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Abstract: The global spread of multidrug-resistant bacteria has become a significant hazard to
public health, and more effective antibacterial agents are required. Therefore, this study describes
the preparation, characterization, and evaluation of gold nanoparticles modified with chitosan
(Chi/AuNPs) as a reducing and stabilizing agent with efficient antimicrobial effects. In recent years,
the development of an efficient and ecofriendly method for synthesizing metal nanoparticles has
attracted a lot of interest in the field of nanotechnology. Colloidal gold nanoparticles (AuNPs) were
prepared by the chemical reduction of gold ions in the presence of chitosan (Chi), giving Chi/AuNPs.
The characterization of Chi/AuNPs was carried out by transmission electron microscopy (TEM),
scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD).
Chi/AuNPs appeared spherical and monodispersed, with a diameter ranging between 20 to 120 nm.
The synergistic effects of AuNPs and Chi led to the disruption of bacterial membranes. The maximum
inhibitory impact was seen against P. aeruginosa at 500 µg/mL, with a zone of inhibition diameter of
26 ± 1.8 mm, whereas the least inhibitory effect was reported for S. aureus, with a zone of inhibition
diameter of 16 ± 2.1 mm at the highest dose tested. Moreover, Chi/AuNPs exhibited antifungal
activity toward Candida albicans when the MIC was 62.5 µg/mL. Cell viability and proliferation
of the developed nanocomposite were evaluated using a sulphorhodamine B (SRB) assay with a
half inhibitory concentration (IC50) of 111.1 µg/mL. Moreover, the in vitro wound-healing model
revealed that the Chi/AuNP dressing provides a relatively rapid and efficacious wound-healing
ability, making the obtained nanocomposite a promising candidate for the development of improved
bandage materials.

Keywords: nanocomposite; chitosan; antibacterial activity; antifungal activity; wound healing;
cytotoxicity

1. Introduction

The emergence of multidrug-resistant (MDR) bacteria has become a severe threat
to public health [1]. MDR bacteria are no longer isolated in medical settings; they may
now be found in the environment around us. These bacteria include Staphylococcus aureus,
Enterococcus faecalis, Streptococcus pneumonia, Escherichia coli, and Klebsiella pneumoni [2].
Gram-negative bacteria use different mechanisms to resist the toxicity of antibiotics, such
as low permeability of the outer membrane, efflux pumps, and the production of degrading
enzymes [3]. The true cost of antimicrobial resistance will be 300 million premature
deaths and up to USD100 trillion (GBP64 trillion) lost to the global economy by 2050 [4].
On the other hand, fungal infections have significantly increased in the last decade in
immunodeficient patients [5]. Globally, pathogenic fungi have invaded more than 1.2 billion
individuals, causing at least 1.7 million deaths per year [6]. The recent annual incidences
of invasive candidiasis, aspergillosis, and mucormycosis are over 750,000, 300,000, and
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10,000 cases, respectively [7]. The widespread use of antifungal drugs leads to fungal
strains resistant to most commercial antifungal agents [8]. Therefore, the discovery or
synthesis of new antimicrobial agents is required.

Nanotechnology is assumed to be the subsequent industrial revolution and is con-
sidered to have a tremendous effect on the community, economics, and the common
world [9,10]. An environmentally friendly approach to the biosynthesis of nanoparticles is
an opportunity to be applied safely in medical fields [11,12]. Nanotechnology has received
much attention in different biological applications [13]. Nanoparticles have been success-
fully used to reduce bacterial and fungal infections in medicine, pharmaceuticals, and
agriculture fields [14–17]. Nanomaterials such as gold, silver, copper, selenium, titanium,
zinc oxide, and magnesium oxide have antimicrobial activity against human pathogenic
bacteria and fungi [18–21]. Among them, gold nanoparticles are considered one of the
most commonly used metals for biomedical applications due to their unique properties,
such as adjustable size, shape, surface properties, optical properties, biocompatibility, low
cytotoxicity, and high stability [22–24]. In the majority of nanomaterials described in recent
studies, antibacterial activity is attributed to at least one of the following mechanisms:
inhibition of cell wall/membrane synthesis, disruption of energy conversion, production
of toxic reactive oxygen species (ROS), photocatalysis, enzyme inhibition, and reduction
of DNA production [25,26]. Polysaccharides such as cellulose, chitosan, and starch were
added to nanoparticles to reduce aggregation and improve stability [27,28]. Chitosan is a
linear polysaccharide that is obtained from the deacetylation of chitin, a naturally occurring
polymer present in the shells of prawns and other crustaceans [29]. It is one of the most
commonly used biopolymers in a wide range of applications, including fabrics, cosmetics,
water treatment, and food processing [30–32]. Previous studies confirmed that chitosan has
multiple roles in nanoparticle synthesis, stabilization, and applications [33,34]. Wound heal-
ing is characterized by a variety of reactions that include inflammatory, tissue-regenerating,
and tissue-remodeling processes [35]. Wound dressings are biomaterials of synthetic or nat-
ural origin that aid in wound healing by establishing a favorable microenvironment, which
attracts cells to the wound region [36]. In this work, an accurately designed synthesis of
chitosan-based hybrid AuNPs based on this green and simple synthetic strategy, followed
by accurate physicochemical characterization, will be described. After their physicochem-
ical characterization, the wound-healing, antibacterial, and antifungal activities of the
Chi/AuNPs will be investigated.

