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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
infected more than 180 million people since the onset of the
pandemic. Despite similar viral load and infectivity rates between
children and adults, children rarely develop severe illness. Differences
in the host response to the virus at the primary infection site are
among the mechanisms proposed to account for this disparity. Our
objective was to investigate the host response to SARS-CoV-2 in the
nasal mucosa in children and adults and compare it with the host
response to respiratory syncytial virus (RSV) and influenza virus. We
analyzed clinical outcomes and gene expression in the nasal mucosa of
36 children with SARS-CoV-2, 24 children with RSV, 9 children with
influenza virus, 16 adults with SARS-CoV-2, and 7 healthy pediatric

and 13 healthy adult controls. In both children and adults, infection
with SARS-CoV-2 led to an IFN response in the nasal mucosa. The
magnitude of the IFN response correlated with the abundance of viral
reads, not the severity of illness, and was comparable between children
and adults infected with SARS-CoV-2 and children with severe RSV
infection. Expression of ACE2 and TMPRSS2 did not correlate with
age or presence of viral infection. SARS-CoV-2–infected adults had
increased expression of genes involved in neutrophil activation and
T-cell receptor signaling pathways compared with SARS-CoV-
2–infected children, despite similar severity of illness and viral reads.
Age-related differences in the immune response to SARS-CoV-2 may
place adults at increased risk of developing severe illness.
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Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is responsible
for the current pandemic of coronavirus
disease (COVID-19). A notable feature of
SARS CoV-2 infection is the dramatic
heterogeneity in clinical phenotypes.
Although most infected individuals remain
asymptomatic or develop mild disease, some
develop severe SARS-CoV-2 pneumonia and
acute respiratory distress syndrome (ARDS).

These severe infections account for most of
the public health and societal impacts of the
COVID-19 pandemic and disproportionately
affect the elderly while mostly sparing
children (1–3). In contrast, other common
viral respiratory infections, including
respiratory syncytial virus (RSV) and
influenza virus (IV), tend to be most severe
in young children and elderly adults. Of the
approximately 225,000 deaths from COVID-

19 reported in the first 8 months of the
pandemic in the United States, only 189
occurred in children less than 18 years of age
(4), despite at least 277,285 documented
infections in children over the same period
(5). Identifying the mechanisms driving
morbidity and mortality differences between
children and adults infected with SARS-
CoV-2 may provide essential insights for
treating patients with COVID-19.
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SARS-CoV-2 infection begins in the
nasal mucosa (6, 7), where the spike protein
binds angiotensin-converting enzyme 2
(ACE2) on the surface of epithelial cells. In
concert with host proteases, principally
transmembrane serine protease 2
(TMPRSS2), the virus enters the cell to begin
replication (8–10). Initial studies suggested
that ACE2 expression in the airways
increases with age (11, 12), which could lead
to lower infectivity and lower viral load in
children. However, subsequent studies have
demonstrated that SARS-CoV-2 viral load is
similar in children and adults, suggesting the
relative protection from COVID-19 in
children is not due to age-related differences
in infectivity (13–16). As there are important
differences between the pediatric and adult
immune systems, the host response to SARS-
CoV-2 could explain the observed
differences in clinical phenotypes in children
and adults. The primary host response to
viral infection is antiviral IFN signaling to
limit viral replication, recruit immune cells,
and clear infected cells (17). However, some
viruses have developed strategies to evade
this response, and SARS-CoV-2 is known to
inhibit host IFN responses in vitro (18, 19).
This observation has led investigators to
speculate that differences in antiviral IFN
signaling at the primary infection site might
be responsible for differences in the
frequency of severe COVID-19 between
children and adults. To date, no studies have
compared the host response to the virus at
the primary site of SARS-CoV-2 infection in
mildly symptomatic children and adults.

This study aimed to assess the host
response to SARS-CoV-2 at the primary site
of infection in children and adults and how it
may differ from the host response to other
respiratory viruses, namely RSV and IV, that
cause severe disease in children. Curettage
and transcriptional profiling of the nasal
mucosa can provide valuable insights into
host–pathogen interactions at the initial
infection site that may drive disease

outcomes (20–23). Therefore, we performed
RNA sequencing (RNA-seq) of nasal mucosa
samples from children and adults with
SARS-CoV-2, children with RSV or IV, and
healthy children and adults. Local antiviral
IFN signaling did not differ between children
and adults infected with SARS-CoV-2 and
was similar to children with severe RSV
infection. Viral load, but not severity of
illness, correlated with the magnitude of the
IFN response. Notably, expression of genes
involved in neutrophil activation and T-cell
receptor signaling was increased in adults
compared with children with asymptomatic
or mild SARS-CoV-2 infection. Our findings
suggest that the local IFN response does not
drive differences in the clinical phenotypes
associated with SARS-CoV-2 infection.
Rather, age-related differences in the innate
and adaptive immune response to SARS-
CoV-2 infection in the upper respiratory
tract may be critical risk factors for severe
disease.

