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Platelet microparticles (PMPs) contribute to thrombogenesis but the effects of
antiplatelet drugs on PMPs generation is undefined. The present study investigated
the cellular events regulating PMPs shedding, testing in vitro platelet agonists and
inhibitors. Platelet-rich plasma from healthy subjects was stimulated with arachidonic
acid (AA), U46619, collagen type-I (10 and 1.5 µg/mL), epinephrine, ADP or TRAP-
6 and pre-incubated with acetylsalicylic acid (ASA, 100 and 10 µmol/L), SQ-29,548,
apyrase, PSB-0739, or eptifibatide. PMPs were detected by flow-cytometry using CD61
and annexin-V as fluorescent markers. Platelet agonists induced annexin V-positive
PMPs shedding. The strongest response was to high concentration collagen. ADP-
triggered PMPs shedding was dose-independent. ASA reduced PMPs induced by AA-
(645, 347–2946 vs. 3061, 446–4901 PMPs/µL; median ad range, n = 9, P < 0.001),
collagen 10 µg/mL (5317, 2027–15935 vs. 10252, 4187–46316 PMPs/µL; n = 13,
P < 0.001), collagen 1.5 µg/mL (1078, 528–2820 vs. 1465, 582–5948 PMPs/µL;
n = 21, P < 0.001) and TRAP-6 (2008, 1621–2495 vs. 2840, 2404–3031 PMPs/µL;
n = 3, P < 0.01) but did not affect the response to epinephrine or ADP. The ADP
scavenger apyrase reduced PMPs induced by U46619 (1256, 395–2908 vs. 3045,
1119–5494 PMPs/µL, n = 6, P < 0.05), collagen 1.5 µg/mL (1006, 780–1309 vs.
2422, 1839–3494 PMPs/µL, n = 3, P < 0.01) and TRAP-6 (904, 761–1224 vs. 2840,
2404–3031 PMPs/µL, n= 3, P < 0.01). The TP receptor antagonist SQ-29,548 and the
P2Y12 receptor antagonist PSB-0739 markedly inhibited PMPs induced by low doses of
collagen. Except for high-dose collagen, eptifibatide abolished agonist-induced PMPs
release. Both TXA2 generation and ADP secretion are required as amplifiers of PMP
shedding. The crucial role of the fibrinogen receptor and the collagen receptor in PMPs
generation, independently of platelet aggregation, was identified.

Keywords: platelets, microparticles, thromboxane, ADP, collagen, fibrinogen receptor, collagen receptor

INTRODUCTION

Activated platelets vesiculate to produce platelet microparticles (PMPs), a heterogeneous
population of small membrane-coated vesicles, ranging from 0.1 to 1.0 µm in diameter (Shai et al.,
2012; Hsu et al., 2013). PMPs have been recognized as mediators of platelet and leukocyte adhesion,
initiating and propagating coagulation and delivering to target cells membrane proteins along with
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cytosolic content including enzymes, mRNA, microRNA
and, possibly, DNA (Merten et al., 1999; Ratajczak et al.,
2006). Although the contribution of PMPs to hemostasis and
thrombosis is still unclear, their procoagulant activity depends
on the surface expression and assembly of proteins that are
essential for coagulation and platelet activation, including
various adhesion receptors, P-selectin and negatively charged
phospholipids, mainly phosphatidylserine (Pasquet et al., 1996;
Sinauridze et al., 2007; Burger et al., 2013).

PMPs represent approximately 70–90% of circulating
microparticles in the blood of healthy individuals (Horstman,
1999; Diamant et al., 2004) and elevations of their levels have
been detected in a number of disorders including cancer,
atherosclerosis, sepsis, diabetes, acute coronary syndromes
(Shantsila et al., 2010; Varon and Shai, 2015). Conversely, a
deficiency in PMPs generation leads to a bleeding disorder with
isolated prolonged bleeding time (Castaman et al., 1997). In
the clinical setting, PMPs count may change in response to
pharmacological treatment (Morel et al., 2006). Previous studies
showed a reduction in PMPs generation in hyperlipidemic
patients with type II diabetes after treatment with statins and
eicosapentaenoic acid (Nomura et al., 2009) and also in patients
with acute coronary syndromes treated with aspirin and P2Y12
receptor antagonists (Behan et al., 2005; Bulut et al., 2011).
Furthermore, in vitro studies have shown an effective inhibition
of shear- and agonist-induced PMP formation by inhibitory
anti-GPIbα and anti-αIIbβ3 monoclonal antibodies (Gemmell
et al., 1993; Pontiggia et al., 2006). Generation of PMPs, has been
observed after chemical and physical platelet activation, either
in association or not with platelet apoptosis (Zhang et al., 2013).
The process of PMP shedding induced by platelet activation
was demonstrated to be calcium-dependent (Heemskerk et al.,
2002) and to be triggered by phospholipase C/inositol phosphate
signaling (Bevers et al., 1989; Bird et al., 2004). Cytoskeleton
rearrangement after the calpain cleavage of α-actinin, filamin,
adducins, spectrin, talin is implicated (Fox et al., 1991). On
the other hand, microvesiculation by apoptotic platelets results
from a disruption of the balance between Bcl survival and
Bak apoptotic signals (Mason et al., 2007; Zhang et al., 2007;
Schoenwaelder et al., 2009), independently of platelet activation
(Zhang et al., 2013).