2. Materials and Methods
2.1. Materials

Chitosan (CS) was purchased from Sigma-Aldrich (Darmstadt, Germany). The molec-
ular weight of CS is in the order of 45 kDa, and its degree of acetylation is about 80%,
according to the manufacturer’s data. Glacial acetic acid (Panreac) and sodium hydroxide
were obtained from Merck (Darmstadt, Germany). HAuCl4.3H2O (99.5%), Muller Hinton
broth, resazurin indicator, nystatin, sulphorhodamine B, doxorubicin, TCA, TRIS, and
ciprofloxacin were obtained from Sigma-Aldrich. All chemicals were of analytical grade
and were used without further purification.

2.2. Synthesis of Chitosan/Gold Nanoparticles (Chi/AuNPs)

Chitosan/gold nanoparticles (Chi/AuNPs) were synthesized utilizing a chemical
reduction process, with chitosan as a reducing and stabilizing agent. With minor changes,
the synthesis of Chi/AuNPs was carried out according to the technique reported by [37].
Chitosan (0.2%) was produced by mixing in 0.5% acetic acid. After that, the chitosan
solution was stirred to create a homogeneous solution. An aliquot of 2 mL of 2 mM
HAuCl4.3H2O was added drop-by-drop to the chitosan solution. At 85 ◦C, the mixture was
agitated for 4 h. The colorless chitosan solution became violet, indicating that Chi/AuNPs
were synthesized.
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2.3. Characterization of Chi/AuNPs

A variety of instrumental analytical methods were used to characterize the Chi/AuNPs.
The shape and size of the prepared Chi/AuNPs were observed using the TEM method. An
ultra-high-resolution transmission electron microscope (JEOL-2010, Jeol Ltd., Tokyo, Japan)
with a voltage of 200 kV was employed. Specimens for TEM measurements were prepared
using the drop coating method by placing a drop of diluted colloidal solution containing
Chi/AuNPs on a copper grid coated by an amorphous carbon film and desiccating the
solvent under vacuum overnight before loading onto a specimen holder. AMT software
was calibrated for Chi/AuNP size measurements using a digital TEM camera. The average
diameter of the prepared Chi/AuNPs was calculated by measuring over 100 nanoparticles
in at least 10 random locations on the TEM grid in enlarged microphotographs. The electron
diffraction of the selected area (SAED) was performed with TEM (JEOL-2010). SAED rings
were measured, and the corresponding crystalline spaces were calculated with the relation
dhkl = K/D, where K is the camera constant of the microscope and D is the ring diameter.
The interplanar distances dhkl obtained were compared with the crystallographic data of
NPs. A scanning electron microscope was used to study the topography of Chi/AuNPs; it
has a resolution of ∼1.2 nm @ 30 kV. An electron probe was used to scan over the surface of
the Chi/AuNPs, and these electrons interacted with the Chi/AuNPs. Secondary electrons
were emitted from the surface of the Chi/AuNPs and recorded. The height differences
in the Chi/AuNPs gave contrast to the image. A field emission scanning electron micro-
scope, installed with a field emission gun (Quanta, 250-FEG, FEI, Hillsboro, OR, USA)
and connected with an energy dispersive X-ray analyzer (EDX, Unit) with an excitation
source of 30 kV for EDX and mapping, was used to examine the surfaces of the prepared
Chi/AuNPs. Total internal reflectance/Fourier-transform infrared (ATR-FTIR) spectra
were used to semi-quantitatively measure the observable IR spectrum of the Chi/AuNPs
by evaluating the transmittance over a spectral region of 4000 to 400 cm−1, using a Spec-
trum Two IR spectrometer (PerkinElmer Inc., Shelton, CT, USA). To achieve a suitable
signal quality, all spectra were collected at a 4 cm−1 resolution by collecting 32 scans. The
XRD pattern of the Chi/AuNPs was carried out on a Diano X-ray diffractometer using a
radiation source energized at 45 kV and a Philips X-ray diffractometer (PW 1930 generator,
PW 1820 goniometer, where the resolution of the goniometer at θ and 2θ is 0.0001◦) with
a Cu K radiation source (λ = 0.15418 nm). The zeta potential and particle distribution
of Chi/AuNPs in aqueous media were investigated using dynamic light scattering (DLS,
Malvern Instruments Zetasizer Nano-ZS equipment, Malvern, UK). The distribution of the
diffusion coefficients D of the particles was determined using decay times, which was then
transformed into a distribution of hydrodynamic diameters 2RH using the Stokes–Einstein
formula RH = kBT/6πηD, where kBT is the thermal energy and η is the solvent viscosity.