Some of the results of these studies have
been previously reported in the form of a
preprint (https://doi.org/10.1101/2021.01.26.
21250269).

Methods

Study Population
Our study included the following six groups:
healthy children, children infected with
SARS-CoV-2, children infected with RSV,
children infected with IV, healthy adults, and
adults infected with SARS-CoV-2. Approval
for this study was obtained from the
institutional review board at Ann and Robert
H. Lurie Children’s Hospital of Chicago.
Informed consent was obtained from adult
participants and guardians of pediatric
participants. The medical records of all
pediatric patients admitted between
December 2019 and November 2020 were
screened for inclusion criteria and the
absence of exclusion criteria (see below). We

sequenced samples from healthy children
recruited for a previous study as negative
controls. These samples were obtained from
healthy children attending a well-child check
at Ann and Robert H. Lurie Children’s
Hospital of Chicago Outpatient Center in
May 2018. If the patient was eligible for the
study, a study teammember approached for
consent. For SARS-CoV-2–infected children,
both the child and accompanying adult were
invited to participate.

Inclusion Criteria
Children were eligible for inclusion in the
SARS-CoV-2–infected group if they had a
positive PCR test for SARS-CoV-2 at
admission to the hospital or our drive-
through testing center (Figure E1A in the
data supplement). Symptoms were collected
based on reports by participants or their
guardians.

Adults accompanying a SARS-CoV-
2–infected child or who were themselves
admitted and cared for in our pediatric
hospital with a positive PCR test for SARS-
CoV-2 were eligible for inclusion (Figure
E1B). PCR testing was not available for the
adults accompanying a child before
enrollment. We categorized adult
participants as infected with SARS-CoV-2 if
RNA-seq detected SARS-CoV-2 RNA.
Adults without detectable SARS-CoV-2 via
RNA-seq were classified as healthy controls.
Self-reported symptoms were collected from
adults at the time of enrollment and via
follow-up weekly phone calls for 3 weeks.
Adults were asked about 11 of the most
common symptoms reported with SARS-
CoV-2 infection (24).

Participants were eligible for inclusion
in the viral positive control group if they had
a PCR confirming infection with RSV or IV,
were admitted to the pediatric intensive care
unit (PICU), and had symptoms of
pulmonary parenchymal disease, including
any of the following: 1) infiltrates, areas of
atelectasis, or hyperinflation on chest
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radiograph; 2) rales, wheezing, retractions,
tachypnea, or any form of respiratory distress
on clinical exam; or 3) an oxygen
requirement to maintain peripheral oxygen
saturation levels above 95%.

Healthy pediatric controls were eligible
for inclusion if they were less than 18 years of
age and had no signs or symptoms of viral
infection at the time of their scheduled well-
child visit with their primary care provider
(Figure E1C). All healthy pediatric controls
were clinically stable without apparent viral
or bacterial infection when the nasal
epithelial scrapings were obtained. In
addition, metagenomic analysis of RNA-seq
data using the OneCodex platform did not
detect any viral reads for 29 common human
respiratory viruses in any of the healthy
control samples. Healthy controls were also
followed for 2 weeks via electronic medical
record to ensure no infections occurred
within that time frame.

Exclusion Criteria
Subjects were not eligible for inclusion in the
pediatric healthy control group if they had
any significant medical comorbidities,
including preexisting lung disorders,
preexisting cardiac disease,
immunodeficiency, malignancy, and
neurologic disorders increasing the risk of
aspiration or respiratory failure. Children
with a clinical concern for multisystem
inflammatory syndrome in children (MIS-C)
were not eligible for inclusion in the SARS-
CoV-2 cohort.

Patient Enrollment
We enrolled 170 participants in the study
(Figure E1). Before sample collection, 10
participants withdrew consent. Eight
participants were discharged before sample
collection. After the isolation of RNA, 26
samples were excluded owing to low RNA
quality. Following RNA-seq, an additional 14
samples were excluded: 1 for low-quality
RNA-seq library, 3 for sex mismatch between
biological sex indicated in the research
records and expression of XIST or RPS4Y1
genes, 3 for negative PCR testing results, 1
for MIS-C diagnosis, 1 for unavailable
patient research records, and 5 healthy
controls for detection of viral reads for
common respiratory viruses. A cohort of 105
participants (7 healthy children, 36 children
infected with SARS-CoV-2, 24 children
infected with RSV, 9 children infected with
IV, 13 healthy adults, and 16 adults infected
with SARS-CoV-2) was used for the analysis.