PMPs formation can be induced in vitro by the activation of
platelets with agonists (e.g., thrombin, collagen) (Takano et al.,
2004) or compounds that directly target second messenger levels
(e.g., calcium ionophores A23187, ionomycin) (Dachary-Prigent
et al., 1995), phorbol esters and high shear stress (Holme et al.,
1997), contact with artificial surfaces (Gemmell et al., 1995),
complement (Sims et al., 1988) and low temperature (Bode
and Knupp, 1994). Under experimental conditions an active
metabolite of prasugrel was shown to strongly inhibit collagen
and TRAP-induced PMPs formation (Judge et al., 2010).

As current knowledge about the signals underlying PMPs
formation is still fragmentary, the present work further
investigated the pathways involved in platelet microvesiculation
also evaluating the modulation that antiplatelet agents may
exert altering specific platelet functions. Particularly, the relative
contribution of platelet amplification signals, such as endogenous

thromboxane A2 (TXA2) and secretion of ADP, and the role of
integrin αIIbβ3 and the GPVI-α2/β1 complex in agonist-induced
PMPs shedding were evaluated in vitro along with the effects of
platelet inhibitors. To this aim we developed a protocol for testing
in vitro agonist-induced PMPs generation using a flow cytometry
(FCM)-based analysis (Robert et al., 2009).

MATERIALS AND METHODS

Ethical Statement
The use of platelet rich plasma from healthy donors for in vitro
studies was approved by the local Ethical Committee (Comitato
Etico per la Ricerca Clinica delle Province di Verona e Rovigo).

Blood Samples
Venous blood was obtained in the morning (between 9 and
11 a.m.) from healthy and fasting volunteers who gave their
informed consent and had not taken any drugs affecting
platelet function in the previous 2 weeks. A clean puncture
of an antecubital vein was performed with a 20-gauge needle
(Safety R©-Multifly-Set, Sarstedt, Nümbrecht, Germany) following
the application of a light tourniquet, while blood collection was
performed without applying venostasis. After discarding of the
first 2–3 ml of blood, S-Monovette R© tubes (Sarstedt) containing
100 µmol/L PPACK (Enzo Life Sciences Inc., Farmingdale,
NY, USA) were used as collection tubes and anticoagulant was
immediately mixed with blood by gentle inversion. PPACK was
used as anticoagulant in order to maintain physiological calcium
concentration in plasma. Transportation of blood tubes to the
laboratory was careful to avoid unnecessary agitation; for this
purpose, a box maintaining the tubes in a steady vertical position
was used. Samples were kept at room temperature (20–24◦C) and
the delay before the first centrifugation was less than 1 h.

Preparation of Platelet-Rich Plasma
(PRP), Platelet Activation, and
Microparticle Formation
Platelet-rich-plasma (PRP) was prepared after venipuncture
by centrifugation of blood at 180 × g × 15 min at room
temperature and transferred to polypropylene tubes, leaving
1 cm of PRP above the buffy layer and taking care not to
disturb it. To induce PMPs shedding, platelets were activated
in the absence or presence of antiplatelet agents. Particularly,
aliquots (500 µL) of PRP were stimulated by incubation with
various agonists for 30 min at room temperature under low
shear stress conditions (approximately 1 dyne/cm2) using a
GyroMiniTM Nutating Mixer (Labnet Int. Edison, NJ, USA).
These experimental conditions were chosen to limit the
formation of platelet aggregates, in order to obtain more specific
information concerning defined processes, e.g., P-selectin or
CD40L expression (Furman et al., 2004; Hu et al., 2004). The
following platelet agonists were used: 1.25 mmol/L arachidonic
acid (AA; Cayman Chemical, Ann Arbor, MI, USA), 2 µmol/L
U46619 (Calbiochem, Merck-Millipore, Billerica, MA, USA),
1.5 µg/mL and 10 µg/mL collagen type I (Mascia Brunelli S.p.a,
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TABLE 1 | Platelet MicroParticles (PMPs) generation under static and under flow conditions.