2.4. Cytotoxicity Assessment by Sulphorhodamine B (SRB) Assay

The normal human skin cell line BJ-1, obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA), was used for investigating the cytotoxicity of the
tested compounds by SRB assay [38]. Aliquots of 100 µL cell suspension (5 × 103 cells)
were put in 96-well plates and incubated in RMPI 1640 for 24 h. Before addition to the
culture medium, tested Chi/AuNPs and standard drug doxorubicin (DOX) were dissolved
in dimethyl sulfoxide (DMSO) and followed by serial dilution for 6 points, ranging from
200 to 1.56 µg/mL. After 72 h of exposure, cells were fixed by replacing media with 150 µL
of 10% trichloro acetic acid (TCA) and incubated at 4 ◦C for 1 h. Aliquots of 70 µL SRB
solution (0.4 % w/v) were added and incubated in a dark place at room temperature for
10 min. Plates were washed 3 times with 1% acetic acid and allowed to air-dry overnight.
Then, 150 µL of unbuffered Tris base solution (TRIS) (Sigma-Aldrich) (10 mM) was added
to dissolve the protein-bound SRB stain [39]. The test was conducted in triplicate. Results
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were recorded using a 450 nm absorbance value by Infinite-M200 Pro-TECAN (Tecan,
Grödig, Austria). The percentage cell viability was calculated according to this equation:

CT % =
Ac − At

Ac
× 100 % (1)

where Ac and At are the absorbance of the control sample and the test sample, respectively.
Calculation of the half-maximal inhibitory concentration (IC50) is a suitable method

for comparison of the activity of pharmaceutical materials. In this method, the mea-
surement and comparison criterion is the concentration in which 50% of the final activ-
ity of Chi/AuNPs and standard drug doxorubicin (DOX). The graph of the IC50 of the
Chi/AuNPs and standard drug doxorubicin (DOX) was produced by drawing the per-
cent inhibition curve versus the tested compounds with different concentrations. The
effective safe concentration at 100% cell viability (EC100) value of each tested extract was
estimated by GraphPad Instat software (version 6.01, GraphPad, San Diego, CA, USA).
Cytotoxic effects were categorized as cytotoxic (IC50 < 2.00 µg/mL), moderately cytotoxic
(2.00 µg/mL < IC50 < 89.00 µg/mL), and non-toxic (IC50 > 90.00 µg/mL) according to the Spe-
cial Programme for Research and Training in Tropical Diseases (WHO—Tropical Diseases).

2.5. Cell Scratch Wound-Healing Assay

An in vitro wound-healing experiment was used to examine the wound-healing capac-
ity of the final formula [40]. To achieve this, the human skin fibroblast cell line was seeded
at a density of 3 × 105/well onto a coated 6-well plate in 5% FBS-DMEM at 37 ◦C and 5 %
CO2 [41]. The plate was then completely cleaned with PBS, the control wells were replen-
ished with fresh medium, and the drug wells were treated with fresh media containing the
drug. At the predetermined intervals, images were captured using an inverted microscope,
and the plate was incubated at 37 ◦C with 5% CO2. The migration rate is defined as the
proportion of wound closure area reduction, which increases as cells migrate over time

Wound closure % =
A0 − At

A0
× 100 % (2)

where A0 = 0 hr is the average wound area measured immediately after scratching (time
zero), and At = h is the average wound area measured hours later.

