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Proteins and genes of therapeutic interests in conjunction with different delivery systems are growing towards new heights. “Next
generation delivery systems” may provide more efficient platform for delivery of proteins and genes. In the present review, snapshots
about the benefits of proteins or gene therapy, general procedures for therapeutic protein or gene delivery system, and different next
generation delivery system such as liposome, PEGylation, HESylation, and nanoparticle based delivery have been depicted with

their detailed explanation.

1. Introduction

Over the last few years, numerous therapeutic proteins and
peptides have been approved for clinical usage. Till date,
more than 135 different therapeutic proteins and genes have
been approved by US-FDA for clinical use, and various
therapeutic proteins are in the process of development [1,
2]. It was a landmark discovery in the medical science
when insulin was purified from bovine and porcine pancreas
and was utilized as a life-saving injection for patients with
type I diabetes mellitus (T1IDM) in 1922 [3]. At that time,
some issues were associated with this insulin treatment such
as availability of animal pancreases especially bovine and
porcine pancreases, immunogenicity of animal insulin to
some patients, and cost of the protein [4]. It was noted
that about 5% of all patients were having insulin allergy
[5]. The problem was solved through recombinant DNA
technology, which helped in the production of recombinant
insulin using E. coli expression system [6, 7]. Insulin was the
first commercially available recombinant therapeutic protein,

approved by the US-FDA in 1982, and presently is the most
significant treatment for TIDM [8, 9]. Presently, with the help
of biotechnology and recombinant DNA technology, several
recombinant therapeutic proteins are being developed and
marketed as biopharmaceutical, and the sales value of these
recombinant proteins has gained the highest level of market
share in pharmaceutical sector [10, 11].

With the beginning of recombinant DNA technology,
the idea was to use nucleic acids to cure diseased cells,
especially in cells where gene is deleted or mutated. For
this mode of therapeutic application, in 1972, Friedmann
and Roblin gave the term “gene therapy” [12]. After this
report, there have been many debates on pros and cons of
gene therapy technology [13]. However, slowly, due to novel
advantages of gene therapy, it is entering into the mainstream
of treatment. More than 1800 gene therapy clinical trials
have been completed throughout the world and many are
continuing [14]. Therefore, developing efficient gene delivery
technology is one of the significant areas for pharmaceutical
industry in current era [15].
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Presently, pharmaceutical delivery system (PDS) or drug
delivery system (DDT) is very important for the phar-
maceutical industry. Many pharmacological properties of
traditional molecules can be improved with the help of DDS
(16, 17]. The effectiveness and marketability of the drug
molecules depend on the mode of DDS. Pharmaceutical
industries are prone to generate new DDS which can impart
novel properties to existing as well as newly discovered
products. New DDS will be more efficient and safer com-
pared to the existing one [18]. Presently, many existing drug
molecule/marketed drugs use new delivery systems and are
of great interest for doctors or medical professionals [19, 20].
It has been noted that market value, competitiveness, and
patent life may boost up for an existing drug candidate
molecule if we use a new DDS. Therefore, the existing drug
candidate molecules may offer a new opportunity to increase
the market price and competitiveness in the pharmaceutical
market [21]. Conversely, patent expiry is one of the major
alarms for the pharmaceutical industry. A new DDS can
provide a new marketability to an existing drug molecule.
Therefore, the development of novel delivery systems is at
high priority for the pharmaceutical companies to capture
global market. Pharmaceutical market is projected to have a
growth with compound annual growth rate of approximately
5% [22]. Biopharmaceuticals (especially therapeutic proteins
and gene therapy) are one of the fastest growing areas of
the pharmaceutical business. The first generation therapeutic
protein based drugs are currently passing through a number
of difficulties and needs for improvement. The therapeutic
protein delivery system (TPDS) offers longer circulation
time for the therapeutic protein in the patient’s body and
enhanced pharmacokinetics (PK) and pharmacodynamics
(PD) properties and is now extremely valuable from the
commercial point of view [23]. One the other hand, the
efficient gene delivery system can improve the means for
delivering genes during gene therapy and thus can contribute
toward more successful clinical outcomes [24].

