARS-CoV-2 infect taste buds or nasal mucosal epithelia? A recent
report, conducted in mice, has demonstrated that mouse sustentacular cells, involved in the transfer of
odorant messages to olfactory neurons, express angiotensin converting enzyme 2 (ACE2), which is a
port of entry of SARS-CoV-2 (Figure 2) [49].
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Figure 2. Illustration of the SARS-CoV-2-induced inflammation in oro-naso epithelia. The viral infection
via angiotensin converting enzyme 2 (ACE2) may trigger an inflammatory state in the lingual gustatory
papillae and olfactory submucosa, affecting, simultaneously, the integrity and functions of taste bud
cells and olfactory neurons. The figure shows a taste bud that is constituted of different cell types,
such as type I (glial-like), type II (also called, taste receptor cells, TRC), type III (neuron-like) and
basal cells (involved in the renewal of all taste bud cell populations). The duration and intensity of
SARS-CoV-2-induced inflammation will also depend on pre-existing inflammation (like in obesity) and
genetic or epigenetic backgrounds of the subjects. For simplification, we do not show the structure
of the tongue papillae. We show a taste bud that is the unit of lingual gustatory papillae. During
viral-induced inflammation, the oro-nasal epithelia will be infiltrated by macrophages that will release
the pro-inflammatory cytokines such as IL-6 and TNF-α that may aggravate the epithelial integrity and
lead to clinical symptoms such as loss of oro-naso-sensory (ONS) functions.

Beside the implication of ACE2, the viral-induced generalized inflammation in COVID-19 patients
would also affect the integrity of the olfactory epithelium. Chronic rhinosinusitis has been shown
to trigger alterations in the olfactory mucosa, such as goblet cell hyperplasia, squamous metaplasia,
and loss of supporting cells and olfactory neurons, associated with infiltration of pro-inflammatory
immune cells [50]. We propose that SARS-CoV-2 might affect the integrity or regeneration/renewal of
the olfactory epithelium, impacting the physiological function of olfactory sensory neurons (Figure 2).
Hence, we can cite the example of Sendai virus which has been shown to impair olfaction by reducing
the regeneration of the olfactory epithelium and olfactory bulb in the mouse [51]. In in vitro experiments
on murine olfactory neurons infected with this virus, the number of odorant-responsive cells were
decreased. By using a plausible transgenic mouse model, Lane et al. [52] have demonstrated that the
induction of TNF-α expression triggered inflammation in the olfactory epithelium and the reversal of
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TNF-α expression restored the olfactory function in these animals, demonstrating that inflammation
is an important factor involved in the loss of olfactory sensory neurons and olfaction sensitivity.
The olfactory mucosa is very sensitive to macrophage-secreted inflammatory cytokines, such as
macrophage inflammatory protein-1α (MIP-1a) and monocyte chemoattractant protein-1 (MCP-1),
that may influence the renewal/regeneration of nasal epithelial cells [53].

As regards taste dysfunction, ACE2 was highly expressed by tongue epithelial cells, but to a lesser
extent by buccal and other tissues of the mouth cavity [54]. These observations suggest that the tongue
is equipped with a SARS-Cov-2 entry route, but we do not know whether taste papillae and taste
bud cells (TBCs) express the ACE2 receptor. We would like to introduce Toll-like receptors (TLRs)
that act as receptors for viral RNA, and are abundantly expressed on taste bud cells, particularly on
type II and type III cells [55]. The activation of TLRs by the administration of exogenous IFN-γ led
to inflammation in taste bud cells and, consequently, to cell death. The autoimmune pathologies in
humans or experimental rodent models have clearly demonstrated that inflammation, associated with
infiltration by IL-6 and IFN-γ in gustatory epithelium, impacts taste perception [56–58]. Moreover,
administration of exogenous IFN-γ, via STAT-1 signaling, induced apoptosis of taste bud cells [59].
These observations strongly support that oral taste papillae inflammation may contribute to low
oro-sensory perception of sapid molecules.