2.6. Microbial Strains

Staphylococcus aureus ATCC® 25923™, Bacillus subtilis ATCC 6633, extended-spectrum
beta-lactamase (ESBL) Klebsiella oxytoca ATCC 51983, and Pseudomonas aeruginosa MTCC1034
were cultivated in Luria broth medium and incubated at 37 ◦C for 16–18 h. The fungal
strains used were unicellular fungi (Candida albicans ATCC 90028) and multicellular fungi
(Aspergillus niger RCMB 02724, A. terreus RCMB 02574, and A. fumigatus RCMB 02568).
These four fungal strains were inoculated on MEA plates and incubated for 3–5 days at
28 ± 2 ◦C and then kept at 4 ◦C for further use [42–45].

2.7. In Vitro Susceptibility Testing

The antibacterial potential of synthesized Chi/AuNPs was determined by agar well
diffusion assay against the tested selected bacterial strains [46]. All bacteria examined had
a density of 0.5 McFarland at turbidity. Chi/Au-NPs were added to the bacterial culture
in each well at a final concentration of 500 µg/mL and poured into each well separately,
followed by a 24 h incubation at 37 ◦C. The size of the suppressive zone was assessed
after incubation.

2.8. Antibacterial and Antifungal Activity of Chi/Au-NPs and Time-Kill Kinetic Assay

The minimum inhibitory concentration (MIC) of Chi/AuNPs was detected using the
broth microdilution method of Chakansin et al., with minor modifications [47]. Chi/AuNPs
(0–1000 µg/mL) were serially diluted twice in Muller Hinton broth with bacterial suspen-
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sion (turbidity set to 5 × 105 CFU/mL). The plate was incubated for 24 h at 37 ◦C. Then,
5 µL of resazurin indicator (made by dissolving 0.016 g in 100 mL of sterile distilled water)
was added to each of the 96 wells. The micro-titer plate was then incubated in the dark.
The color shift was then visually examined. Any changes in color from purple to pink or
colorlessness were considered favorable, providing a direct indication of bacterial metabolic
activity. The MIC value was determined as the lowest concentration at which the color
change occurred. The MIC for the test material and the bacterial strain was computed as
the average of three results. The time-kill dynamic test was performed in Mueller Hinton
broth (MHB) using the methodologies provided by Hayat, et al. [48]. Chi/AuNPs were
suspended in 1 mL of MHB medium (turbidity adjusted to 5 × 105 CFU/mL), providing
final concentrations of 0 MIC, 1 MIC, 2 MIC, 4 MIC, and 8 MIC for each type of bacteria
in the final total volume of 1 mL. The cultures were incubated at 37 ◦C for 0, 1, 2, 3, and
4 h, with agitation at 100 rpm; 100 µL of culture was poured from the tubes onto Mueller
Hinton agar (MHA) plates and incubated at 37 ◦C for 24 h. Each experiment was carried
out in triplicate.

Antifungal activity of Chi/AuNPs was performed toward C. albicans, A. terreus, A. niger,
and A. fumigatus using the agar well diffusion assay method [49], with minor modifications.
Malt extract agar (MEA) plates were used for growing tested fungal strains at 30 ◦C for
3–5 days [50–52]. One mL of fungal suspension (107 spores/ mL) was put and distributed
on MEA plates. Agar wells (7 mm) were separately filled with 100 µL of Chi/AuNPs, Au,
Chi, and nystatin and then incubated at 30 ◦C. Afterward, the inhibition zone diameter was
measured [53,54]. The MIC of all test materials toward all tested fungal strains was assessed
using the broth microdilution technique according to the standard European Committee on
Antimicrobial Susceptibility Testing (EUCAST) methodology [55].

2.9. Statistical Analysis

Data are presented as means ± standard deviation (SD) of at least three independent
experiments. Comparisons of data were made by Student’s t-test or by ANOVA when
appropriate. Differences were considered statistically significant at p < 0.05. Statistical
analysis was carried out and estimated using GraphPad Instat software.

