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Abstract

Despite the production of neutralizing antibodies to hepatitis C virus (HCV), many patients fail to clear the virus and instead
develop chronic infection and long-term complications. To understand how HCV infection perturbs the antibody repertoire
and to identify molecular features of antibody genes associated with either viral clearance or chronic infection, we
sequenced the V(D)J region of naı̈ve and memory B cells of 6 persons who spontaneously resolved an HCV infection (SR), 9
patients with a newly diagnosed chronically evolving infection (CE), and 7 healthy donors. In both naı̈ve and memory B cells,
the frequency of use of particular antibody gene subfamilies and segments varied among the three clinical groups,
especially between SR and CE. Compared to CE, SR antibody genes used fewer VH, D and JH gene segments in naı̈ve B cells
and fewer VH segments in memory B cells. SR and CE groups significantly differed in the frequency of use of 7 gene
segments in naı̈ve B cell clones and 3 gene segments in memory clones. The nucleotide mutation rates were similar among
groups, but the pattern of replacement and silent mutations in memory B cell clones indicated greater antigen selection in
SR than CE. Greater clonal evolution of SR than CE memory B cells was revealed by analysis of phylogenetic trees and CDR3
lengths. Pauciclonality of the peripheral memory B cell population is a distinguishing feature of persons who spontaneously
resolved an HCV infection. This finding, previously considered characteristic only of patients with HCV-associated
lymphoproliferative disorders, suggests that the B cell clones potentially involved in clearance of the virus may also be those
susceptible to abnormal expansion.
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Introduction

Deciphering the humoral immune response to hepatitis C virus

(HCV) has been challenging. Although virus-specific antibodies

are produced in essentially all persons infected with HCV, about

80% of these patients develop persistent infection and are at risk of

long-term complications [1,2]. The most prevalent of these

complications are liver cirrhosis and hepatocellular carcinoma

[3], but HCV-infected persons may also develop mixed cryoglob-

ulinemia (MC) and B cell non-Hodgkin lymphoma (B-NHL) [4–

6]. It is therefore thought that B cells are largely ineffective in

resolving HCV infection while they are responsible for its

lymphoproliferative complications. Greater understanding of the

B cell response to HCV may help predict the outcome of the

infection in individual patients as well as their risk of developing

lymphoproliferative disorders. However, studying the B cell

(antibody) response to HCV has been extremely difficult due to

the heterogeneous nature of HCV, the lack of a practical and

readily available cell culture system to screen antibodies, and the

limited resources for studying HCV infection in chimpanzees, the

only species susceptible to HCV infection other than humans [7].

At present, knowledge about the B cell response to HCV in

humans is limited to two kinds of data. First, it is known that

patients’ sera contain antibodies that have neutralizing properties

in vitro. Such neutralizing antibodies have been found in both self-

limiting (i.e. spontaneously resolving) [8] and chronically evolving

[9–11] HCV infections. Second, there is some information on the

repertoire of antibody variable heavy (VH) and variable light (VL)

genes of whole (unfractionated) B cell populations in liver and

blood. So far, the antibody repertoire has been analyzed only in

chronic infections. In particular, it has been studied in chronically

infected patients with lymphoproliferative disorders (MC or B-

NHL) for the purpose of detecting subclinical (MC) or frankly

malignant (B-NHL) clonal B cell expansions [12–20]. There is,

however, no knowledge of the antibody repertoire in patients with

self-limiting HCV infection and, importantly, no published study

has reported on the antibody repertoire in the two distinct B cell

subsets: naı̈ve and memory.

Diversity in the repertoire of antibody H chains is mainly

achieved during normal B cell ontogeny (maturation) by random

recombination of VH, D, and JH segments and by enzymatic

modification (addition or deletion of short coding sequences at the

VD and DJ joints) of the VHDJH junctions [21]. Single VH, D and

JH genes are chosen from a repertoire consisting of approximately

40 functional VH gene segments (that are grouped into 7

structurally related families on the basis of at least 80% nucleotide

sequence identity), 25 D segments and 6 JH segments. An

additional process of sequence diversification is achieved by
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somatic hypermutation after ontogeny, when mature naı̈ve B cells

encounter antigens, undergo rapid clonal expansion and seed

germinal centers, thereby developing into memory B cells that

express the distinctive CD27 surface protein [21,22]. Therefore,

somatically mutated variable region genes are the hallmark of

memory B cells and their progeny. Although the process of

somatic hypermutation has an element of randomness, antigen

selection tends to cluster silent (S) mutations in the antibody

framework regions (FRs), which are required to maintain

structural integrity, while replacement (R) mutations are more

often found in the complementarity-determining regions (CDRs),

which form the antigen binding sites [21,23–25].