In this paper, we have tried to highlight next generation
delivery systems and benefits of proteins therapy or gene
therapy. Efforts have been made to summarize general pro-
cedures for therapeutic protein or gene delivery system and
different next generation delivery systems, namely, liposome,
PEGylation, HESylation, and nanoparticle based delivery
along with their detailed description.

2. Why Proteins Therapy or Gene Therapy?

Over the last few years, biopharmaceuticals especially ther-
apeutic proteins have received great attention. As per the
research and markets report by “Global Protein Therapeutics
Market Forecast to 2015, the global market for biopharma-
ceuticals is growing and is likely to reach the target of $143.4
by 2016. Among the biopharmaceuticals, therapeutic proteins
and genes delivery have gained the maximum percentage of
market share [25].

It has been found that protein therapeutics has some
advantages over small-molecule drug molecules, which may
be summarized as follows. (i) Therapeutic proteins can
provide efficient replacement treatment when gene is deleted
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or mutated. This treatment can help us without any gene
therapy. (ii) Proteins perform very scrupulous and mul-
tifarious functions which are explicit and exclusive. It is
very difficult to imitate this distinctive possessed function
of enzymes by simple chemicals. (iii) It has been noted that
the effect of proteins is extremely specific. So, there is very
little chance for the hindrance of normal biological processes
with the therapeutic proteins that cause unsympathetic effect.
(iv) Biologically, our body creates many kinds of proteins
which can be used as therapeutics. Since these proteins
are produced from our body itself, they are well tolerated.
Therefore, the chance of failure is fewer during the clinical
trials. (v) The regulatory approval time of therapeutic proteins
is faster than that of small-molecule drugs. The regulatory
authority in USA, US-FDA, approves a therapeutic protein
compared to small-molecule drugs in the short span of time.
From financial point of view, these benefits make therapeutic
protein attractive to the pharmaceutical industry [1, 26].

Gene therapy may provide novel treatments for diseases
having no effective conventional treatment. Gene therapy can
be the ultimate solution for genetic disorders, as it can help
to replace deleted or mutated gene for correcting genetic
disorders. This possibility of amending genetic disorder is
gaining importance and researches are trying to deliver genes
to the affected cells. Major factor affecting efficacy for gene
therapy is gene delivery system. The refinements to the
delivery system may increase security as well as the long-term
expression of the gene of interest and reduce the chance of
mutagenesis of the particular gene. After gene replacement
therapy, the patient needs not receive the treatment of protein
based therapeutics regularly, making it one of the desired
lines of treatment [27, 28].

3. General Strategies for Therapeutic Protein
or Gene Delivery System

Other than the above benefits, some limitations have been
noted of therapeutic proteins and genes. The main dis-
advantage is the stability associated with these proteins
or genes which is often not proper. The half-life is also
limited. Immunogenicity is another problem for therapeutic
protein or genes. For the therapeutic proteins, it has also
been observed that light sensitivity, moisture, temperature,
and so forth, hamper their stability. Many strategies have
been undertaken to improve these limitations. Among them,
two strategies are frequently being employed: one is the
change in the therapeutic protein (development through
the alteration in protein configuration or covalent add-on)
itself and through development in the formulation [29, 30].
Proteins are generally conjugated with natural or synthetic
polymers (PEGylation, HESylation, and polysialylation) to
alter structure of therapeutic proteins [31, 32]. Conversely,
different drug formulation systems are also being used to
overcome the existing limitations of therapeutic proteins.
These formulation systems are polymeric microspheres, poly-
meric nanoparticles, liposomes, and so forth [33].

For gene delivery, viral vectors and nonviral vectors
are usually used. Major viral based gene delivery systems
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FIGURE I: Diagrammatic representation of lipid bilayer used for
encapsulating therapeutic proteins and genes for their delivery.

are adeno-associated viral vectors [34]; retroviral/lentiviral
vectors [35] and nonviral based delivery systems are cationic
liposome [36] and PEGylated system [37].