3. Results and Discussion
3.1. Characterization of Chi/AuNPs

Nanostructures have piqued curiosity as a fast-evolving class of materials with a wide
range of uses. Whenever a synthesis process is carried out, it is important to determine
either the structure or composition of the end product, which may be accomplished by uti-
lizing a variety of approaches, ranging from structural elucidation to determining the purity
of the product under investigation [56]. In the present study, the Chi/AuNP nanocomposite
was successfully synthesized. The most effective technique for determining the morpho-
logical structure and size of a prepared nanostructure is TEM. The TEM image indicated
that the generated Chi/AuNPs were spherical and had sizes in the range of 25–100 nm
(Figure 1A). The particles appeared spherical, with a thin layer of chitosan around the gold
core. In addition, TEM micrographs showed uniform layers of chitosan covering the gold
nanostructures. The gold particles appeared to be coated with a layer of chitosan, validating
the generation of Chi/AuNPs. The area-selected electron diffraction (SAED) pattern of
Chi/AuNPs is shown in Figure 1B, which demonstrates good sharp-rings and confirms
the Au-nanostructures’ crystalline structure [57,58]. As shown in Figure 1C, SEM was used
to evaluate the surface morphology and particle size of Chi/AuNPs. The particle size
varied from 20 to 120 nm on average. EDX analysis was used to determine the elemental
composition of the Chi/AuNP powder. In the Chi/AuNPs, the EDX spectra revealed the
existence of several well-defined bands associated with the gold (Au), oxygen (O), and
carbon (C) components (Figure 1D). C and O signals come from the chitosan, whereas the
gold (Au) peak indicates the formation of Au-nanostructures. Furthermore, EDX spectra
revealed the generation of very pure Chi/AuNPs with no additional impurity-related
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peaks. The morphological structure of Chi/AuNPs matched that of the chitosan-reduced
gold particles previously reported [59].
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FT-IR analysis was conducted to detect the functional groups responsible for reduction,
capping, and stabilizing synthesized Chi/AuNPs. The FTIR spectra of AuNPs revealed
absorption peaks at 3434, 2933, 2864, 1725, 1462, 1367, 1255, 1163, and 967 cm−1, which
correspond to linkage groups (Figure 2A). Moreover, the peaks at 3434 cm−1 matched
the OH group stretching vibrations. The peaks at 2933 and 2864 cm−1 are attributed to
the stretching of C−H groups. Carbonyls expand vibrations in aldehydes, ketones, and
carboxylic acids, which correlate to the peak at 1725 cm−1. The existence of a strong
1725 cm−1 band in Chi/AuNPs shows that gold ion (Au+) reduction is accompanied by
hydroxyl group oxidation in chitosan structures. C-N- and -NH stretching are shown by the
peaks seen at 1462 and 1367 cm−1 [60]. The peak at 1255 cm−1 can be attributed to -C–O–C
stretching. C–O stretching vibration is shown by the peak at 1163 cm−1. The absorption
peak at 967 cm−1 conforms to the β-D glucose unit’s typical absorption.

One of the most extensively used methods for characterizing NPs is X-ray diffrac-
tion (XRD). The crystalline nature, phase behavior, and lattice constants are commonly
determined using XRD. The XRD pattern (Figure 2B) of Chi/AuNPs shows characteristic
diffraction peaks at 37.97◦, 44.18◦, 64.62◦, and 77.45◦, corresponding to (111), (200), (220),
and (311). Bragg’s reflection is in good agreement with the face-centered cubic (FCC)
structure of AuNPs (JCPDS card no: 04-0784). Furthermore, the most prominent diffraction
peak at 22.8◦ confirmed the crystalline form of chitosan [37]. The current XRD results of
Chi/AuNPs were consistent with previous findings of chitosan-mediated AuNPs [57]. DLS
is one of the most common techniques used for detecting the intensity weight distribution
of particle sizes in a colloid solution. The obtained Chi/AuNPs were a poly-dispersed
mixture with an average diameter of 218.2 nm (Figure 2C). The size of the Chi/AuNPs was
found to be higher in the DLS results compared to TEM analysis due to water molecules
around the Chi/AuNPs [21,61]. The zeta potential measurement of the particle surface
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charge was used to assess the composite’s stability. There is agreement from previous stud-
ies that nanoparticles are affected by zeta values in solutions, which stabilize nanoparticles
whether the zeta values are negative or positive [21,62,63]. The synthesized Chi/AuNPs
were highly stabled as they have a zeta potential of −52.39 mV (Figure 2D). This high value
confirms the high stability of the colloidal solution.
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3.2. Cytotoxicity on Normal Human Skin Cell Line (BJ-1)