The H chain CDR 3 (CDR3H), located at the junction of the

VH, D, and JH segments, is the most diverse region in the antibody

molecule. For this reason, it is considered to represent a molecular

footprint of the overall antibody repertoire. Structurally, the

CDR3H is located in the center of the antigen-binding site and

interacts directly with other CDRs and FRs from both H and L

chains, as well as with the antigen itself [26]. Its length varies in a

Gaussian-like distribution in physiological conditions, while

alterations away from this normal profile suggest B cell selection

and clonal expansion [27,28]. Changes in the length and amino

acid composition of CDR3H directly affect the charge, hydropho-

bicity, size and shape of the antigen-binding site [29] and, thus, the

ability of the antibody to bind antigen. The present study was

therefore conducted to investigate potential differences in the

antibody repertoire of persons who spontaneously resolved HCV

infection and from subjects who became chronically infected with

HCV. For this purpose, we cloned and sequenced the DNA of the

V(D)J region of naı̈ve and memory B cell fractions and determined

the frequency of usage of individual VH, D and JH families and

subfamilies in these two clinical populations and in healthy

persons.

Results

To understand if and how HCV infection perturbs B cell

antigen receptor (antibody) repertoire and how this is associated

with the outcome of HCV infection, we cloned and sequenced the

V(D)J region of circulating CD272 (naı̈ve) and CD27+ (memory) B

cells from 7 healthy donors (HD), 6 persons who spontaneously

resolved (SR) an HCV infection, and 9 patients with chronically

evolving (CE) HCV infection (Table 1).

First, we determined the frequency of usage of individual VH, D

and JH subfamilies in the three clinical groups (Figure 1). In naı̈ve

B cell clones, the most abundant VH subfamilies in all three groups

were VH1 and VH3 and, of the other VH subfamilies, only VH4

and VH5 were also found (Figure 1A). The overall pattern of VH

usage was significantly associated with clinical group in the

pairwise comparison between SR and CE (p = 0.002, chi-square

test); at the subfamily level, these two patient groups gave

significant associations in the use of VH1, VH3 and VH5. In

contrast, no significant association in VH usage was found in

comparisons of HD to either SR (p = 0.06) or CE (p = 0.13). In

memory B cell clones (Figure 1B), the pattern of prevalent VH1

and VH3, followed by VH5, was maintained although a small

percentage of clones also used VH6 and VH7; statistical

significance was observed for the comparison between HD and

SR (p = 0.027, attributable to VH1 and VH5), but not for HD vs.

CE (p = 0.24) or SR vs. CE (p = 0.11). For the D gene family

(Figure 1C, D), both naı̈ve and memory B cell clones used D1–D7

as well as DIR, and the D3 subfamily was predominant. In naı̈ve

clones (Figure 1C), the pattern of usage was significantly associated

with clinical group for the comparison SR vs. CE (p = 0.021,

attributable to D4 and DIR) but not between HD and either SR

(p = 0.43) or CE (p = 0.09). In memory clones (Figure 1D), the

usage patterns were significantly associated with group in

comparisons between HD and SR (p = 0.009, attributable to D4

and D5) and between SR and CE (p = 0.018, attributable to D2

and D5), but not between HD and CE (p = 0.68). Finally, of the six

JH subfamilies, all were used to some extent except JH2;

subfamilies JH4 and JH6 were prominent in both naı̈ve and

memory clones (Figure 1E, F). In naı̈ve clones (Figure 1E), usage

patterns were significantly associated with group in the compar-

ison between SR and CE (p = 0.003, attributable to JH1, JH4 and

JH5) but not between HD and either SR or CE (p = 0.26 and

p = 0.19, respectively). Similarly, in memory clones (Figure 1F), a

significant association was found in the comparison of the two

patient groups SR and CE (p = 0.039, attributable to JH1) but not

in comparisons between HD and either SR or CE (p = 0.36 and

p = 0.06, respectively). This analysis suggests that, despite general

similarities in the use of VH, D and JH subfamilies between naı̈ve

and memory B cell clones, the patterns of subfamily usage in the

three clinical groups differ, especially between SR and CE, and

that within these groups the proportions of individual subfamilies

in naı̈ve B cells do not always match the proportions of the

corresponding subfamilies in memory B cells.

We next identified the specific gene segments used by the three

clinical groups, beginning with the subset of 704 clones

representing naı̈ve B cells (Figure 2). Overall, we identified 26

different VH family gene segments in HD, 29 in SR, and 31 in CE;

13 of these gene segments were used by all three groups. The

numbers of D family gene segments found in HD, SR and CE

clones were 29, 26 and 34, respectively, and 15 gene segments

were in common. Finally, we identified 7, 7 and 11 different JH

family gene segments in the same clinical groups (5 in common).

Table 1. Demographic, clinical, and virological parameters for
6 Caucasian persons who spontaneously resolved (SR) an HCV
infection and 9 Caucasian patients with a recently diagnosed
chronically evolving (CE) HCV infection.