Agonist Static conditions
(PMPs/µL, Median and Range)

Low Shear Stress
(PMPs/µL, Median and Range)

Static vs.
Low Shear

None (resting PRP) 134, 113–224 (n = 4) 308, 170–709 (n = 4) p < 0.01

Arachidonic acid 1,25 mmol/L 455, 208–953 (n = 4) 1388, 873–3200 (n = 4) p < 0.001

Collagen type I (10 µg/mL) 619, 320–1643 (n = 4) 5936, 3191–12987 (n = 4) p < 0.001

PMPs generation was evaluated after incubation of freshly isolated PRP with saline (resting PRP), arachidonic acid (1.25 mmol/L) and collagen-type I (10 µg/mL) under
static or low shear stress conditions for 30 min at RT. PMPs were detected by flow cytometry (FCM) and identified as double staining positive events for annexin
V-fluorescein isothiocyanate (FITC) and anti-CD41-phycoerythrin (PE) mAb. Data are expressed as PMPs absolute counts per microliter of PFP and reported as median
and range of n duplicate experiments.

Milano, Italy), a combination of low doses of collagen type I and
10 µmol/L epinephrine (Calbiochem), 10 µmol/L epinephrine,
0.5 1 2–5 µmol/L ADP (Mascia Brunelli S.p.A) and 20 µmol/L
TRAP-6 (Tocris Bioscience, R&D Systems, Minneapolis, MN,
USA). Saline solution 0.9% NaCl (Fresenius Kabi Italia S.r.l,
Verona, Italy) was used instead of agonists for the resting
conditions. In order to evaluate the effects of platelet inhibitors on
in vitro PMPs generation, freshly isolated PRP was pre-incubated
with a highly selective TP receptor antagonist 20 µmol/L SQ-
29,548 (Cayman Chemical), a scavenger of ADP 10 U/mL
apyrase (Sigma-Aldrich, St. Louis, MO, USA), a P2Y12 receptor
antagonist 500 nmol/L PSB-0739 (Tocris Bioscience), and the
αIIbβ3 antagonist 10 µg/mL eptifibatide (Selleckchem, Munich,
Germany), a synthetic RGD mimetic, which has previously been
used to prevent the activation of the fibrinogen receptor (Furman
et al., 2004; Minuz et al., 2006). Incubation was for 30 min at room
temperature and PRP was subsequently stimulated as described
above. Acetylsalicylic acid (ASA 10 and 100 µmol/L) was
added immediately after blood sampling to allow the irreversible
acetylation of platelet cyclooxygenase type 1.

PMPs Preparation and Labeling
After activation, platelet-free plasma (PFP) samples were
prepared by centrifugation of PRP at 13000 × g for 5 min at
room temperature, avoiding application of the centrifuge brake.
A platelet pellet was evident at the bottom of the plastic tubes
while PMPs remained in the supernatant.

For PMPs labeling, 20 µL of PFP was carefully removed after
centrifugation and added to 80 µL of calcium-rich binding buffer
containing 5 µL annexin V-fluorescein isothiocyanate (FITC;
from Annexin V-FITC Apoptosis Detection Kit, eBioscience, San
Diego, CA, USA) and 5 µL of anti-human CD61 or, alternatively,
anti-human CD41-phycoerythrin (PE; BioLegend, San Diego,
CA, USA). Anti-CD61 (or CD41) was used to confirm platelet
origin and gate out any artifact. A PE Mouse IgG1 (IgG1 K, clone
MOPC-21, BioLegend) antibody was used as isotype control.
After 30 min of incubation in the dark at room temperature,
samples were diluted in 1 mL Hepes buffer (10 mmol/L HEPES,
6 mmol/L glucose, 145 mmol/L NaCl, 5 mmol/L KCl, 0.5 mmol/L
NaH2PO4, pH 7.4) containing 3 mmol/L CaCl2. Finally 25 µL
of counting beads with an established concentration close to
1000 beads/µL (Flow-CountTM Fluorospheres, Beckman Coulter,
Pasadena, CA, USA) was added to each sample in order
to express PMPs count as absolute numbers per microliter
of PFP. A concentration-matched isotype antibody (IgG1-PE,

BioLegend) or annexin V-FITC with phosphate-buffered saline
(PBS, Sigma-Aldrich) without calcium were used as controls for
CD61 (or CD41)-PE and annexin V-FITC, respectively. PMPs
were finally analyzed by FCM as CD61 (or CD41)-PE/annexin
V-FITC-positive events in the MP region.