To determine the sensitivity of the normal human skin cell line BJ-1 to the cytotoxic
effects of Chi/AuNPs, the cells were seeded into microplates and incubated with various
concentrations of Chi/AuNPs, as mentioned under the section on materials and methods.
The results revealed that the Chi/AuNPs produced were non-toxic to normal skin cells; the
prevention of unwanted dissolution of AuNPs would give less cytotoxicity or better bio-
compatibility. Doxorubicin and Chi/AuNPs have half-maximal inhibitory concentrations
(IC50s) of 30.5 and 111.1 µg/mL, respectively (Figure 3). Furthermore, it was shown that
doxorubicin was more harmful to the normal human skin cell line than Chi/AuNPs. As a
result, Chi/AuNPs were determined to be non-toxic (IC50 > 90.00 µg/mL) by the Special
Programme for Research and Training in Tropical Diseases (WHO—Tropical Diseases).
Nanoparticles may cause toxicity after entering the body due to their unique physicochem-
ical properties, including a large surface area that can enhance their biological effect [64].
As a result, given that the specific mechanisms and pathways through which nanoparticles
may exert their toxic effects are largely unknown, evaluation of the potential toxic effects of
these nanoparticles in the body is necessary [64].
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Figure 3. In vitro cytotoxicity effects on doxorubicin and Chi/AuNPs against the normal human skin
cell line (BJ-1), assessed by SRB colorimetric assay, respectively.

3.3. Cell Migration Assay (Wound Scratch Assay)

For its unique role, including proliferation and differentiation in healing wounds,
human skin fibroblast cells have been frequently employed to examine epidermal abnor-
malities. In vitro wound-healing studies have been carried out on human skin fibroblasts,
and the corresponding results are presented in Figures 4 and 5. Wounds treated with
100 µg/mL Chi/AuNPs significantly (p < 0.001) reduced the wound area at 0, 12, 24, 36,
48 and 72 postoperative hours (Figure 4). In this study, no significant difference in wound
contraction was observed in the experimental group after 12 h of treatment. However,
a significant difference in wound contraction rate was observed on 24, 36, 48, and 72 h
between the control and experimental group (p = 0.029). As shown in Figure 5, the results
showed that the average percentage of wound contraction was significantly increased in
the treated group 93.1 ± 0.71 %, 65.8 ± 0.91%, 46.3 ± 0.61%, 17.3 ± 0.61 %, 7.5 ± 0.51%,
and 2.1 ± 0.31% contraction at 12, 24, 36, 48, 60, and 72 postoperative hours. The per-
centage of wound contraction in the control group was found to be 95.1 ± 1.41% at 12 h,
82.9 ± 4.07% at 24 h, 75.5 ± 2.12% at 36 h, 70.7 ± 1.22% at 48 h, and 51.2 ± 3.12% at 72 h. A
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significant difference ((A) p < 0.001 and (B) p < 0.05) can be observed between the control
and Chi/AuNPs.
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In a related study, nanocomposites based on chitosan demonstrated their capacity in
the proliferative phase of the wound-healing process; due to their anti-inflammatory impact,
biocompatibility, retention of fibroblast growth factors, and stimulation of human skin
fibroblast activities, chitosan has been widely employed as a wound dressing material [62].
In another application of wound healing, nanomaterials were successfully used to generate
nanopolymeric scaffolds that mimic properties such as Chi/AuNPs, which have been
widely explored for their possible antibacterial properties. As an alternative to standard oral
and parenteral routes, many types of nanocarriers have been used to increase medication
absorption through the skin. Chi/AuNPs caused less postoperative infection and faster
recovery than the control group. To aid wound healing, AuNPs may be readily integrated
and cross-linked with collagen, gelatin, and chitosan [63]. This functionalization approach
aids the biocompatibility and biodegradability of AuNPs.