Subject
Age
(yr) Sex

HCV
Genotype

ALT
(U/l)

HCV RNA
(IU/ml)

Anti-HCV
Abs

(cleared virus)

SR1 48 F 1b 25 - +

SR2 61 F 2a 15 - +

SR3 35 M 2a 37 - +

SR4 50 M 1b 28 - +

SR5 65 M 2a/2c 41 - +

SR6 58 F 1a 39 - +

(persistent virus)

CE1 47 F 1b 67 17,902 +

CE2 29 F 2a/2c 58 297,411 +

CE3 35 F 1b 74 56,693 +

CE4 65 M 1b 84 1,930,060 +

CE5 50 M 2a 55 405,357 +

CE6 56 F 1b 211 2,388,080 +

CE7 59 M 1a 95 985,380 +

CE8 48 M 1b 45 373,745 +

CE9 52 F 1a 65 227,320 +

yr, years; F, female; M, male; ALT, alanine aminotransferase; Abs, antibodies.
doi:10.1371/journal.pone.0025606.t001

B Cell Repertoire In HCV Infection
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This analysis suggests that a wider variety of gene segments is used

in naı̈ve B cells from CE samples compared to both HD and SR.

The same analysis was performed for the 704 clones

representing memory B cells (Figure 3). Here, we identified 33

different VH family gene segments in HD, 24 in SR, and 34 in CE;

15 gene segments were in common for all three groups. The

numbers of D family gene segments found in HD, SR and CE

clones were 32, 31 and 31, respectively; 14 gene segments were in

common. Finally, we identified 7, 9 and 8 different JH family gene

segments in the same clinical groups (6 in common). The tendency

for a wider variety of gene segments in CE samples, already

observed in clones from naı̈ve B cells, was maintained for the VH

family versus SR only, but not for the D or JH family.

Then, the frequency of usage of individual gene segments in

clones from naı̈ve and memory B cells was analyzed statistically for

those subfamilies that gave significant associations with clinical

group (as indicated in Fig. 1). Despite the fact that numerous gene

segments were used in common by the clinical groups, only a

limited number of alleles was significantly associated with group

(Table 2). In the analysis of naı̈ve B cell clones (where significance

was found only between SR and CE), this included one VH1 gene

segment, namely IGHV1-69*01, as well as two VH3 gene

segments and one each from the D4, JH1, JH4 and JH5 subfamilies;

no significant association was found for VH5 or DIR. In the

analysis of memory B cell clones, three VH1 gene segments were

significantly associated with clinical group in the comparison of

HD and SR and, comparing SR and CE, a significant association

was found for one gene segment each in subfamilies D2, D5 and

JH1. Altogether, this analysis shows that B cells from the three

clinical groups differ in the frequency of usage of particular V(D)J

gene segments.

Each VH gene segment was then scrutinized for somatic

mutations with respect to the germline gene with highest sequence

similarity (Table 3). An unmutated germline sequence was found

in a small percentage of clones from naı̈ve B cells from all three

clinical groups, whereas clones from memory B cells all contained

mutations. Naı̈ve B cell clones from HD tended to have a low rate

of mutation, with over 60% of clones being categorized in the

#2% mutated nucleotide class; in SR and CE, the percentage of

clones in this low mutation category were 36.5% and 47.6%.

Figure 1. Frequency of usage of V(D)J subfamilies in molecular clones of naı̈ve and memory B cells from 7 healthy donors (HD), 6
persons who spontaneously resolved an HCV infection (SR) and 9 patients with chronically evolving HCV infection (CE). For each
subject, 32 clones from naı̈ve B cells and another 32 from memory B cells were analyzed. Values represent the percentage of subfamily use for all
clones in a particular clinical group and B cell subset. Panels A, C and E, naı̈ve B cell clones; panels B, D and F, memory B cell clones. Associations
between clinical group and individual subfamily were tested for significance with chi-square or Fisher’s exact test only when a previous chi-square
test indicated a significant association of gene family usage in a pairwise comparison of groups; p values are shown only when #0.05.
doi:10.1371/journal.pone.0025606.g001

B Cell Repertoire In HCV Infection
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Memory B cell clones had a high rate of mutation, with 93.4% of

all HD clones being categorized in the .2% nucleotide mutation

class; in SR and CE, these values were lower (84.3% and 75.8%,

respectively). These findings suggest that B cells recently exposed

to HCV, irrespective of infection outcome, have a general

perturbation in their mutation rate.

The VH gene mutation frequency was then determined for

naı̈ve and memory B cell clones from each individual and

averaged per clinical group (Figure 4). The mutation frequency

was low (2%–3%) for naı̈ve B cell clones, without a significant

association with clinical group (one-way ANOVA, p = 0.61)

(Fig. 4A). For memory B cell clones, these values were about

two-fold higher, again without a significant association with group

(p = 0.17) (Fig. 4B). However, the mutation frequency of VH gene

sequences from all memory B cell clones together was significantly

higher than that of naı̈ve B cell clones (p,0.001, chi-squared test).