3.1. Liposome for Therapeutic Protein or Gene Delivery System.
The efliciency of a number of drugs is often limited by their
potential to reach the site of therapeutic effect. In most cases,
only a small amount of a controlled dose reaches the target
site, while the majority of the drug allocates throughout
the rest of the body in accordance with its physic-chemical
and biochemical properties. Therefore, it is very challenging
task to enhance the pharmaceutical effect of drugs while
reducing its toxicity in vivo. These objectives can only be
achieved through next generation delivery system. Lipid
molecules of biomembranes interacting with water molecules
can control the transport phenomena and protein functions
with anisotropic flow experience. After the discovery in 1965,
liposomes were used for delivery of peptide and protein
drugs [38-41]. For the development of liposome-based drug
delivery system, a consistent size distribution is necessary
to produce the nanocarrier’s in vitro features (e.g., drug
loading capacity, aggregation, sedimentation, etc. [42, 43]).
Considerable attention has been paid for liposomal drug
delivery systems due to their specific attributes, such as (i)
successful encapsulation of molecules where both tiny and
large molecules are present and the molecules are having a
wide range of hydrophobic levels and pKa values; (ii) prolong-
ing and target release of therapeutic agents by modification of
liposome surface; and (iii) minimization of clinical drug dose
and reducing toxicity results [44, 45].

A number of experimental reports have been successfully
published on the medical use of liposomes, consisting of the
lipid bilayer membrane, as a drug carrier for the purpose of
the reduction of drug toxicity or targeting of drugs to specific
cells [46-49] (Figure 1). Clearly, it is not probable to deal with
all relevant issues, so emphasis will be made to address some
key topics, including successes and main challenge and limits
of liposomes in protein and peptide delivery.

3.2. Liposome Preparation. The main objective for the use of
liposome as drug carriers is to target specific tissues such
as tumours and also to reduce toxic side effects in sensitive
organs such as liver, heart, and kidneys. Additionally, it is

possible to extend the therapeutic index of liposomal carriers
over that of the corresponding conventional formulations by
optimizing the lipid composition, liposomal size, membrane
fluidity, surface charge, steric stabilization, and so forth.

The amphiphilic molecules used for liposomal prepara-
tions are based on the structure of biological membranes
lipids [57-63]. For liposome synthesis two hydrocarbon
chains are usually esterified to a glycerol backbone. These
hydrophobic chains are further connected to a hydrophilic
head group containing either a phosphate or some car-
bohydrate units. These lipid head groups are either zwit-
terionic (phosphatidylcholine, phosphatidylethanolamine,
sphingomyelin), negatively charged lipids (phosphatidic
acid, phosphatidyl glycerol, phosphatidyl serine, phos-
phatidyl inositol, cardiolipin, substituted glycolipids such as
monosialoganglioside), or entirely uncharged lipids (unsub-
stituted glycolipids). Examples of cationic amphiphiles are
DOTAP, DODAC, DC-Chol, DMRIE, DOTMA, DOSPA,
DOGS, and many others.

Amphiphilic lipid monomers are weakly soluble in water
having low critical micelle concentration (CMC), depending
on the hydrocarbon chain length. These single-chain lipids
(lysolipids, free unsaturated acyl chains, detergents, etc.)
spontaneously assemble into micelles which further act as
membrane lipids and tend to form bilayers. Figure lillustrates
the bilayer structures which form closed vesicles, that is,
liposomes. One can distinguish between multilamellar and
unilamellar vesicles which can be varied from minute vesicles
(size, <100 nm), large vesicles (size, 100-500 nm), or huge
vesicles (size, >1 ym). Some isolated lipids or lipid mixtures
may prefer nonbilayer morphologies such as hexagonal and
cubic phases.