3.4. In Vitro Susceptibility Testing and Time-Kill Kinetic Assay

Gold nanoparticles in different dimensions and shapes are the most widely studied
nanomaterials for antibacterial applications [65]. The preliminary detection of Chi/AuNPs
against tested pathogenic bacteria Gram-negative bacteria extended-spectrum beta-lactamase
(ESBL) Klebsiella oxytoca ATCC 51983 and Pseudomonas aeruginosa MTCC1034 and Gram-
positive bacteria Staphylococcus aureus ATCC® 25923™ and Bacillus subtilis ATCC 6633 was
done using the agar well diffusion method and broth microdilution assay. The diameter
of the zone of inhibition ranged from 14 to 26 mm. The maximum inhibitory impact was
seen against P. aeruginosa, with a zone of inhibition diameter of 26 ± 1.8 mm, whereas
the least inhibitory effect was detected for S. aureus, with a zone of inhibition diameter
of 16 ± 2.1 mm. Due to the presence of a thick layer of peptidoglycan in the cell wall,
Gram-negative bacteria such as P. aeruginosa and E. coli are more sensitive to biogenic
Chi/AuNPs than Gram-positive bacteria, according to Baskaran et al. [66]. The antibacte-
rial action could be attributed to the synergistic effect of Au-NPs with chitosan [67]. Agar
well diffusion methods have been used as preliminary tests to investigate the antimicrobial
activities of a variety of medicinal drugs; MIC determination was used to further evaluate
the antibacterial activities of Chi/AuNPs [68]. The MIC is the lowest concentration of
Chi/AuNPs necessary to prevent observable microbial growth [68]. The lowest concen-
tration at which color change occurred was taken as the MIC value [69,70]. Our results
showed that Chi/AuNPs possess MIC values ranging from 1.56 to 6.25 µg/mL (Table 1).
Some investigations have shown that AuNPs can enter the cell wall, causing damage to cell
membrane permeability, disrupting cell respiration processes, stimulating the generation
of free radicals, and inactivating cellular proteins by gold ions [69,71].

Table 1. Inhibition zones and MICs of Chi/AuNPs, chitosan, HAuCl4.3H2O, and ciprofloxacin.

S. Aureus B. subtilis P. Aeruginosa K. Oxytoca

IZ/mm
(500

µg/mL)

MIC
(µg/mL)

IZ/mm
(500

µg/mL)

MIC
(µg/mL)

IZ/mm
(500

µg/mL)

MIC
(µg/mL)

IZ/mm
(500

µg/mL)

MIC
(µg/mL)

Chi/AuNPs 16 ± 2.1 6.25 19 ± 1.8 6.25 26 ± 1.8 1.56 22 ± 1.8 3.12

Chitosan 9.1 ± 1.9 50 8.7 ± 2.4 50 9.8 ± 3.9 50 8.2 ± 2.8 50

HAuCl4.3H2O
(Au+) ND ND ND ND ND ND ND ND

Ciprofloxacin 14 ± 3.2 25 16 ± 1.9 50 22 ± 2.4 50 21 ± 2.9 50

MIC: minimum inhibitory concentration; IZ/mm: diameter of inhibition zone (mm).

One of the most essential elements of bacterial pathogenicity is their high reproduction
rate, which can be efficiently addressed to minimize viable bacterial infections [72]. The
time-kill kinetics of the tested compound against selected bacterial strains at the test con-
centrations studied (0, 1, 2, 4, 8 MIC) of Chi/AuNPs are shown in Figure 6. These findings
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validate the bactericidal ability of Chi/AuNPs. The time-kill kinetics profile of the biosyn-
thesized Chi/AuNPs demonstrates a progressive decrease in the number of viable cells
(CFU/mL) over time. The number of selected Gram-negative bacteria was reduced at 4 and
6 h. The bactericidal endpoint of Chi/AuNPs for K. oxytoca and P. aeruginosa were reached
after 4 h of incubation with 8× MIC (24.96 and 12.48 µg/mL, respectively). After 6 h,
bactericidal activity was investigated at 4× MIC (12.48 and 6.24 g/mL, respectively) and
2× MIC (6.24 and 3.12 g/mL, respectively). The time-kill kinetics profile of the Chi/AuNPs
against the tested Gram-positive bacteria was reached after 6 h of incubation at 8× MIC
(50 µg/mL) and at 4× MIC (25 µg/mL) after 8 h. Gold nanoparticles with antibacterial
properties may have a twofold mode of action when compared with chitosan only. Chitosan
is a well-known stabilizer for metal nanoparticles in biomedical engineering. The inhibitory
mechanism is based on the interaction of the positive charge Chi with negatively charged
biomolecule residues on the bacterium cell surface under acidic conditions [21,73,74].