Given the higher mutation frequency in memory B cell clones,

these genes were further investigated in terms of R and S

mutations and their distribution in FR and CDR along the VH

gene (Figure 5A, B). A significant association between R mutation

frequency and clinical group was observed in FR2 and FR3, with

the highest value in HD and the lowest value in SR. In CDR1 and

CDR2, the frequencies of R and S mutations were similar among

groups, yet SR had the highest frequency of R mutations and the

Figure 2. Naı̈ve B cells: fractional usage of individual V(D)J gene segments in molecular clones from healthy donors (HD), persons
who spontaneously resolved an HCV infection (SR) and patients with chronically evolving HCV infection (CE).
doi:10.1371/journal.pone.0025606.g002

B Cell Repertoire In HCV Infection
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lowest frequency of S mutations in both regions; this resulted in

SR having a higher R:S ratio for CDR (14.8) than either HD (3.5)

or CE (4.4), suggesting antigen selection (Figure 5A). To further

understand if the somatic mutation pattern in memory B cell

clones was characteristic of antigen selection, each VH gene was

analyzed for the probability that the numbers of R mutations in

FR and CDR occurred by chance. This probability was assessed

using a mathematical algorithm, whereby the expected mutations

were compared to the observed mutations, and p values were

calculated on the basis of a multinomial distribution. Genes with

low p value (,0.05) for both FR and CDR were considered to

have undergone antigen selection. This analysis revealed that, on

average, 35.4% of VH genes in SR group had undergone antigen

selection (SD = 14.6%) compared to 11.1% (SD = 12.6%) in CE

(Figure 5B). Altogether, these results suggest that, despite similar

VH mutation frequencies in memory clones from the three clinical

groups, a distribution of R and S mutations characteristic of

antigen selection was more evident in SR than in CE.

To visualize the lineage relationship among antigen-selected

sequences, we constructed phylogenetic trees for memory B cell

VH sequences from each study subject. In general, in trees from

HD and CE, sequences were well distanced from nodes and from

each other along long branches, suggesting sequence diversity. By

contrast, in SR trees, multiple sequences were clustered on short

Figure 3. Memory B cells: fractional usage of individual V(D)J gene segments in molecular clones from healthy donors (HD),
persons who spontaneously resolved an HCV infection (SR) and patients with chronically evolving HCV infection (CE).
doi:10.1371/journal.pone.0025606.g003

B Cell Repertoire In HCV Infection
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branches around a few nodes, suggesting clonal evolution

(Figure 5C).

To further assess antibody repertoire variations in memory B

cell clones, we calculated average CDR3 length per subject and

then per study group (Figure 5D). Mean CDR3 length was about

15 residues in HD and CE groups but only about 13 residues in

SR (ANOVA p = 0.034, Newmann-Keuls post test, p,0.05 for SR

vs. both HD and CE). The shorter CDR3 length in SR suggested a

mobilization of the antibody repertoire due to clonal selection.

This possibility was confirmed by spectratyping of CDR3 PCR

products (Figure 5E), which showed a physiological, Gaussian-like

distribution of lengths in HD, a slight deviation from a normal

profile in CE, but a complete loss of this pattern with prominent

peaks in SR.

Finally, to determine if the observed molecular differences

between memory B cells from SR and CE had functional

correlates, we assessed the ability of freshly purified CD27+ B

cells to proliferate upon in vitro stimulation with recombinant

HCV antigens, by measuring the dilution of the division-tracking

dye CFSE after 7 days. For CE samples, mean stimulation index

was ,2 for all HCV antigens, indicating no proliferative response

(Figure 6A). For SR, stimulation index was negative for all

antigens but NS5, which produced an abundant proliferative

response (Figure 6B). This finding suggests a role of antibody

against NS5 in viral clearance.

Discussion

This study provides a snapshot view of the antibody repertoire

of HCV-infected persons shortly after their spontaneous recovery

(SR) or in the early period of a chronically evolving infection (CE).

In both naı̈ve and memory B cell subsets, the frequency of usage of

particular antibody gene subfamilies and segments (alleles) varied

in SR, CE and healthy donors (HD), with particular differences

between SR and CE. Within these latter two groups, a reversed

expression of a few subfamilies distinguished naı̈ve from memory B

cells. Compared to CE, the antibody genes of SR were composed

of fewer VH, D and JH gene segments in naı̈ve B cells and fewer

VH segments in memory cells. Although the nucleotide mutation

rate was similar among clinical groups, the pattern of replacement

and silent mutations in memory B cell clones gave evidence for

greater antigen selection in SR than CE samples. Greater clonal

evolution of SR than CE memory B cells was also supported by

analysis of phylogenetic trees and CDR3 lengths. Finally, freshly

purified B cells from SR but not CE gave a proliferative response

to in vitro stimulation with NS5 HCV-SOD fusion protein.