Flow Cytometric Analysis
Analyses of labeled samples were performed on a Cytomics
FC500 flow-cytometer (Beckman Coulter) as previously
described (Robert et al., 2009). Briefly, after standardization
of the protocol with a blend of monodisperse fluorescent
beads of three diameters (0.5, 0.9 and 3 µm, Megamix, Stago,
Biocytex, Marseille, France), optimal instrument settings and
the MP region were defined. Megamix beads were run before

FIGURE 1 | Flow cytometric analysis of platelet-derived microparticles
shed after platelet stimulation with arachidonic acid (AA; 1.25 mmol/L)
and in the presence of different concentrations of ASA (100 and
10 µmol/L). Dot plots show the dual fluorescence analysis of representative
PFP stained with Annexin V-fluorescein isothiocyanate (FITC) and
anti-CD61-phycoerythrin (PE). The total number of CD61+ MPs was
calculated as the sum of CD61+/Annexin and CD61+/Annexin + MPs.
Absolute counts of PMPs were determined by using Flow-CountTM

Fluorospheres (Beckman Coulter) and expressed per microliter of PFP.
Experiments were performed in duplicate.
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FIGURE 2 | Flow cytometric analysis of platelet-derived microparticles shed after pre-incubation of platelets with eptifibatide (10 µg/mL) and
stimulation with different platelet agonists. Dot plots show the dual fluorescence analysis of representative PFP stained with Annexin V-FITC and
anti-CD61-phycoerythrin (PE). The total number of CD61+ events was calculated as the sum of CD61+/Annexin and CD61+/Annexin + events. Absolute counts of
PMPs were determined by using Flow-CountTM Fluorospheres and expressed per microliter of PFP. Experiments were performed in duplicate.

starting each analysis in order to control and, eventually,
to adjust FCM-settings. Forward (FS) and side (SS) scatter
parameters were plotted on logarithmic scales to best cover
a wide size range. PMPs were gated in the MP window and
defined as single CD61 (or CD41)+ events or dual-positive
phosphatidylserine (PS)+/CD61 (or CD41)+ events, as seen
in dual-color fluorescence plots after staining with annexin
V-FITC and CD61 (or CD41)-PE. Single staining controls were
used to check fluorescence compensation settings and to set
up positive regions. Each tube was run for 1 min at medium
flow-rate, with a maximum delay of 30 min after the end of
staining.

To limit background noise from dust and crystals, flow
cytometric analyses were performed using a 0.22 µm-filtered
sheath fluid (IsoflowTM, Beckman Coulter). CXP ACQUISITION
and CXP ANALYSIS software packages (Beckman Coulter) were
used for data acquisition and analysis, respectively.

Statistical Analysis
For statistical analysis, all data were analyzed with GraphPad
Prism software v.5.03 (GraphPad Software, San Diego, CA,
USA), expressed as PMPs absolute count per microliter of
PFP. The Mann–Whitney test was used in all the experiments

to evaluate differences between two groups and the Kruskall–
Wallis test was applied for multiple comparisons, with Dunn’s
test as post hoc analysis. Data represent n repeats of each
experiment performed in duplicate and are expressed as median
and range in figures (with interquartiles) and text, mean and
standard deviation in tables. P < 0.05 was assumed as statistically
significant.

RESULTS

Definition of Standardized FCM Settings
for PMP Analysis
Before starting all the analysis of PMPs, FCM settings and MP
analysis region were established and standardized for PMPs
counts according to a FCM-based protocol (Robert et al., 2009).
Validation of the data was performed before each single analysis
by using Megamix beads, allowing us to discriminate between
beads <1.0 µm on the basis of size. A clear discrimination
between fluorescent beads of 0.5, 0.9, and 3.0 µm in size was
evident. Therefore, this calibrated-bead strategy allowed us to
focus our analysis on PMPs in a reproducible size range (0.5–
0.9 µm).
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In vitro Agonist-Induced PMP Generation
In our experiments PMPs were detected in the particulate fraction
shed from in vitro activated platelets and identified by FCM as
small-size scatter events staining positive for integrin β3 (CD61),
or integrin αIIb (CD41). Preliminary observations demonstrated
that in the presence of platelet agonists the application of
low shear stress was necessary for PMPs shedding (Table 1).
Stimulation of freshly isolated PRP under low shear stress
conditions (approximately 1 dyne/cm2) with any of the platelet
agonists increased generation of PMPs compared to the resting
conditions, where a limited number of microvesicles were shed
(Figures 1–3; Table 2). We observed that most of the CD61 (or
CD41) positive events stained with fluorescent-labeled annexin
V, marker of exposed phosphatidylserine (PS) on platelet-derived
MP surface (Figures 1–3; Table 2). We observed that under
resting condition 65% of PMPs were annexin V-positive; when
platelets were incubated with agonists, such as 1.25 mmol/L AA
and the stable TXA2 analog U46619, 2 µmol/L, a significant
increase in PMPs shedding was observed, with an increase
to 85% of annexin V-positive PMPs (Table 2; Figure 4A).
Compared to resting conditions, in the presence of different
concentrations of ADP (0.5–1.0–2.0–5.0 µmol/L), platelets shed
a larger amounts of microparticles in a dose-independent
manner (Table 2; Figure 5A). Microvesicle formation was also
significantly enhanced by epinephrine, either alone (10 µmol/L)
(Table 2; Figure 6A) or associated with collagen 1.5 µg/mL (2117,
1563–2583 PMPs/µL vs. 552, 180–2016 PMPs/µL, P < 0.05)
and by TRAP-6 (Table 2; Figure 6D). Collagen, at the highest
tested doses, proved to be the strongest trigger for the release
of PMPs, of which 95% were annexin V-positive (Table 2;
Figure 7A).