Clinical Data
Clinical data were collected and managed
using REDCap electronic data capture tools
hosted at the Northwestern University
Clinical and Translational Sciences Institute
(25). Hospital length of stay was determined
from admission and discharge dates.
Readmissions within 24 hours of discharge
were considered a continuation of
hospitalization. If a patient had multiple
PICU stays during a single encounter, the
PICU length of stay was cumulative.
Advanced respiratory support was defined by
the use of high-flow nasal cannula (HFNC),
noninvasive positive pressure ventilation
(NIPPV), or invasive mechanical ventilation
(IMV). Respiratory support and oxygen
duration were determined by documentation
on a calendar day of nonhome advanced
respiratory support or oxygen to exclude
chronic baseline support. Pediatric ARDS
was defined using the Pediatric Acute Lung
Injury Consensus Conference criteria (26).
Detection of a copathogen was defined as a
positive viral PCR or any positive bacterial or
fungal cultures.

Nasal Curettage and RNA Isolation
Owing to infection control procedures
during the COVID-19 pandemic, nasal
mucosa curettage was performed during
routine care by healthcare providers caring
for the patient. Providers received training
just before sample collection by trained study
personnel. Nasal epithelial cells were
obtained by mucosal scrape biopsy of the
inferior turbinate using a sterile plastic
curette (Rhino-Pro curette; Arlington
Scientific) as previously described (27) to
obtain a predominantly epithelial cell
population. A total of three single-pass
scrapings per nares were performed per
subject. The curette tips were cut and placed
into RNase-free collection tubes containing
350μL of RLT buffer (Qiagen) supplemented
with 2-mercaptoethanol, vortexed
vigorously, and stored at280�C. RNAwas
isolated using Qiagen RNeasy extraction kits.

RNA Sequencing and Analysis
RNA quality and quantity were assessed
using 4200 TapeStation High Sensitivity
RNA tapes (Agilent), and RNA-seq libraries
were prepared from 1 ng of total RNA using
SMARTer Stranded Total RNA-seq Kit v2
(Takara Bio). After quality control using
4200 TapeStation High Sensitivity DNA
tapes (Agilent), dual-indexed libraries were
pooled and sequenced on a NextSeq 500

instrument (Illumina), 75 cycles, single-end,
to an average sequencing depth of 5.88M
reads.

FASTQ files were generated using
bcl2fastq (Illumina). Viral RNA was detected
using a custom hybrid genome prepared by
joining FASTA, GFF, and GTF files for
GRCh37.87, SARS-CoV-2 (NC_045512.2),
Influenza A/California/07/2009
(GCF_001343785.1), and RSV/S2 ts1C
(GCF_000856445.1) genomes. An additional
negative-strand transcript spanning the
entirety of the SARS-CoV-2 genome was
then added to the GTF and GFF files to
enable detection of SARS-CoV-2 replication.
To facilitate reproducible analysis, samples
were processed using the publicly available
nf-core/RNA-seq pipeline version 1.4.2
implemented in Nextflow 19.10.0 using
Singularity 3.2.1–1 with the minimal
command nextflow run nf-core/rnaseq -r
1.4.2 –singleEnd -profile singularity
–reverseStranded –three_prime_clip_r2 3
(28–30). Briefly, lane-level reads were
trimmed using trimGalore! 0.6.4 and aligned
to the hybrid genome described above using
STAR 2.6.1 d (31). Gene-level assignment
was then performed using featureCounts
1.6.4 (32). First, putative sample swaps were
identified by comparing known patient sex
with sex determined by XIST and RPS4Y1
expression levels. Nomismatched samples
were included in the analysis. For pairwise
comparison, EdgeR was used to identify
differentially expressed genes between
children and adults with mild disease (33,
34). Gene ontology (GO) analysis was run
using GOrilla (35).

Weighted Gene Coexpression
Network Analysis
Weighted gene coexpression network
analysis (WGCNA) was performed using
WGCNA version 1.69 with default settings
unless otherwise noted (36). Highly variable
genes among all participant samples
(n=105) and pediatric participant samples
only (n=76) were included in analyses. To
best capture patterns of coregulation, a
signed network was used. Using the
pickSoftThreshold function, we empirically
determined a soft threshold of 3 to best fit
the network structure. A minimummodule
size of 30 genes was chosen. Module
eigengenes were then related to patient and
sample metadata using biweight
midcorrelation. Module GO enrichment was
determined using GOrilla (35). Gene set
enrichment analysis (GSEA) was run using
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weighted, preranked setting based on log2
fold change values reported by edgeR (37).

Deconvolution of Bulk
RNA-Seq Signatures
Deconvolution of bulk RNA-seq signatures
was performed using AutoGeneS version
1.0.3 (38). For details of the functions used
and their parameters, see the code available at
https://github.com/NUPulmonary/2021_
Koch. Briefly, we used a single-cell RNA-seq
dataset fromOrdovas-Montanes and
colleagues (39), which contains nasal
epithelial and immune cells, to train the
AutoGeneS model. AutoGeneS selects cell
type-specific genes by both minimizing the
correlation and maximizing the distance
between the cell type-specific average gene
expression profiles. The model was then
applied to bulk RNA-seq data to estimate
specific cell types’ proportions using
regression.