The most intriguing finding of this study is that antibody V(D)J

sequences are encoded by a smaller number of germline elements

in naı̈ve and memory B cells from persons who spontaneously

resolved an HCV infection than from patients with a chronically

evolving infection. Until now, a restricted repertoire of antibody

variable heavy (VH) genes and a clustering of VH gene somatic

mutations have been regarded as hallmarks of HCV-associated

MC and B-NHL and have been interpreted as direct consequenc-

es of persistent antigenic stimulation of B cells [12–17,19,30]. We

instead found that these features are common to self-limiting

infections: this suggests that B cell clones that are potentially

involved in clearance of the virus are also those susceptible to

abnormal clonal expansion. This speculation is consistent with a

recent study by Charles et al. [31], who found that some patients

with HCV-associated MC expressed a common subset of clonally

expanded, weakly hypermutated, antibody gene segment-restrict-

ed, memory-like B cells.

Particularly puzzling are the differences of the V(D)J repertoire

between naı̈ve and memory B cells of the CE group. For example,

we observed that some genes were relatively enriched in memory

B cells but depleted in naı̈ve B cells; this difference could be due to

the transfer of some B cells from the CD272 to the CD27+ subset

because of their memory differentiation. Other genes were

characterized by a relative enrichment in naı̈ve B cells but a

depletion in memory B cells; this pattern may be due to changes in

B cell selection or to the presence within the CD272 fraction of

atypical memory B cells that have undergone isotype switching

and somatic hypermutation, but have downregulated CD27. Our

finding of the highest percentage of naı̈ve B cell clones with .2%

mutated nucleotides in the CE group supports this possibility.

These atypical memory B cells have already been described by our

group [32] and have recently been detected in HIV-infected [33]

and Plasmodium falciparum-infected [34,35] individuals. They have

been named ‘exhausted’ memory B cells because of their increased

expression of inhibitory receptors, altered expression of homing

Table 2. Frequency of usage of V(D)J gene segments in 1408
molecular clones from 7 healthy donors (HD), 6 persons who
spontaneously resolved (SR) an HCV infection and 9 patients
with chronically evolving (CE) HCV infection, by B cell subset.

Gene segment Frequency, % p value

HD SR CE HD vs. SR SR vs. CE

Naı̈ve B cells

IGHV1-69*01 7.0 18.5 2.9 ND ,0.001

IGHV3-21*01 12.3 3.7 15.5 ND 0.004

IGHV3-23*01 3.5 2.8 11.7 ND 0.015

IGHD4-17*01 1.8 16.7 3.9 ND 0.003

IGHJ1*01 0.0 0.0 4.9 ND 0.026

IGHJ4*03 10.5 23.1 7.8 ND 0.002

IGHJ5*01 8.8 3.7 14.6 ND 0.007

Memory B cells

IGHV1-2*02 9.2 1.2 6.1 0.028 ND

IGHV1-8*01 7.9 0.0 6.1 0.011 ND

IGHV1-46*01 3.9 13.3 7.1 0.050 ND

IGHD2-2*01 3.9 1.2 9.4 ND 0.022

IGHD5-5*01 2.6 4.9 0.0 ND 0.042

IGHJ1*01 2.6 7.2 0.0 ND 0.008

Chi-square or Fisher’s exact test was performed for individual gene segments
only when the pairwise comparison of two clinical groups gave a significant
association at the subfamily level; data are shown only when p#0.05.
ND, not determined (no significant association at gene subfamily level).
doi:10.1371/journal.pone.0025606.t002

Table 3. Percentages of B cell molecular clones with somatic
mutations in VH gene, by B cell fraction and clinical group.

Mutation frequency Naive B cell clones, % Memory B cell clones, %

HD SR CE HD SR CE

No mutations 2.9 3.1 1.9 0 0 0

#2% of all nucleotides 60.9 36.5 47.6 6.6 15.7 24.2

.2% of all nucleotides 36.2 60.4 50.5 93.4 84.3 75.8

doi:10.1371/journal.pone.0025606.t003

B Cell Repertoire In HCV Infection
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receptors, reduced proliferative potential and stunted replication

history and immunoglobulin diversity [36].

The study also reveals that the antibody V(D)J sequences of naı̈ve B

cells from both SR and CE lack molecular signs (e.g. high mutation

rate) of current activation. This result contrasts with the idea that

HCV-associated abnormal clonal B cell populations arise from naı̈ve

B cells and does not confirm the phenotypic findings of high levels of

activated naı̈ve B cells in the blood of HCV+ patients with MC [37].