Effects of Acetylsalicylic Acid and
SQ-29,548 on Agonist-Induced Platelet
Microvesiculation
The effects of ASA (100 and 10 µmol/L) on PMPs generation
induced by agonists exploring the TXA2 – TP receptor
pathway was investigated in PPACK-anticoagulated PRP
(Figures 4A,D). More in details, we found that platelet
microvesiculation induced by AA (1.25 mmol/L) was
significantly reduced when 100 µmol/L ASA was added at
the time of blood sampling (Figure 4B). Similar were the
effects of a lower concentrations of aspirin (10 µmol/L) on
PMPs generation induced by AA (Figure 4C). As expected,
U46619-induced platelet microvesiculation was unchanged in
the presence of ASA (Figure 4B). The role of TXA2 in collagen-
induced platelet microvesiculation was further confirmed by
using SQ-29,548 a highly selective TP receptor antagonist,
which almost completely abolished the effect of U46619
(Figure 4D).

Acetylsalicylic acid had no effects on PMPs shedding from
platelets stimulated either with all the tested concentrations
of ADP (0.5–1.0–2.0 µmol/L) (Figures 5A,B), epinephrine
alone (Figures 6A,B), or the combination of 1.5 µg/mL
collagen and 10 µmol/L epinephrine (1169, 831–2457
PMPs/µL vs. 2117, 1563–2583 PMPs/µL, P = n.s.). However,

FIGURE 3 | Flow cytometric analysis of platelet-derived microparticles
shed after pre-incubation of platelets with eptifibatide (10 µg/mL) and
stimulation with different concentrations of collagen type I. Dot plots
show the dual fluorescence analysis of representative PFP stained with
Annexin V-FITC and anti-CD61-phycoerythrin (PE). The total number of
CD61+ events was calculated as the sum of CD61+/Annexin and
CD61+/Annexin + events. Absolute counts of PMPs were determined by
using Flow-CountTM Fluorospheres and expressed per microliter of PFP.
Experiments were performed in duplicate.

ASA significantly reduced PMPs generation induced by
TRAP-6 (Figure 6) and collagen (1.5 and 10 µg/mL)
(Figures 7A–C). We also found a significant decrease in
PMP formation induced by collagen (10 µg/mL and 1.5 µg/mL)
after pretreatment of PRP with SQ-29,548, as shown in
Figure 7D.

TABLE 2 | Effects of platelet agonists on PMPs generation.

Agonist PMPs/µL (CD61+) PMPs/µL
(CD61+/annexinV+)

Resting platelets 948 ± 667 (n = 53) 652 ± 376 (n = 53)

Arachidonic acid 1.25 mmol/L 3479 ± 1730 (n = 15) 2980 ± 1473 (n = 15)

U46619 2 µmol/L 2773 ± 1240 (n = 20) 2431 ± 1098 (n = 20)

Collagen type I 1.5 µg/mL 2343 ± 1127 (n = 41) 1973 ± 897 (n = 41)

Collagen type I 10 µg/mL 11630 ± 7557 (n = 33) 11080 ± 7410 (n = 33)

Epinephrine 10 µmol/L 3112 ± 1593 (n = 8) 2296 ± 1090 (n = 8)

ADP 0.5 µmol/L 1233 ± 626 (n = 3) 1115 ± 494 (n = 3)

ADP 1 µmol/L 1217 ± 369 (n = 5) 1081 ± 315 (n = 5)

ADP 2 µmol/L 1627 ± 701 (n = 3) 1258 ± 385 (n = 3)

ADP 5 µmol/L 1360 ± 159 (n = 3) 1182 ± 155 (n = 3)

TRAP-6 20 µmol/L 3162 ± 490 (n = 3) 2753 ± 272 (n = 3)