Therapeutic genes and proteins can be (i) encapsulated
within the liposome and (ii) chemically conjugated to the sur-
face groups. With the help of liposome, passive encapsulation
can be achieved by incubating genes, protein, or peptide at
or somewhat lower than the phase transition temperature,
used for the preparation of liposome. Vigorous loading of
therapeutic genes and proteins, termed as triggered loading,
can also be achieved by increasing temperature in presence
of ethanolic buffer and mild swirling for a particular period.
This simple process is somewhat fast and is used to attain
higher encapsulation efficiency [64]. Usually proteins are
required to exist in aqueous core position. On the other hand,
uncovered hydrophobic regions of protein may work together
with the lipid membrane. However, the interaction between
proteins and lipids are normally to maintain the bioactivity of
proteins [65].

Initially, conjugation of proteins with the liposomes
was explored by means of glutaraldehyde or l-ethyl-3-
(3-dimethylaminopropyl) carbodiimide (EDC); afterwards
researchers are also working on selective bi-functional cou-
pling agents [66, 67]. These reactions encouraged the devel-
opment of liposome into additional advanced forms and
include (i) immunoliposomes, conjugated to antibodies or
antibody fragments [68, 69], (ii) stealth liposomes connected
with PEG, provides protective coat for evading recognition by
opsonins and slowing down clearance [70-72], (iii) extended
flowing immunoliposomes coated together with protecting



polymer and also with antibodies [71, 73], and (iv) the
next generation of liposomes which permit alteration to the
exterior surface through a number of compounds that are
either alone or in concert including stimuli sensitive lipids,
polymers, cell penetrating peptides, and diagnostic agents
(72, 73].

For the treatment of liver tumours or metastases, inves-
tigators are continuing to use galactosylated liposome for
targeted delivery of drugs to liver [74]. The capability of these
galactosylated liposomes led to their use in gene delivery
systems to deliver in targeted cells [75]. The presence of
lipid that is able to form nonbilayer structures, such as
dioleoylphosphatidyl ethanolamine (DOPE), can endorse
destabilization of the bilayer, inducing fusion events. DOPE
has been particularly beneficial for cationic liposomes com-
plex formation with plasmid DNA for gene delivery [76, 77].

3.3. Liposomes Acting as Carriers of Protein and Gene Therapy.
Biologically active complexes of genes and proteins, for exam-
ple, small interfering RNA (siRNA), cytokines, enzymes,
peptide hormones, and others, are the choice of drugs which
could be very useful for the treatment of various diseases.
The incorporation of these therapeutic moieties/drugs in
liposomal membranes offers several advantages such as high
drug incorporation efficiency; stable confinement of drugs in
the liposome; prevention of drugs against metabolic degen-
eration; and long-term therapeutic stage. The supportive
effects provided by liposomes have been employed to a
wide range of proteins and genes. Superoxide dismutase
(SOD), a cytotoxic agent used during phagocytosis, is an
enzyme which protects from the effects of superoxide anion.
Liposomal encapsulation of SOD has been found to increase
its performance, extend circulation, and reduced membrane
peroxidation in different areas of brain [78, 79]. Spray-
dried powder formulations of the active SOD in liposomes
mixed with disaccharides have also been described [80].
The potential ability of liposome-encapsulated enzymes to
enter the cytoplasm or lysosomes of live cells is of crucial
importance for the treatment of congenital diseases produced
by the abnormal behaviour of some intracellular enzymes
[81]. Gaspar et al. reported that survival of animals with
asparagine dependent tumours associated with free enzymes
is increased by the application of liposome-encapsulated
asparaginase [82]. In addition, such liposomal encapsulated
asparaginase also avoids the formation of anti-asparaginase
antibodies. In another study, enhanced thrombolytic activity
was observed by tissue plasminogen activator encapsulated
in liposomes, as compared to native enzyme, when employed
for thrombolytic treatment in rabbits with jugular vein
thrombosis [83]. An interesting approach applying lipo-
some liposomes encapsulated enzymes is antibody-directed
enzyme prodrug therapy (ADEPT), based on the on-site
activation of chemically modified inactive anticancer and
antiviral prodrugs into active therapeutic agents [84]. To
achieve the specific production of active cytotoxic molecules
from inactive drugs in the areas of tumour cells, a conjugate
drug was developed using tumour-specific antibody along
with an enzyme responsible for the conversion of inactive
drug into the active form. For enhancing the enzymatic
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activity of obligatory enzyme in tumour cells, moderately
than just “straight” antibody-enzyme conjugates, a unique
liposome, namely, immunoliposomes, is loaded with the
essential enzyme [85].