The finding that B cells from SR proliferated upon stimulation with a

nonstructural HCV antigen (NS5) proves that these cells are specific

for this protein. Whether this specificity contributes to infection

control because it is expressed by direct antibody generation or,

alternatively, by CD4 T cell help remains to be determined. Indeed,

our understanding of the direct role of antibodies in viral protection

and disease outcome emerges from numerous clinical and experi-

mental observations, as summarized here. Patients suffering from

agammaglobulinemia experience an accelerated disease progression

[38]. Immunoglobulin produced from pooled human plasma

negative for anti-HCV antibodies transmitted hepatitis C to

chimpanzee recipients, while that from unscreened pooled plasma

was found to contain neutralizing antibodies that prevented infection

[39]. Polyclonal antibodies isolated from a chronic HCV-infected

patient protected chimeric mice against in vivo challenge with

different HCV genotypes, although the efficacy of such cross-

genotype neutralization was lower than that predicted by cell culture

experiments [40]. In HCV-infected liver transplant recipients, the

HCV variants that infected the liver grafts were poorly neutralized by

antibodies present in the patients’ pre-transplant sera (rather than

variants no longer detected after transplantation) [41]. Finally, while

in self-limiting infections neutralizing antibodies can be rapidly

detected in the serum and progressively decrease or even disappear

after recovery, in chronically evolving infections they appear later and

tend to persist [8,42].

There are some caveats associated with the current study. First,

memory B cells used in the experiments reported here were not

selected for antigen specificity, due to the well-known technical

difficulties of achieving pure cell populations. This may have

biased our results given that it is unclear how representative the

overall B cell repertoire (which is not shaped only by HCV) is of

the HCV-specific B cell compartment. On the other hand, by

using whole B cells, we did not exclude from study those cells that

are involved in the immune pathogenesis of HCV infection but

that do not directly bind the viral particle. This permitted us to get

a more complete picture of the B cell response to HCV. Second,

some sequences might have been cloned more readily than others

after PCR amplification. To minimize the risk of frequency

underestimation, we extended the number of clones up to 32 per B

cell subset per patient: as already demonstrated, when an adequate

number of templates is amplified, results of PCR-cloning do not

significantly differ from those obtained by single genome analysis

[43]. In addition, we used degenerated primers to amplify all VH

families and intentionally omitted pre-PCR sampling (i.e. single-

cell sorting) to avoid potential underestimation of the genetic

diversity of the antibody sequences. Another limitation of the study

is the small number of subjects studied, due to the fact that

conducting such an extensive and articulated work is difficult in a

larger sample. Therefore, these findings should be confirmed by

further studies in other larger and more diverse HCV-positive

populations (i.e. patients before and after complete viral

eradication, anti-HCV therapy responders vs. non-responders,

persons with different IL-28B genotypes).

In conclusion, this study found that pauciclonality of the memory

B cell population is characteristic of persons who had a recent, self-

limiting HCV infection. This observation leads us to hypothesize a

model of pathogenesis in which the antibody response to HCV may

follow three different pathways: 1) selected B cell subsets are

activated, undergo memory differentiation and clonal expansion,

produce hypermutated and affinity-matured antibodies and then

contract when viral clearance is achieved (resolved infection); 2) B

cell subsets are activated as in scenario 1 but continue to abnormally

expand if antigen persists (chronic infection complicated by MC);

and 3) B cells are not efficiently activated and produce low-affinity

antibodies without protective ability (chronic infection without

MC). It is currently unknown why, in some patients, an initially

successful B cell response deviates towards a proliferative disorder

(scenario 2), but both viral and host factors may be involved.

Whether our data might be used to inform therapeutic interventions

or vaccine development in terms of antigen design or dosing

remains to be assessed. Future studies should indeed compare SR

and CE groups for differences in B cell epitopes of the virus, HLA

polymorphisms, and B-T cell cognate interactions.

Materials and Methods

Study subjects and biological samples
Peripheral blood samples were obtained from 7 healthy donors

(HD), 6 patients who had spontaneously resolved an acute HCV

infection in the 6 months prior to sampling (spontaneous resolvers,

Figure 4. Mutation frequencies of VH gene segments in molecular clones of naı̈ve B cells (A) and memory B cells (B), by clinical
group. Values are mean (SD) of the per-subject average (32 clones per subject). p,0.001, all naı̈ve vs. all memory clones, chi-squared test.
doi:10.1371/journal.pone.0025606.g004
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SR), and 9 patients with a recent (,9 months) diagnosis of chronic

HCV infection (chronically evolving, CE), defined as an infection

of at least 6 months’ duration. All subjects were Caucasian,

negative for antibodies to human immunodeficiency virus,

antibodies to hepatitis B virus, hepatitis B surface antigen, serum

rheumatoid factor and cryoglobulins. None had ever had antiviral

therapy nor a diagnosis of lymphoproliferative disorders.

The study protocol was approved by the University of Bari

Medical School Ethics Committee and conformed to the good

clinical practice guidelines of the Italian Ministry of Health and

the ethical guidelines of the Declaration of Helsinki, as revised and

amended in 2008. Written informed consent was obtained from

each subject.