Beside the peripheral mechanism, different brain areas might be involved in the loss of taste
and smell in COVID-19. There are several reports indicating that COVID-19 patients also suffer
from neurological complications, such as skeletal muscle injury, delirium and acute cerebrovascular
disease [47]. Chigr et al. [60] have proposed that this virus might accede to the olfactory cortex either
by the nasopharyngeal cavity or directly by hematogenous spread. There is no direct report on the
entry of SARS-CoV-2 into the brainstem; however, clinical features such as vomiting, nausea and loss
of appetite suggest a perturbation in the dorsal vagal complex (DVC), which belongs to the medulla
oblongata, the lowest region of the brainstem that controls several physiological functions, including
food intake. In the DVC, the nucleus of tractus solitaris (NTS) is known to regulate food intake, not only
via the vagus nerve that connects the gut, but also via chorda tympani and glossopharyngeal nerves
that connect directly to the gustatory taste papillae in the tongue [61]. Ralli et al. [62] have proposed
that SARS-CoV-2 could infect the olfactory receptors in the nasal epithelium, through which it may
travel to the olfactory bulb and certain brain structures, such as the medulla oblongata. This hypothesis
was based on the observations in animal experiments wherein intranasal administration of SARS-CoV,
a strain similar to SARS-CoV-2, could enter the brain via the olfactory nerves and spread to the thalamus
and brainstem [48]. SARS-CoV-2, in analogy to SARS-CoV34 and MERS-CoV13 infection in transgenic
mice, might attain the brainstem [63]. Indeed, using the murine model of HCoV infection, it was
shown that SARS and OC43 were able to enter the olfactory bulb via the nasal route and reach the
central nervous system (CNS) [64]. Moreover, CT scans and MRI of COVID-19 patients demonstrated
“bilateral inflammatory obstruction of the olfactory clefts” [65]. Though we do not have experimental
animal data on SARS-CoV-2 entry, we can state that SARS-CoV-2 may enter the CNS, using the olfactory
pathway [63], and exert its action via ACE2 that has been detected in the central nervous system [66].

The question arises whether the loss of ONS perception can be considered as an early marker of
SARS-CoV-2 infection. We should be very cautious in this regard, as the methods that have been used
for the assessment of ONS defects are self-reported examinations. Generally, the investigators employ
either a 3-armed forced choice (3-AFC) test or a comparison with 6-n-propylthiouracil (PROP) tasting
with and without sodium chloride for oral chemosensory perception, and for the detection of olfactory
thresholds, rose smell and n-butanol are employed. By using these techniques, one can be sure about
the decrease (or increase) in taste detection thresholds. However, in none of the reports on COVID-19
patients, such tests were employed. Why do all the COVID-19 subjects not complain of the loss of
smell? Is there any genetic or epigenetic predisposition?
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4. Obesity and Reduced ONS Perception

Before going into detail, we would like to emphasize that a reduced oro-sensory perception
would trigger high consumption of palatable food, thus either leading to obesity or worsening this
pathology [67,68], though we should not ignore the implication of the food addiction component,
particularly for sweet food and those rich in fat [69,70]. The studies conducted on healthy and obese
participants suggested that the latter group exhibited lower sensitivity than the former for sweet and
sour taste [71]. Diet-induced obesity, by maintaining mice on a high-fat diet for ten weeks, resulted in
low taste bud cell number and taste-evoked calcium signaling in obese mice [72]. Similar observations
have been reported for bitter and salt tastes in obese subjects [73]. As regards fat taste perception,
there was a decreased perception of dietary fatty acids in obese rodents and human beings [61,74,75].
The decrease in taste sensitivity to different taste qualities might be due to partially functional taste
receptors/sensors, caused by obesity-induced downregulation [75], genetic polymorphism [75–78] or
epigenetic signatures [79].

The olfaction is not only important for the detection of sense of smell, but also to appreciate the
palatability of a hedonic food, as the retro-nasal detection of flavors is brought about by nasal sensory
epithelial cells [80,81]. As regards the olfactory cue, there was a significant influence of BMI on olfactory
thresholds, which were increased with increasing body weight in obese subjects [82,83]. Patel et
al. [84] reported that high BMI was associated with subjective olfactory dysfunction in obese patients.
By employing the olfactory threshold-discrimination-identification (TDI) test, Pastor et al. [85] observed
that olfactory discrimination power was lesser in obese subjects than control participants. Like taste
modalities, the genetic polymorphism of olfactory receptor genes [85,86] or their hypermethylation [87],
also contributes to obesity. The decreased smell perception in obesity is a multicomponent phenomenon
that involves not only nasal epithelial receptor activation, but also different brain areas, such as the
limbic system, thalamus and piriform cortex, as well as amygdala, which project to the orbitofrontal
cortex [88].

Beside the afore-mentioned factors that bring about a decrease in ONS, we should not forget
to mention the role of cytokine-induced (generalized or tongue-specific) inflammation in obesity.
The mouse taste bud cells have been shown to produce both TNF-α and IL-10 in the microenvironment
of taste papillae [89,90]. In a plausible study, Kaufman et al. [74] showed that an increase in TNF-α in the
tongue of obese mice was associated with a significant reduction in taste bud and taste progenitor cells
in tongue papillae. Moreover, TNF-αnull mice were protected from obesity-induced reduced number of
taste bud cells, and administration of exogenous TNF-α brought back taste buds to degeneration [91].
The adipose-specific deletion of Sel1L in mice maintained on a high-fat diet resulted in reduced
adiposity and showed neither an increase in TNF-α concentrations nor any sign of taste bud cell
atrophy. These observations clearly indicate that TNF-α released from hyperplasic/inflamed adipose
tissue in obesity may trigger a loss in gustatory taste perception. Moreover, LPS-induced inflammation
was also found to decrease the lifespan of mature taste bud cells [92].