Statistical Analysis
Categorical data were summarized by
percentages and compared using Fisher’s
exact test. Continuous, nonparametric data
were summarized using medians with
interquartile ranges and compared using
Mann-WhitneyU or Kruskal-Wallis testing.
The Benjamini-Hochberg procedure was
used for false discovery rate correction when
performing multiple comparisons. Data were
considered statistically significant at
P-adjusted, 0.05. Log-transformed counts
per million (CPM) data were shown in
graphs for visualization purposes. Statistical
analyses were performed using GraphPad
Prism version 9.0.0 and R version 4.0.3. Data
were visualized using ggplot2 version 3.3.1
and GraphPad Prism.

Data and Code Availability
Processed RNA-seq counts are available as
Table E1. Raw data is in the process of being
deposited to dbGaP/SRA. Code is available
via https://github.com/NUPulmonary/2021_
Koch.

Results

Description of the Cohort
The demographics of the pediatric and
adult cohorts are summarized in Table 1
and Table E1. When considering only
children, patients with RSV were younger,
and a larger proportion was previously
healthy than those with SARS-CoV-2

(Table 1). The ages and proportion of
individuals with chronic medical conditions
in the uninfected adult group were no
different from those in the SARS-CoV-
2–infected adult group (Table E1).

Figure 1A summarizes the clinical
course of the hospitalized pediatric
participants infected with IV, RSV, or SARS-
CoV-2. There was no difference in the time
from symptom onset to nasal sample
collection between the groups (Figure 1B).
Consistent with their inclusion as positive
controls for moderate and severe viral
respiratory tract infections, children with
RSV were hospitalized longer and received
higher respiratory support levels than
children with SARS-CoV-2 (Figures 1C and
1D and Table 1). Similarly, children with IV
received increased respiratory support than
children with SARS-CoV-2 (Figure 1D and
Table 1). Of the 36 children with SARS-CoV-
2, 35 were admitted to the hospital and
8 required ICU-level care. Of those eight
participants, seven were admitted with
respiratory symptoms requiring noninvasive
respiratory support, whereas one was
admitted with severe diabetic ketoacidosis in
the setting of fever. None of the SARS-CoV-
2–positive children were intubated.
However, one patient with a history of
obesity (body mass index 37.2) met the
pediatric ARDS criteria while supported on
full-face bilevel positive airway pressure. The
age, sex, race, and ethnicity of the children
with IV and the uninfected children did not
differ from those with SARS-CoV-2 (Figures
E1D and E1F–E1I). A larger proportion of
children with SARS-CoV-2 identified as
Hispanic compared with RSV (Figure E1H).
The sex, race, and ethnicity were not
different between uninfected and infected
adult groups (Figures E1E-E1I and Table
E1).

The majority of the adult participants
with SARS-CoV-2 reported mild illness
(Table E2). There was no difference in the
time from symptom onset to nasal sample
collection between adults and all pediatric
groups (Figure 1B). Two adult participants
(ages 19 and 20 yr) were admitted to our
pediatric hospital at the time of enrollment.
An additional adult participant reported
admission to an outside hospital after
enrollment in our study. The two patients
admitted to our hospital had respiratory
illnesses requiring admission to the PICU for
noninvasive positive pressure ventilation
with supplemental oxygen. Neither met the
ARDS criteria. The participant admitted to

an outside hospital reported an admission
duration of 3 days and did not require ICU-
level care.

The symptoms reported by participants
or the guardian for children with SARS-
CoV-2 infection are summarized in Table
E1. Of the 16 adults with SARS-CoV-2
infection (seeMETHODS), 7 (44%) were
asymptomatic, and the other 9 (56%)
reported symptoms. The majority of children
with SARS-CoV-2 infection experienced
respiratory symptoms (57%). Other
symptoms included fever only (14%),
gastrointestinal symptoms (9%),
nonrespiratory viral syndromes (6%), and
asymptomatic (14%) (Table 1). The
asymptomatic children with SARS-CoV-2
were detected on routine screening at
admission.