Cell preparations
Peripheral blood mononuclear cells (PBMC) were separated by

Ficoll-Hypaque (Pharmacia Biotec, Uppsala, Sweden) density

gradient centrifugation. B cells were isolated from PBMC by

automated magnetic cell sorting using the B Cell Isolation Kit II

(Miltenyi Biotec). B cells were further fractionated into naı̈ve

(CD272) and memory (CD27+) populations by automated

magnetic cell sorting with anti-CD27 microbeads (Miltenyi

Biotec). All sorted cell populations exhibited .95% purity, as

revealed by staining with either peridin chlorophyll protein-

conjugated anti-CD19 or fluorescein isothiocyanate-conjugated

anti-CD27, followed by analysis with a FACSCanto (Becton

Dickinson) cytometer and FlowJo software (Tree Star) (Figure S1).

Isolated cells were cryopreserved until use.

Amplification, cloning and sequencing of the V(D)J gene
region

Genomic DNA was extracted from naı̈ve and memory B cell

fractions using the BioRobot EZ1 Workstation and the EZ1 DNA

Tissue kit (Qiagen). The V(D)J region was amplified with a semi-

nested protocol according to an established procedure [13].

Briefly, the upstream primer was complementary to the first

Figure 5. Evidence for antigen selection of VH gene segments in molecular clones from memory B cells. A Distribution of replacement (R)
and silent (S) mutations in each framework region (FR) and complementarity-determining region (CDR), by clinical group. Statistical significance by
ANOVA is indicated. B Percentage of VH gene segments with evidence of antigen selection, according to Lossos et al. [45]. Values are mean (SD) of the
per-subject average (32 clones per subject). C Representative phylogenetic trees from one healthy donor (HD), one patient who spontaneously resolved
an HCV infection (SR), and one patient with chronically evolving HCV infection (CE). The pattern of branching and clustering of sequences in the SR tree is
evidence of clonal evolution. D Length of CDR3 peptide loops deduced from VH gene nucleotide sequences of memory B cells, by clinical group. Values
are mean (SD) of the average value per subject. ANOVA p = 0.034; Newman-Keuls post test: HD vs. SR, p = 0.0.017; HD vs. CE, p = 1.0; SR vs. CE, p = 0.042. E
Representative CDR3 length distribution profiles determined by spectratyping on CDR3 PCR products reveal evidence of clonal selection in SR.
doi:10.1371/journal.pone.0025606.g005
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framework V (variable) region (FR1) [44] and the downstream

primer annealed to an outer conserved sequence of the joining

region (JH) in the first round and to an inner conserved sequence of

the same JH in the second round of amplification. PCR products

were resolved on 1.3% agarose gels stained with ethidium

bromide, and optically analyzed by ultraviolet transillumination.

The bands comprised between 350 and 400 bp were excised and

purified using the Montage DNA Gel Extraction Kit (Genomixs).

PCR products were cloned using the TOPO TA cloning system

(Invitrogen Life Technologies). Randomly selected bacterial

colonies were picked, cultured and extracted for plasmid DNA

using QIAprep Miniprep Kit (Qiagen). DNA was sequenced on

the ABI 3100 Genetic Analyzer (Applied Biosystems) using the

BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosys-

tems) [30]. For each subject, at least 32 clones were sequenced per

sample (naı̈ve and memory B cells).

Analysis of V(D)J gene sequences
Results from automated DNA sequencing were inspected and

validated using Chromas Lite 2.01 software (Technelysium,

Tewantin, Australia). Only productive rearranged sequences (no

stop codons or in frame junctions) were further analyzed. For each

subject, 704 sequences were analyzed for naı̈ve B cells and another

704 sequences for memory B cells, for a total of 1408 sequences.

The variable (V), diversity (D) and joining (J) genes and alleles

were identified by comparison with germline antibody genes, using

the International ImMunoGeneTics (IMGT) information system

(http://imgt.cines.fr) and the NIH Joinsolver (http://joinsolver.

niams.nih.gov/index.htm) with default settings. For each gene,

alleles were grouped by subfamily and expressed as a percentage in

naı̈ve and memory subsets of each clinical group.

Using the same software, the percentage of mutated nucleotides

per VH segment was determined and used to categorize naı̈ve and

memory clones into three groups: no mutations, #2% mutated

nucleotides or .2% mutated nucleotides as suggested by Lossos

et al. [45] Then, for each subject, the frequency of mutated VH

nucleotides was determined as the number of mutated nucleotides

divided by the total number of nucleotides, from FR1 to FR3

inclusive, for all molecular clones sequenced for the particular

person; these values, expressed as a percentage, were used to

calculate the mean (SD) mutation frequency for naı̈ve and

memory clones for each clinical group. This same calculation

was repeated for each FR and CDR within the VH segment for

memory B cell clones, distinguishing between replacement (R) and

silent (S) mutations as indicated by the IMGT information system.

The antigen selection pressure on Ig genes was calculated

according to the multinomial distribution model of Lossos et al.

[45], using the online JAVA applet (http://www-stat.stanford.

edu/immunoglobulin/). This analysis determines, for each VH

gene segment, the probability that a scarcity of R mutations

occurred by chance in the CDRs (pCDR), as well as the

probability that an excess of R mutations occurred by chance in

the FRs (pFR). An antigen-selected sequence was defined as one

with both pFR,0.05 and pCDR,0.05. The percentage of

antigen-selected sequences per subject was calculated and then

averaged per clinical group.