PMPs were detected by FCM and identified as single staining positive events using
anti-CD41-phycoerythrin (PE) mAb double staining positive events for annexin or
double positive using V-FITC and anti-CD41-phycoerythrin (PE) mAb. Data are
expressed as PMP absolute counts per microliter of PFP and reported as median
and range of n duplicate experiments.
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FIGURE 4 | Effects of antiplatelet agents on in vitro platelet microparticle generation induced by AA and U46619. (A) In vitro PMPs generation induced by
AA (1.25 mmol/L) and U46619 (2 µmol/L) in freshly isolated PRP under low shear stress conditions. (B,C) Effects of acetylsalicylic acid (ASA) at high (100 µmol/L)
and low (10 µmol/L) concentration on platelet microvesiculation triggered by AA and U46619. (D,E,F) Effects of SQ-29,548 (20 µmol/L), apyrase (10 U/mL) and
PSB-0739 (500 nmol/L) on in vitro PMP shedding induced by U46619. (n = 3–20, ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001).

FIGURE 5 | In vitro ADP-induced platelet microvesiculation and effects of platelet inhibitors. (A) PMPs generation induced by different concentrations of
ADP (0.5, 1, 2, 5 µmol/L) in freshly isolated PRP under low shear stress conditions; (B) Effects of high concentration of ASA (100 µmol/L) on ADP-triggered PMP
shedding; (C) Effect of PSB-0739 (500 nmol/L) on PMP generation induced by platelet stimulation with ADP. (n = 4). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

Effects of Apyrase and PSB-0739 on
PMPs Generation
The relative contribution of endogenous ADP on agonist-
induced PMPs generation was evaluated by using apyrase, a
scavenger of ADP. In the presence of 10 U/mL apyrase decreased
PMPs shedding after stimulation with U46619 (Figures 4A,E),
TRAP-6 (Figure 6F), or low concentration collagen (1.5 µg/mL)
was observed (Figure 7E), while apyrase did not significantly
affect platelet responses to epinephrine (Figure 6C) and
10 µg/mL collagen (Figure 7E). Moreover, apyrase reduced the
number of PMPs in PFP obtained from unstimulated PRP (357,
164–1238 PMPs/µL vs. 745, 213–2016 PMPs/µL, P < 0.05).

The use of PSB-0739, a highly potent P2Y12 receptor
antagonist, further confirmed these results, also indicating the

role of this receptor in the pathway leading to microparticle
generation. As expected, the effect of ADP (5 µmol/L)
was completely abolished (Figure 5C). The release of MPs
from platelets activated with U46619 (Figure 4F) and low
concentration collagen (Figure 7F) was markedly reduced after
incubation of PRP with PSB-0739, while there were no significant
effects on PMP generation induced by 10 µg/mL collagen
(Figure 7F). Moreover, similarly to what observed in the presence
of apyrase, PSB-0739 reduced PMPs count in resting conditions
(data not shown).

Finally, the combined use of ASA and PSB-0739 (1222, 539–
2602 PMPs/µL) on PMP shedding induced by low concentration
collagen (1.5 µg/mL) did not shown any additional effect
compared to PSB-0739 (1437, 709–2252 PMPs/µL) or ASA alone
(1587, 1086–2284 PMPs/µL, n= 4, P = n.s.).
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FIGURE 6 | Effects of ASA and apyrase on in vitro PMPs shedding induced by platelet stimulation with epinephrine and TRAP-6. (A,D) In vitro PMPs
generation induced by epinephrine (10 µmol/L) and TRAP-6 (20 µmol/L) in freshly isolated PRPs under low shear stress conditions; (B,E) Effects of high
concentration of ASA (100 µmol/L) on epinephrine- and TRAP-6-triggered PMP shedding; (C,F) Effects of apyrase (10 U/mL) on platelet microvesiculation induced
by epinephrine and TRAP-6. (n = 3–6). ∗∗P < 0.01; ∗∗∗P < 0.001.

FIGURE 7 | In vitro collagen-induced platelet microparticle generation and effects of antiplatelet agents. (A) PMP generation induced by collagen type I at
high (10 µg/mL) and low (1.5 µg/mL) concentration in freshly isolated PRP under low shear stress conditions; (B,C) Effects of ASA at high (100 µmol/L) and low
(10 µmol/L) concentration on platelet microvesiculation triggered by collagen type I (10 and 1.5 µg/mL). (D,E,F) Effects of SQ 29,548 (20 µmol/L), apyrase
(10 U/mL) and PSB-0739 (500 nmol/L) on in vitro PMPs shedding induced by collagen type I (10 and 1.5 µg/mL). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