As regards olfactory perception, inflammation and obesity, a link between apoptosis and
inflammation has been recently reported in the olfactory mucosa of obese mice fed with a moderate
high-fat diet, where a significant increase in activated caspase-3 was associated with a marked loss
of olfactory sensory neurons and their axonal projections, paralleled with an increased expression of
Iba-1, suggesting an increase in proinflammatory cells [92]. Hence, if the diet-induced obese mice are
re-fed a normal diet and return to normal weight, the loss in olfactory perception is also reinstated.
In vitro, TNF-α has been shown to induce cell death in olfactory epithelial explants [93]. In transgenic
mice, the expression of TNF-α resulted in the loss of olfactory neurons and odor perception. As regards
IL-6, its concentrations were found elevated in the blood of patients suffering from hyposmia [94,95].
A perusal of above-mentions observations clearly suggests that obesity is associated with the loss of
ONS, and inflammation in the oro-naso epithelia plays an important role in this phenomenon.
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5. Conclusions

Figure 2 shows that SARS-CoV-2 infection will install (or aggravate) an inflammatory state both
in the lingual and nasal epithelia. In the lingual taste buds, the virus-induced inflammation will
attenuate the gustatory perception of different taste qualities, whereas in the olfactory sensory neurons,
the virus-triggered inflammation may contribute to decreased olfactory perception of odorants. It is also
possible that SARS-CoV-2, by penetrating the olfactory bulb, may enter the brainstem and modulate
ONS. Why do all COVID-19 patients not exhibit a change in ONS perception? It is possible that the
alteration in oro-olfactory epithelium functions might be secondary to viral infection, which may
depend on genetic (or epigenetic) and other life-style-related build-up of the patients. Nonetheless,
we can infer that obese subjects are at high risk for SARS-CoV-2 infection as they already exhibit a
low ONS capacity for different taste modalities. Hence, the existing gustatory and olfactory sensory
deficiency, due to obesity, will mask SARS-CoV-2-induced diminished taste and smell sensation and,
thus, may aggravate the patient’s health. SARS-CoV-2 infection may further aggravate the ONS
functions; mask the obesity-induced inflammation, including loss of taste and smell; and render the
obese subjects more vulnerable and prone to severe pathophysiological consequences such as RTI,
leading to death.

6. Perspectives

By now, we have observational/self-reported studies, but data regarding the duration and the
time of the onset and reversal of ONS symptoms in this infection are lacking. We need a complete
follow-up study of these patients as a function of time on the loss of ONS. As mentioned previously,
we also lack the proper set-up for the detection of olfactory and taste thresholds. We still do not know
whether SARS-CoV-2 infection alters the taste bud renewal/turn-over and taste bud physiology either
upstream or downstream of the detection of sapid molecules. It is too early to predict clearly that
SARS-CoV-2-induced changes in ONS might be due to its direct or indirect deleterious effects on
brain regions such as the insula, caudal orbitofrontal and anterior cingulate cortex that control the
integration of both taste and smell information [96]. While we have mentioned that tongue epithelium
expresses ACE2 receptors [54], we still do not know which cell type (type I, II or III) expresses this
receptor. This information will be important to correlate the loss of a particular taste modality as type
II cells express sweet, bitter and umami receptors; type I cells express salt receptors; and type III cells
are involved in sour sensing [74,75].

The vistas in the eating behavioral physiology with regard to SARS-CoV-2 infection require more
detailed investigations in COVID-19 patients as gustatory and olfactory receptors are also expressed
in other tissues such as those in the gut, which is the main site of the release of small peptides (such
as cholecystokinin and peptide-YY) that control eating behavior via the vagus nerve [97]. Similarly,
the olfactory bulb also expresses receptors for a number of appetite-regulating hormones and peptides
such as insulin, leptin, ghrelin and orexin [98]. It is now well established that the gut microbiome of
obese subjects is shifted from Bacteriodetes to Fermecutes, a pro-inflammatory phylum, and the effects
of this change on SARS-CoV-2 infection susceptibility should be explored in the future. Does this viral
infection promote a particular microbiome in the gut and ONS epithelia? A recent report has outlined
that there is a significant persistent alteration in the gut microbiome in COVID-19 patients [99]. Can the
strategies to alter the intestinal microbiota decrease the severity of SARS-CoV-2 infection? We think that
SARS-CoV-2 infection is much more dangerous than what is reported now and a significant amount of
clinical information remains undiscovered.
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