SARS-CoV-2 Viral Load and
Expression of SARS-CoV-2 Entry
Factors in the Nasal Mucosa Do Not
Correlate with Age
To characterize our participant sample data
and confirm clinical diagnoses, we queried
bulk RNA-seq data obtained from curettage
of nasal mucosa for the presence of SARS-
CoV-2, RSV, or IV reads. Viral reads for
SARS-CoV-2 were detected in 28 of 36
samples collected from children diagnosed
with SARS-CoV-2 infection by PCR
performed in the hospital diagnostic
laboratory (Figure 2A). Of the 24 children
diagnosed with RSV, all had detectable RSV
reads in RNA-seq data. Six out of 9 children
with IV had detectable influenza A viral
reads in their nasal mucosa. Of the 29 adults
accompanying children with SARS-CoV-2
infection, 14 had detectable SARS-CoV-2
reads, and 2 young adults admitted to the
pediatric hospital with a positive SARS-CoV-
2 PCR test did not have detectable viral
reads. Nine samples were obtained from
healthy children. RNA-seq did not detect any
SARS-CoV-2, RSV, or IV reads in these
samples; however, a more in-depth analysis
of these samples using the TWIST viral panel
as implemented in the OneCodex platform
demonstrated the presence of enterovirus
and parainfluenza virus in two of the
samples. These samples were excluded from
subsequent analysis, leaving seven subjects in
the healthy control group (Figure E1C).

In agreement with previous reports
(13–16), we found that SARS-CoV-2 viral
load was similar between children and adults
and did not correlate withACE2 expression
(Figures 2B and 2C). Several studies have
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Table 1. Description of Pediatric Cohort

SARS-CoV-2
Children

RSV
Children

IV
Children Adjusted P Value

n 36 24 9
Median age, yr (IQR) 1.9 (0.4–15.0) 0.33 (0.16–0.44) 1.7 (1.4–7.0) 0.003
Sex
Male, n (%) 18 (50.0) 10 (41.7) 5 (55.6) 0.92
Female, n (%) 18 (50.0) 14 (58.3) 4 (44.4)

Race
White, n (%) 8 (22.2) 13 (54.2) 1 (11.1) 0.03
African American, n (%) 4 (11.1) 1 (4.2) 2 (22.2)
Asian, n (%) 0 (0.0) 2 (8.3) 1 (11.1)
Other, n (%) 23 (63.9) 6 (25.0) 4 (44.4)
Unspecified, n (%) 1 (2.8) 2 (8.3) 1 (11.1)

Ethnicity
Non-Hispanic, n (%) 11 (30.6) 15 (62.5) 4 (44.4) 0.14
Hispanic, n (%) 24 (66.7) 7 (29.2) 4 (44.4)
Unspecified, n (%) 1 (2.8) 2 (8.3) 1 (11.1)

Medical history
Healthy, n (%) 12 (33.3) 19 (79.2) 3 (33.3) 0.006
Respiratory, n (%) 9 (25.0) 2 (8.3) 5 (55.6) 0.06
Cardiovascular, n (%) 5 (13.9) 1 (4.2) 1 (11.1) 0.82
Neurologic, n (%) 6 (16.7) 1 (4.2) 2 (22.2) 0.47
Hematologic, n (%) 0 (0.0) 1 (4.2) 0 (0) 0.76
Oncologic, n (%) 2 (5.6) 0 (0) 0 (0) 0.88
Chronic kidney disease, n (%) 1 (2.8) 1 (4.2) 0 (0) 1
Gastrointestinal, n (%) 8 (22.2) 2 (8.3) 2 (22.2) 0.62
Endocrine, n (%) 3 (8.3) 2 (8.3) 1 (11.1) 1
Metabolic/genetic, n (%) 8 (22.2) 1 (4.2) 2 (22.2) 0.38

Presentation*
Respiratory, n (%) 20 (57.1) 24 (100) 9 (100) —
Gastrointestinal, n (%) 3 (8.6) 0 (0) 0 (0) —
Fever only, n (%) 5 (14.3) 0 (0) 0 (0) —
Nonrespiratory viral syndrome, n (%) 2 (5.7) 0 (0) 0 (0) —
Asymptomatic, n (%) 5 (14.3) 0 (0) 0 (0) —

Median day of illness at collection (IQR) 4.0 (2.0–6.8) 4.0 (3.0–4.3) 5.0 (4.0–5.0) 0.88
Severity
ICU admission, d (%) 8 (22.2) 24 (100) 9 (100) —
Median ICU LoS, d (IQR) 3.0 (2.0–6.0) 7.0 (4.0–10.0) 6.0 (3.0–9.0) 0.68
Median Hospital LoS, d (IQR) 3.0 (2.0–6.0) 7.0 (5.0–12.0) 6.0 (3.0–9.0) 0.006
ARDS, n (%) 1 (2.8) 3 (12.5) 1 (11.1) 0.62
Vasoactive medications, n (%) 1 (2.8) 2 (8.3) 0 (0) 0.89

Respiratory support
Collection

None, n (%) 29 (80.6) 1 (4.2) 0 (0) 3.7 3 10–13

Low flow interface, n (%) 4 (11.1) 0 (0) 0 (0)
HFNC, n (%) 1 (2.8) 13 (54.2) 3 (33.3)
NIPPV, n (%) 2 (5.6) 1 (4.2) 4 (44.4)
IMV, n (%) 0 (0.0) 9 (37.5) 2 (22.2)
Oxygen, n (%) 7 (19.4) 23 (95.8) 9 (100) 1