Effects of Eptifibatide on
Agonist-Induced Generation of PMPs
In order to evaluate the potential implication of integrin
αIIbβ3 on PMPs formation, freshly isolated PRP was pre-
incubated with eptifibatide (10 µg/mL) and then stimulated
with platelet agonists. As shown in Figure 8A, in the presence

of this GPIIb/IIIa antagonist, a strong inhibition of platelet
microvesiculation was found after stimulation of PRP with
soluble agonists, such as ADP (5 µmol/L), U46619, TRAP-6 and
epinephrine (10 µmol/L), either alone or in combination with
low concentration U46619 (50 nmol/L). Similarly, eptifibatide
reduced the release of PMPs from platelets stimulated with
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FIGURE 8 | Effects of eptifibatide on in vitro agonist-induced platelet microvesiculation. (A,B) Effects of eptifibatide (10 µg/mL) on PMPs generation
induced by different soluble agonists (U46619, 2 µmol/L; epinephrine, epi, 10 µmol/L; U46619, 50 nmol/L+epinephrine, 10 µmol/L; ADP, 5 µmol/L, TRAP-6,
20µmol/L) and collagen type I (1.5 and 10 µg/mL) in freshly isolated PRP under low shear stress conditions. (n = 4). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

collagen 1.5 µg/mL, but did not affect the response to high
concentration collagen (10 µg/mL) (Figure 8B). A significant
reduction of PMP generation was also observed in resting
conditions after incubation with eptifibatide (180, 85–403
PMPs/µL vs. 743, 369–2016 PMPs/µL, P < 0.0001). Finally, none
of the platelet inhibitors altered the ratio of annexin V-positive to
annexin V-negative PMPs (data not shown).

DISCUSSION

In the present work, we used an in vitro FCM-based protocol
(Robert et al., 2009) to evaluate the effects of antiplatelet agents
on agonist-induced PMPs shedding and their procoagulant
properties. By using specific agents affecting platelet function
we obtained clues concerning the signaling pathways involved
in platelet microvesiculation, demonstrating the crucial role of
mediators of the amplification process and integrin implication.
The results from the present study confirm that suspended
platelets shed microparticles when activated in vitro with
soluble agonists (Fox et al., 1991; Barry et al., 1997; Perez-
Pujol et al., 2007). Therefore, procoagulant activity is induced,
as assessed by evaluating the binding of annexin V as an
index of phosphatidylserine (PS) expression that increased after
exposure to platelet agonists, considering percentage and total
number of annexin V-positive PMPs (Pasquet et al., 1996;
Sinauridze et al., 2007; Connor et al., 2010). We observed
that platelets generate PMPs, both when activated by strong
agonists, as previously show with thrombin, collagen and calcium
ionophores (Fox et al., 1991; Barry et al., 1997; Perez-Pujol et al.,
2007), and by weak agonists, such as ADP and epinephrine
(Judge et al., 2010; Zhang et al., 2013). In addition, we found
that shear stress is required for platelet microvesiculation.
The observed inability of both resting and agonist-stimulated
platelets to shed PMPs when shear stress was not applied, is

consistent with recent evidence indicating that strong agonists,
such as thrombin and collagen, although unable to induce
significant platelet procoagulant activity under static conditions,
promote high levels of PS exposure and microvesiculation
under physiological levels of shear stress (Delaney et al., 2014).
According to previous studies, high shear stress is required to
induce von Willebrand factor (vWF)-dependent glycoprotein
Ibα-mediated platelet procoagulant activity (Reininger et al.,
2006) and exposure of platelets to extremely high shear stress
is sufficient to induce platelet microvesiculation, independently
of any stimulation with soluble agonists (Holme et al., 1997;
Reininger et al., 2006).