In spite of intensive efforts intended for designing a
number of different cationic lipids [86-88], gene expression
can only be detected after local administration instead of
systemic injection, along with the evident toxic side effects of
cationic lipids [89, 90]. Cationic lipid-DNA complexes face
supplementary issues due to their large size and high surface
charge combining together to result in fast elimination from
the circulation. However, large numbers of theories are
emerging from huge and quickly rising literature in the
arena of delivering nucleic acids which are (i) positively
charged cationic lipids, which is considered necessary for
the effective relationship of nucleic acids with lipids [91], (ii)
liposomes with positive charge results in their fast clearance
by the mononuclear phagocyte system (MPS) and not specific
cell binding [92], (iii) the circulatory half-life of liposome
mediated delivery of nucleic acids that can be increased
by modifying surface charge to near neutrality either by
coating the cationic liposomes (CCLs) [93] or by using of
ionizable lipids [94-97], (iv) for particular binding and inter-
nalization, the targeted ligands being mandatory [98, 99],
and (v) efficient endosomal release following internalization
being needed for therapeutic activity [100], which can be
provided by ionizable cationic lipids with optimized bilayer
destabilizing capacities and pKa [97, 101].

4. PEGylation Carriers of
Therapeutic Proteins and Genes

PEGylation is a process through which polyethylene glycol
(PEG) chains are conjugated to proteins (therapeutic pro-
teins), peptides, or any molecules. In 1990, US-FDA approved
the first PEGylated therapeutic protein and its brand name is
Adagen (pegadamase), marketed by a USA pharma company
(Enzon Pharmaceuticals) for the cure of Severe Combined
Immunodeficiency Disease (SCID) [102]. After that, US-
FDA approved about seven therapeutic proteins [103]. Till
date, several therapeutics (approximately 80 polypeptide
medicines) are marketed in USA and approximately 350 are
undergoing clinical trials. Among them, many are PEGylated
therapeutic protein [104]. Through the PEGylation process,
the molecular mass of therapeutic proteins is increased.
Therefore, it guards the therapeutic protein from the prote-
olytic enzymes and thereby degradation of the proteins. It has
been noted that PEGylation process improves pharmacoki-
netics of the therapeutic protein.

4.1. Procedure of PEGylation. PEG is hydrophilic, safe, non-
immunogenic polymers. These polymers are chemically inert
repetitive units of ethylene oxide. In the toxic point of
view, this molecule is generally accepted as safer molecule
[103]. PEG reagents are commercially available as linear
or branched configurations with different lengths, shapes,
and chemistries and molecular weights. It is commercially
available from some companies from Asia, particularly such
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FIGURE 2: Schematic diagram representing systemic delivery of therapeutic proteins or genes following conjugation with polyethylene glycol
molecules. Here, structural formulae for linear PEG and branched mPEG are also displayed.

as NOF corporation (Japan); SunBio (South Korea); Reddy’s
Lab (India), and JenKem (China). Some other important
companies are Chirotech Technology Limited (UK), Creative
PEGWorks (USA), and so forth [104].

It is compulsory to activate the PEG moiety to conjugate it
with therapeutic proteins. For the reaction with PEG moiety,
different chemical groups in the amino acid of therapeutic
protein side chains such as NH2, -NH-, -COOH, -OH,
-SH groups and disulfide (-S-S-) bonds can be exploited.
Therefore, in this process, reaction occurs between the amino
acid of therapeutic protein and suitably activated PEGylation
reagents. It has been shown that the reactive amino acids
that often participate during this conjugation process are
arginine, aspartic acid, histidine, lysine, cysteine, glutamic
acid, threonine, tyrosine, and serine. Other than that, N-
terminal amino group and the C-terminal carboxylic acid are
also found to be involved with these reactions [105].