Peak
None, n (%) 26 (72.2) 0 (0) 0 (0) 1.4 3 10–11

Low flow interface, n (%) 3 (8.3) 0 (0) 0 (0)
HFNC, n (%) 3 (8.3) 12 (50.0) 3 (33.3)
NIPPV, n (%) 4 (11.1) 2 (8.3) 4 (44.4)
IMV, n (%) 0 (0.0) 10 (41.7) 2 (22.2)
Oxygen, n (%) 9 (25.0) 24 (100) 9 (100) 1

Median respiratory support days† (IQR) 5.0 (2.0–6.0) 6.5 (4.0–11.0) 5.0 (3.0–8.0) 0.62
Median supplemental oxygen days (IQR) 3.0 (2.0–6.0) 7.0 (4.8–10.0) 5.0 (3.0–9.0) 0.26

Copathogen detection
Virus, n (%) 0 (0.0) 3 (12.5) 1 (11.1) 0.17
Bacteria, n (%) 0 (0.0) 6 (25.0) 1 (11.1) 0.02

Definition of abbreviations: ARDS=acute respiratory distress syndrome; HFNC=high-flow nasal canula; IMV= invasive mechanical ventilation;
IQR= interquartile range, IV= influenza virus; LoS= length of stay, NIPPV=noninvasive positive pressure ventilation; RSV= respiratory syncytial
virus; SARS-CoV-2=severe acute respiratory syndrome coronavirus 2.
Adjusted P values were calculated by Kruskal-Wallis test for medians and Fisher’s exact test for proportions with Benjamini-Hocherg false
discovery rate correction. Values less than 0.05 were considered statistically significant.
*n=35 for SARS-CoV-2 presentation owing to incomplete medical records.
†Cumulative days requiring HFNC, NIPPV, or IMV.
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reported that the expression of ACE2 and
TMPRSS2, two key entry factors for SARS-
CoV-2, increases with age (11, 12). Although
some reports suggested that IFNs produced
in response to viral infection can lead to
increased expression of ACE2, potentially
contributing to the spread of infection (7,
40), other reports have found no correlation
or the opposite effect (41–43). We found that
the expression ofACE2 and TMPRSS2was
not different between healthy children and
adults. Moreover, none of the viral infections
led to increased expression of ACE2 and
TMPRSS2 (Figure 2D). Similarly, ACE2 and
TMPRSS2 expression did not correlate with
age (Figure 2E). Taken together,
transcriptomic data confirmed clinical
diagnoses for SARS-CoV-2, IV, and RSV
infections. Moreover, in contrast to previous
studies, we did not find a correlation between
SARS-CoV-2 entry factors and age in our
cohort.

Cell-Type Deconvolution of
Transcriptomic Signatures Identifies
an Increase in Immune Cells within
the Nasal Mucosa Associated with
Viral Infection
Bulk RNA-seq data obtained from complex
tissue samples composed of multiple cell
types can obscure disease-specific signatures
as RNAmolecules from different cell types
are averaged. Accordingly, our initial
exploratory analysis did not reveal a distinct
structure or pattern within our dataset
(Figures E2A and E2B). To address the
potential heterogeneity in cell-type
composition in our samples, we performed
in silico cell-type deconvolution of our bulk
RNA-seq data using cell type-specific
reference data from the nasal mucosa (39).
Hierarchical clustering of predicted cell-type
abundance distinguished six clusters of
samples (Figure 3A and Table E2). Four
clusters were characterized by an abundance
of immune cells (clusters 1–4), whereas two
clusters were enriched with secretory and
ciliated epithelial cells (clusters 5 and 6). In
line with previous reports (44, 45),
deconvolution analysis demonstrated that
most nasal mucosa samples from healthy
participants were enriched for epithelial cells,
with all of the samples from healthy children
dominated by a ciliated cell signature
(Figures 3A and 3B). In contrast, samples
from children with RSV infection were
equally divided between the secretory cell
cluster and the immune cell clusters,
consistent with previous reports of ciliated

cells being replaced with secretory cells and
the recruitment of neutrophils in RSV
infection (46, 47). Increased immune cell
abundance was observed in most samples
from children infected with IV and SARS-
CoV-2 (Figures 3A and 3B and Figure E2C).
The time from onset of symptoms to sample
collection did not differ between epithelial
and immune dominant subsets (Figure 3C).
In children and adults infected with SARS-
CoV-2, viral reads were increased in
immune-enriched samples compared with
epithelial-enriched samples, suggesting
increased viral load is associated with
immune cell recruitment to the nasal mucosa
(Figure 3D). To confirm that differences in
cell-type composition were not obscuring
differences in ACE2 expression in children
and adults, we analyzed ACE2 expression in
samples from the epithelial cell clusters and
the immune cell clusters separately. There
remained no difference inACE2 expression
between children and adults (Figure 3E).
Interestingly, deconvolution analysis of the
two samples that were excluded from the
healthy children group because of the
incidental detection of enterovirus and
parainfluenza virus found that these samples
had an increased percentage of neutrophils,
thus supporting transcriptomic profiling of
nasal mucosa as a sensitive tool for
assessment of viral infections (Table E2).
Taken together, these data demonstrate that
samples obtained from the nasal mucosa of
healthy and virus-infected participants are
characterized by distinct epithelial- or
immune-cell abundance profiles. Specifically,
samples obtained from participants infected
with SARS-CoV-2, IV, or RSV are
characterized by an increased abundance of
immune cells, whereas healthy participant
samples are enriched for epithelial cells.