Antiplatelet agents modulate PMPs generation acting on
intracellular signaling pathways involved in this process.
Pretreatment of platelets with ASA or SQ-29,548 results in a
significant reduction of microvesiculation induced by the tested
agonists, except for ADP and epinephrine. ASA, particularly at
the lower tested concentration (10 µmol/L), specifically inhibits
platelet function by acetylating cyclooxygenase-1 (COX-1)
causing the irreversible inhibition of thromboxane generation,
while SQ-29,548 is a highly selective TP receptor antagonist. The
inhibitory effects obtained with these agents clearly suggest a
role of endogenous TXA2 on agonist-triggered PMP shedding.
The contribution of secreted ADP was assessed by using apyrase,
an enzyme with ADP-scavenging activity, and PSB-0739, a
highly potent P2Y12 receptor antagonist (Hoffmann et al., 2009).
Under these conditions, a significant decrease in PMP shedding
from platelets stimulated with U46619 and low collagen was
observed, not with high concentration collagen. Interestingly,
pre-treatment with apyrase and PSB-0739 reduced also the
number of PMPs in PFP obtained from unstimulated PRP,
indicating that under these experimental conditions released
ADP accounts for a limited platelet microvesiculation. Since the
effects of apyrase and those of PSB-0739 were superimposable, we
can affirm that P2Y12 engagement is required for
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PMPs generation in response to agonists. Cooperative signals
of ADP and TXA2 contribute to platelet MP release and
this is similar to the strict connection of activatory pathways
that occurs in platelet amplification process and aggregation,
where released ADP cooperates to induce TXA2 biosynthesis
and ADP-dependent signals are required for TXA2-dependent
platelet activation (Minuz et al., 2006). Therefore, in addition
to the ability of exogenous TXA2 and ADP to directly promote
in vitro PMPs shedding, the present findings reveal their
autacoid function and the contribution of platelet secretion
to PMPs generation. Other signaling pathways are implicated
in microvesiculation, as indicated by data obtained using
epinephrine as platelet agonist showing that the generation of
procoagulant PMPs does not require ADP nor TXA2. Although
data concerning released ADP, as assessed by testing the effects of
apyrase, seem to implicate a necessary role for platelet secretion, a
dissociation between granule secretion and PMPs generation has
been recently demonstrated (Delaney et al., 2014). Concerning
the signaling pathways implicated, the small GTPase Rac1 was
found to play a central role in mediating the procoagulant
response and PMPs release induced by low-dose of soluble
agonists (Delaney et al., 2014).

Previous studies indicate that a larger number of PMPs is
released from suspended platelets than from platelets adhering
to immobilized substrates (Zhang et al., 2013). Under static
conditions, when platelet spreading occurs, microvesiculation is
associated to a change in platelet morphology, independently
from implication of the fibrinogen receptor suggesting that
integrin activation is not required (Zhang et al., 2013). Here
we show that activation of the fibrinogen receptor, is necessary
for the generation of procoagulant PMPs in suspended platelets
stimulated with agonists acting on platelets G-coupled receptors.
In fact, this phenomenon is completely prevented by the ligation
of the active fibrinogen receptor by eptifibatide, a specific small-
molecule inhibitor of the αIIbβ3 complex. Previous studies
have shown that eptifibatide at the concentrations used in
the present study completely prevents the activation of the
αIIbβ3 complex, as assessed using the monoclonal antibody
PAC-1, which specifically binds the active fibrinogen receptor,
thus preventing downstream activatory signaling and platelet
aggregation (Furman et al., 2004; Minuz et al., 2006). However,
platelet aggregation is not required for PMPs release. This is
supported by the evidence that microparticle generation occurs
also in the presence of eptifibatide when high concentration
collagen is used as a stimulus. A dissociation between platelet
aggregation and PMPs generation is also consistent with previous
evidence that inhibition of RhoA prevents thrombin–induced
platelet aggregation, but neither phosphatidylserine exposure nor
microvesiculation are altered (Delaney et al., 2014).

Therefore, our results indicate that both integrin αIIbβ3 and
glycoprotein Ibα are implicated in PMPs release and show that
ligation of the GPVI-α2/β1 complex under shear stress generates
PMPs (Gemmell et al., 1993; Boilard et al., 2010; Hsu et al., 2013).

Our data identify a specific mechanism for collagen-induced
PMPs generation in suspended platelets. At low doses, collagen
requires both TXA2 and ADP to generate PMPs, but at high doses
proves to be per se the strongest of the tested agonists also when
TXA2-and ADP-dependent pathways are inhibited. Therefore,
ligation of the GPVI-α2/β1 complex induces PMPs generation
by activating signaling pathways that are substitute for signals
downstream αIIbβ3 activation.

New in the present study are the systematic investigation
into the effects of different antiplatelet agents on microparticle
generation and the demonstration that inhibition of individual
pathways blunts the generation of procoagulant microprticles,
giving clues for further basic and clinical investigation. Showing
that activation of the AA pathway and the release of ADP
from delta granules amplify the release of microvesicles from
platelets, we speculate that both aspirin and P2Y12 inhibitors
may blunt also in vivo the prothrombotic potential of activated
platelets. Moreover, since PMPs generation is strongly dependent
on integrin engagement, both inhibitors of the fibrinogen and the
collagen receptors may also prove effective in vivo. Modulation
of PMPs generation may explain part of the antithrombotic
activity that antiplatelet agents exert in different clinical settings,
including those unrelated to atherosclerosis, Moreover, since
PMPs may have a pathogenetic role in different experimental
and clinical conditions, including inflammatory diseases (Boilard
et al., 2010) and cancer (Varon and Shai, 2015), beneficial effects
of antiplatelet intervention is expected, beyond inhibition of
thrombus formation.
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