Several PEGylated therapeutic proteins have been
reported till date, which includes Peginterferon o2b
(PegIntron), PEGylation of IFN-«2a as a preliminary therapy
for the chronic hepatitis C [106, 107], and mono-PEGylated
TNF-« for antitumor treatment [108] (Figure 2).

Some PEGylated gene therapy has also been performed.
Adenosine deaminase-deficiency (ADA-SCID) is a kind of
immunodeficiency. ADA is involved in the purine salvage
pathway and absence of this enzyme leads to build-up
of intracellular and extracellular substrates (adenosine or
deoxyadenosine) leading to adverse effects on the functions
of different cell types. In case of immune cells it leads to severe
lymphopenia with abnormal development of T, B, and natural
killer (NK) cells. In order to cure this immune disorder,
PEGylated adenosine deaminase gene has been transferred to
T lymphocytes [109, 110]. Gene therapy for ADA-SCID shows
great promise in the treatment of this disease. Using this
delivery system, approximately 30 patients with ADA-SCID
have been treated worldwide [111, 112]. It has been reported
that immune function has been regained without the support
of enzyme replacement therapy [113]. Moreover, there were

no adverse events reported related to the PEG gene transfer
technology [114, 115].

4.2. Advantage of PEGylation Procedure. This process aug-
ments the solubility of therapeutic proteins. It provides sol-
ubility to different solvents such as water and various organic
solvents. It has been witnessed that the PEGylated therapeutic
protein enhances property for site specific performance. It has
also been found to enhance PD, PK properties of the protein.
Conversely, this procedure diminishes immunogenicity [116].

5. HESylation

HESylation utilizes a hydroxyethyl starch derivative for con-
jugation to proteins (therapeutic proteins) or drug molecules
to increase its size. HESylation name has been derived from
“HES” which corresponds to a part of hydroxyethyl starch
derivative. HES are natural polymers present in starch along
with amylopectin fibers. HES are produced from natural
maize starch. Therefore, they are highly biocompatible and
biodegradable and are clinically approved as plasma volume
expanders (PVEs). These attributes make it an attractive
hydrophilic polymer for half-life extension (HLE) technolo-
gies [117, 118]. HESylation delivery system provides extended
circulation half-life to the therapeutic molecules. It has
been observed that it increases the stability of therapeutic
protein and amplifies biological activity. A European pharma
company (Fresenius Kabi, www.fresenius-kabi.com) is reg-
ularly applying HESylation delivery system to a variety of
proteins (e.g., Erythropoietin (EPO) and Granulocyte-colony
stimulating factor (G-CSH)) [26, 119].

6. Nanoparticle Based Delivery

Nanoparticle based delivery of therapeutic proteins and genes
is believed to the significant area of drug delivery (Figure 3).
For delivery of therapeutic protein or drug, a number of
protein-nanoparticle based deliver systems are being used
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TABLE 1: Next generation therapeutic proteins or genes and their delivery system which are in the market or in clinical trial.

Brand name of

. . . . R f

therapeutic protein/gene Therapeutic protein/gene Indication Remark eferences

Therapeutic protein .
Oncaspar (pegylated formulation of L-asparaginase; Leukaemia 1[;591;DA-ap proved in [50]

Pegaspargase)

Therapeutic protein . .
PEG-INTRON (pegylated formulation of IFN-a2B; E?ﬁatlllt;g;s wellas }irSlFZA_;(I))(I)) éoved s

Peginterferon alfa-2b) & uary

Therapeutic protein .
PEGASYS (pegylated formulation of IFN-a2A; Hepatitis C EEEZA_;gglroved N 7))

Peginterferon alfa-2A) Y

Therapeutic protein

(pegylated formulation of

Granulocyte-colony . USFDA-approved in

53

Neulasta stimulating factor (GCSF) and Neutropenia January 2002 (53]

monomethoxypolyethylene glycol;