Viral Infection Is Associated with
Increased Expression of IFN and
Innate Immune Response Genes in
the Nasal Mucosa
To investigate whether specific gene
expression patterns correlate with clinical
parameters, we performed aWGCNA.
Analysis of all participant samples (n=105,
both children and adults) identified seven
modules, three of which significantly
correlated with one or more clinical
parameters (Figure 4A). Module 7 positively
correlated with age and did not correlate
with any other parameter, suggesting it
contained age-related genes not associated
with a viral infection. Enrichment analysis

revealed that this age-related module
enriched for genes involved in GO biological
processes such as RNA processing and
included several small nucleolar RNA genes
(snoRNAs) such as SNORA49 and SNORD8
(Table E3), which have been proposed as
aging markers (48) (Figure 4B). Modules 3
and 4 positively correlated with the number
of SARS-CoV-2 viral reads. Module 3, which
positively correlated with SARS-CoV-2 and
IV reads, enriched for genes involved in
response to virus and type I IFN signaling
pathway (Figure 4B). Module 4 also
correlated with RSV reads and enriched for
genes involved in GO biological processes
associated with neutrophil activation,
chemotaxis, and leukocyte differentiation.

We next focused only on pediatric
samples to identify distinct modules
correlated with specific viral infections and
clinical outcomes. WGCNA identified seven
modules within the pediatric cohort (n=76)
(Figure 4C). Modules 3, 4, and 5 correlated
with SARS-CoV-2 reads (Figure 4C).
Module 3 also correlated with RSV reads and
enriched for genes involved in the GO
biological processes inflammatory response,
regulation of IL-6 production, and T cell
activation (Figure 4D). Module 5 correlated
with both SARS-CoV-2 and IV reads and
enriched for genes involved in response to
virus, type I IFN signaling, and chemokines,
including CXCL10 (Figure 4E). Module 4
was the only module unique to SARS-CoV-2
reads. The 92 genes that made up this
module did not enrich for specific GO
biological processes but included the antiviral
transcription factor IRF8, the chemokines
CXCL9 and CXCL11, and the T-cell marker
CD4 (Figure 4E). There was no significant
correlation between any of the seven
modules and severity of illness or outcomes.
Taken together, these data demonstrate that
in participants with SARS-CoV-2, RSV, or
IV infection, the nasal mucosa is
characterized by the expression of genes
associated with innate and adaptive immune
responses.

Local IFN Response Is Independent of
Age and Virus
AsWGCNA identified antiviral IFN
signaling as a shared feature of viral infection
with SARS-CoV-2, IV, or RSV in our cohort,
we next focused on this pathway.We found
that gene lists for type I and type II IFN
responses largely overlap, with 75% of type I
IFN response genes overlapping with type II
IFN response genes. Therefore, we compiled
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Figure 1. Description of the cohort. (A) Clinical course of pediatric participants. Timing of symptom onset (diamond), admission (square),
sample collection (triangle), discharge (circle), hospital stay (thin line), and duration of advanced (HFNC, NIPPV, or IMV) respiratory support
(bold line) of hospitalized children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (n=36), RSV (n=24), and IV (n=9). (B)
Self- or parent/guardian-reported time since symptom onset at the time of sample collection was similar between all participant groups. Pairwise
comparisons of medians performed using the Mann-Whitney U test. (C) Children with RSV infection had a longer hospital length of stay than
children with SARS-CoV-2 infection. Pairwise comparisons of medians performed using the Mann-Whitney U test. (D) Higher proportions of
children with IV and RSV infection required HFNC, NIPPV, and IMV at peak illness severity when compared with children with SARS-CoV-2
infection. Proportions compared using Fisher’s exact test. All P values were adjusted using Benjamini-Hochberg FDR correction. Differences
were not significant (P-adjusted.0.05) unless noted. FDR= false discovery rate; HFNC=high flow nasal cannula; IMV= intermittent mechanical
ventilation; IV= influenza virus; NIPPV=noninvasive positive pressure ventilation; RSV= respiratory syncytial virus.
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a list of IFN-response genes using hallmark
pathways for IFN-a and IFN-g responses
(49, 50). Comparison of normalized
expression across all participant groups
revealed an increased expression of IFN
response genes in patients with RSV, IV, and
SARS-CoV-2 compared with healthy
controls that did not correlate with age
(Figures 5A–5C and Table E4). Specifically,
we did not observe differences in the IFN
response between children and adults
infected with SARS-CoV-2 (Figure 5B).
Although neither age nor type of viral
infection correlated with the IFN response,
we found a significant correlation with the
viral load measured by an average number of
viral reads (Figure 5D). Consistent with the
lack of correlation between viral load, the
severity of illness, or the time from symptom
onset, the IFN response did not correlate
with clinical outcomes such as duration of
respiratory support and ICU length of stay
(Figures E3A and E3B). Interestingly,
although we detected an IFN response
signature in the majority of virus-infected
participants, we did not detect the expression
of secreted type I, type II, or type III IFNs at
the transcriptional level in a majority of
patients with RSV or SARS-CoV-2 infection
(Figure 5E and Table E4). Secreted IFNs
were primarily detected in participants with
IV infection, consistent with this cohort
having the highest average expression of IFN
response genes overall (Figures 5B and 5E).
This finding suggests that the nasal mucosa is
not a source of secreted IFNs in RSV and
SARS-CoV-2 infection.