3.5. Antifungal Activity

The antifungal activity of Chi/AuNPs against human pathogenic fungi has rarely been
reported. Therefore, the antifungal activity of Chi/AuNPs was evaluated against C. albicans,
A. terreus, A. niger, and A. fumigatus. Uni- and multicellular fungi were used for evaluating
the antifungal activity of Chi/AuNPs, as shown in Figure 7A. The results illustrated that
Chi/AuNPs have outstanding antifungal activity against tested uni- and multicellular fungi.
Moreover, results showed that Chi/AuNPs have antifungal activity toward unicellular
fungi more than multicellular fungi, where the inhibition zone of Chi/AuNPs (2000 µg/mL)
against C. albicans was 25 mm compared to nystatin 21 mm. Furthermore, the inhibition
zone of Chi/AuNPs against A. terreus, A.niger, and A. fumigatus was 20, 22, and 23 mm,
respectively. On the other hand, Au+ has weak antifungal activity toward C. albicans and
A. terreus only, while it does not have antifungal activity towards A.niger and A. fumigatus.
Additionally, chitosan did not exhibit any antifungal activity against all tested fungal
strains. There have been many studies on Au(I) and Au(III) reporting their antimicrobial
activity against a wide variety of microorganisms [75,76]. Additionally, previous studies
have reported that AuNPs have antifungal activity against Candida spp. [73,77]. Ahmad,
et al. [74] reported that AuNPs have excellent size-dependent antifungal activity and
biocidal action against Candida isolates. Likewise, Wani and Ahmad [78] confirmed that
AuNPs have promising antifungal activity toward Candida species. Mondal, et al. [79]
illustrated that AuNPs have potential antifungal activity against aspergillus species.
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Figure 6. Time-kill plots of Chi/AuNPs against human pathogenic bacterial strains A: Staphylococcus aureus
(A), Pseudomonas aeruginosa (B), Bacillus subtilis (C), and Klebsiella oxytoca (D) at different concentra-
tions and time length. The experiment was performed in triplicate and a graph of the log CFU/mL
was plotted against time.
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HAuCl4.3H2O, and nystatin against C. albicans, A. terreus, A. niger, and A. fumigatus.

Furthermore, MICs of Chi/AuNPs and Au+, Chi, and nystatin were detected, as shown
in Figure 7B. The results illustrated that MICs of Chi/AuNPs toward C. albicans, A. terreus,
A. niger, and A. fumigatus were 62.5, 250, 125, and 125 µg/mL, respectively. According
to the cytotoxicity test of Chi/AuNPs in this study (Figure 3), the IC50 of Chi/AuNPs
was 111.1 µg/mL. Consequently, Chi/AuNPs can be used as an antifungal agent against
C. albicans only where their MIC is lower than the IC50 of Chi/AuNPs. On the other
hand, using Chi/AuNPs as antifungals against A. terreus, A. niger, and A. fumigatus is not
recommended due to their toxicity in the normal cell line, where the MIC was greater than
the IC50 of Chi/AuNPs. The antifungal activity of Chi/AuNPs is attributed to combining
the positive charge of the amino group in chitosan with the negative-charge components
of fungal cells. Therefore, Chi/AuNPs may inhibit fungal growth by chelating various
transitional metal ions, inhibiting enzymes. AuNPs based on chitosan have been widely
used for the inhibition of bacterial growth and biofilm [80–82]. Additionally, a succinyl–
chitosan gold nanocomposite was used to inhibit the growth of C. albicans [83]. Moreover,
AuNPs based on chitosan have been studied against C. albicans, Fusarium solani, and
A. niger, where the MIC was greater than 250 µg/mL for all strains [84].
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4. Conclusions

Over the last several decades, chitosan has attracted a lot of interest and attention
due to its wide range of prospective applications and distinctive benefits. In this study,
a nanocomposite based on AuNPs and chitosan was fabricated through a facile method.
Chi/AuNPs appeared spherical and monodispersed, with a diameter range of 20 to 120 nm.
This nanocomposite has promising antibacterial activity against Gram-negative and Gram-
positive bacteria. Likewise, it has potential antifungal activity against unicellular and
multicellular fungi. Furthermore, Chi/AuNPs are safe to use due to them not affecting
the normal human skin cell line. Antimicrobial resistance may be improved by adding
gold nanoparticles into chitosan hydrogels, which lowers bacterial infection and improves
wound healing.
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