Pegfilgrastim)

Therapeutic protein
Mircera (pegylated formulation of Erythropoietin ~ Anemia associated with USEDA-approved in [54]

(EPO); Epoetin beta-methoxy kidney disease January 2007

polyethylene glycol)
— Therapeutic gene
(No brand name (RNAI therapeutics delivery of Hypercholesterolemia Clinical trial [55]
available) ALN-PCS02 using SNALP liposome)

Therapeutic gene R - Flrst.g.ene—therapy

(ali ne tinar 4 Familial lipoprotein lipase medicine and
Glybera aipogene tiparvovec use deficiency (LPLD, synonym:  approved by all 27 (56]

adeno-associated virus serotype 1 (AAV1)
viral vector delivery)

type I hyperlipidaemia). European Union

member states

such as albumin [120], gelatin [121], and legumin [122].
Conversely, many natural polymers and their derivatives like
chitosan, dextran, and starch nanoparticles have also been
tried to deliver different proteins and genes.

It has been recently documented that dendrimers
[123] biodegradable polymeric nanoparticles [124] and gold
nanoparticles [125] have been used for gene therapy.
Researchers are usually exploiting two techniques for nucleic
acids delivery, that is, encapsulation or conjugation. For
nucleic acids like plasmid DNA, RNA, and siRNA, encapsu-
lation methods are usually preferred to deliver nucleic acids
with nanoparticles [126]. However, sometimes these nucleic
acids are also being conjugated with the nanoparticle for
delivery [127-130]. One of the methods to link nucleic acids to
ananoparticle is to modify the surface of the nanoparticle and
to provide a positive charge. Positive charge on nanoparticle
would favour easy binding of negatively charged DNA. How-
ever, this method is used for liposome and other polymer-
mediated gene transfer [131]. Recently, some researchers
have generated polycationic amphiphilic cyclodextrin-based
nanoparticles [132] and it has been employed for gene deliv-
ery of interleukin-12 (IL-12). For siRNA therapeutic delivery,
one group of researchers used arginine-engrafted biodegrad-
able polymer as delivery system [133]. This delivery system
improved accumulation of carrier-siRNA complexes in the
tumour tissue. However, there is vital need for the production

. Tumor cell
@ Silica particle
— Antibody

— Antigen

FIGURE 3: Schematic diagram depicting targeted delivery of anti-
body labelled silica nanoparticle to the tumour cell antigen.

of a common platform for nanoparticle based delivery sys-
tems which can be customized only to deliver different kinds
of nucleic acids such as DNA, RNA, and siRNA without any
side effect to the patients.
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7. Future Prospects

Delivery systems for proteins and genes have taken more
than 25 years to emerge as a feasible pharmaceutical tool
and several therapeutic proteins and genes are marketed
already (Table 1). Liposomes, PEGylation, HESylation, and
nanoparticle based delivery are now established as the pro-
cesses of choice for improving the PK and PD of protein
and gene based therapeutic pharmaceuticals. During the
development of next generation delivery system some points
should be considered, which are as follows: (i) simplicity of
the drug and its delivery system: the drug should be easy for
manufacturing, quality control, handling and comparatively
low-cost. (ii) Safety problems should be minimal. No extra
chemical entities should be used which may affect structural
stability. (iii) Oral delivery is still a challenge for therapeutic
proteins and genes due to their resistance to proteolysis.
Further, researches should be more inclined toward this
mode of delivery.

8. Concluding Remarks

In the age of molecular medicine, a number of protein
and gene deliveries have been developed while exploring
liposomes, PEGylation, HESylation, and nanoparticle based
methods. Past two decades have witnessed the accessibility
of commercially available therapeutic products of protein
and gene with the different kinds of delivery system. The
next generation state-of-the-art gene based and protein based
therapies may also improve effectiveness or reduce toxicities.
Recent progress in the past two decades, in the field of protein
and gene delivery, shows promise and provides bright hopeful
future to the patients.
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