Similarities in VH nucleotide sequences were identified using the

multiple sequence alignment application ClustalX2.0.9 [46].

Unrooted phylogenetic trees were constructed with ClustalX2

using distance-based neighbor-joining analysis performed on

Tamura-Nei neighbor estimates and visualized with TreeView

1.6.6. [47]. Bootstrap analyses were conducted using 1000

replicates.

CDR3 analysis
The length of each CDR3 in molecular clones from memory B

cells was determined from the deduced protein sequence by

counting the number of amino acids between the last residue of

FR3 (VH) and the first residue of JH (FR4). These values were

averaged per subject and used to determine the mean (SD) value

for each clinical group.

To obtain a graphical view of CDR3 size distributions, CDR3

DNA from memory B cell clones was amplified using FR3 and JH

primers, the PCR product was analyzed on an ABI PRISM 3100

Genetic Analyzer, and spectratyping analysis was performed using

ABI Prism 3100 GeneScan 3.7 software, as described [48].

In vitro proliferation assay
Freshly purified CD27+ B cells were labeled with the vital dye

5(6)-carboxyfluorescein diacetate, succinimidyl ester (CFSE; Mo-

lecular Probes), as described [32]. Labelled cells were cultured in

U-bottom 96-well plates (Falcon, BD Biosciences) in RPMI-1640

medium completed with 10% heat-inactivated fetal bovine serum

(FBS), 2 mM L-glutamine, 100 U/ml penicillin, 100 mg/ml

streptomycin (all from Sigma-Aldrich). Each well contained 105

cells in 200 ml medium. Wells in triplicate were stimulated with a

recombinant fusion protein (10 mg/ml) consisting of superoxide

dismutase (SOD) combined with one of five HCV antigens (core,

c22, aa 2–120; NS3, c33, aa 1192–1457; NS4, c100, aa 1569–

1931; NS3/NS4A, aa 1027–1711; NS5, aa 2054–2995; Chiron).

Control wells received 10 mg/ml recombinant SOD or 1 mg/ml

Figure 6. In vitro proliferation of CFSE-labelled B cells in
response to 7 days’ stimulation with different recombinant
HCV-SOD fusion proteins, by clinical group. A Stimulation index,
calculated as the percentage of cells with diluted CFSE staining
(indicating cell division) after HCV-SOD treatment relative to that of
SOD-treated control cells. SR vs. CE, p = 0.011 Mann-Whitney U test after
ANOVA. B Representative FACS scatter plots of B cells from SR (left) and
CE (right) stimulated with NS5 HCV-SOD fusion protein show greater
CFSE dilution (hence proliferation) in SR.
doi:10.1371/journal.pone.0025606.g006
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phytohemagglutinin. Cells were incubated at 37uC in a humidified

atmosphere containing 5% CO2 for 7 days, and then analyzed for

CFSE fluorescence with a FACSCanto (BD Biosciences) flow

cytometer and FACSDiva software (BD Biosciences). The

percentage of CD19+ cells with diluted CFSE staining (indicating

proliferation) was determined and averaged for triplicate samples.

The extent of proliferation was determined from the relative loss in

fluorescence, by calculating the stimulation index according to the

formula: percentage of CFSE-dilute cells in presence of antigen/

percentage of CFSE-dilute cells in absence of antigen (recombi-

nant SOD alone). These values were averaged for each antigen

and clinical group. A stimulation index 3 standard deviations

higher than the average stimulation index of healthy donor cells

was taken to indicate a proliferative response to antigen.

Statistical analysis
Statistical analyses were performed using Statistica 6.1 software

(StatSoft) and assumed independence between cell clones, i.e.

ignored any possible correlation between data obtained from

different cells from the same individual.

The patterns (frequencies) of VH, D and JH gene family use were

tested for significance with a step-by-step procedure. First, the chi-

square test was performed in pairwise comparisons of clinical

groups, separately for naı̈ve and memory B cell subsets. When this

test indicated a significant association at the gene family level,

further statistical analyses using chi-square or, when necessary,

Fisher’s exact test were performed for gene subfamilies. Then, for

those subfamilies whose usage was significantly associated with

clinical group, chi-square or Fisher’s exact test was used again for

individual genes.

Mean percentages of nucleotide mutations and mean CDR3

lengths were compared among clinical groups by one-way

ANOVA with Newman-Keuls post test. Mean percentages of

mutations in naı̈ve and memory B cells were compared using chi-

squared test. Stimulation indexes were compared by one-way

ANOVA with Mann-Whitney U post test. Values of p#0.05 were

assumed to be significant.

Supporting Information

Figure S1 Representative immunomagnetic purification of

CD27+ and CD272 B cells.

(TIF)
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