Adults, but Not Children, with
Asymptomatic to Mild Disease
Upregulate T-Cell Activation, TCR
Signaling, and Neutrophil
Activation Genes
As the IFN response was not different
between children and adults infected with
SARS-CoV-2 (Figure 5B), we sought to
determine how the expression of genes in
other immune-related pathways compared in
children and adults with asymptomatic to

mild SARS-CoV-2 infection. We focused on
participants with high viral loads (average
SARS-CoV-2 viral read. 6 CPM, median
threshold within our cohort) to ensure active
SARS-CoV-2 infection (Figure E4A). In line
with our previous observation among all
participants (Figure 5B), no difference in the
magnitude of the IFN response between this
subset of children and adults was observed
(Figure E4A). The cellular composition was
also similar between groups, allowing us to
compare gene expression differences without
cellular composition bias (Figure E4B). We
did not observe differences in ACE2 or
TMPRSS2 expression between children and
adults (Figure E4A). The comparison of
children and adults with asymptomatic to
mild disease and high SARS-CoV-2 viral
load identified 737 differentially expressed
genes (Figure 6A). Genes upregulated in
children compared with adults (IL18,
IL18RAP, IL23A, and KRT17) were enriched
for epithelial repair processes (keratinization
and regulation of epithelium regeneration)
and distinct innate immune response-related
processes (response to TNF and regulation of
leukocyte activation) (Figures 6B and 6C and
Table E5). This observation was supported
by additional enrichment analyses,
demonstrating keratinization and TNF-
signaling gene sets were significantly
enriched in children compared with adults
(Figure E4C). In line with our previous
findings in Figure 5 and Figure E4A, GSEA
demonstrated that genes involved in the IFN
response were not significantly enriched in
children or adults with high viral load and
asymptomatic to mild SARS-CoV-2
infection (Figure E4D). Instead, genes
upregulated in adults compared with
children enriched for distinct innate immune
response processes involved in neutrophil
function and chemotaxis (neutrophil
function and IL-8 signaling) (Figures 6B and
6C). Expression of neutrophil chemotactic
factor IL8 and its receptors, CXCR1 and
CXCR2, were upregulated in adults
compared with children (Figure 6C). Of
note, IL17RA, the receptor for the

inflammatory cytokine IL-17, which is
secreted by activated T cells (51, 52), was
upregulated in adults compared with
children (Figure 6C). These data suggest that
T-cell signaling and activation are
upregulated in adults compared with
children. To further investigate whether
transcriptional signatures in adults enriched
for T-cell function, we performed GSEA and
found that genes involved in TCR signaling
and T-cell activation (CD3E, PTEN, ITK,
VAV1, andHLA-E) were significantly
enriched in adults compared with children
(Figure 6D).

Taken together, these data suggest that,
compared with children, the immune
response in the nasal mucosa of SARS-CoV-
2–infected adults with active asymptomatic
to mild disease is characterized by increased
TCR signaling and downstream T-cell
activation.

Discussion

The majority of children infected with SARS-
CoV-2 experience mild symptoms similar to
the common cold. The mechanisms
underlying this relative protection from
severe infection in children compared with
adults are unclear. Differences in expression
of the SARS-CoV-2 entry factors or response
to the virus at the primary site of infection
between children and adults have been
proposed as potential mechanisms (53, 54);
however, these hypotheses have not been
directly tested to date. In our cohort of
children infected with SARS-CoV-2, the local
IFN response in the nasal mucosa was largely
the same as non-hospitalized adults infected
with SARS-CoV-2 and children with severe
RSV infection. This similarity in IFN
responses across age, virus, and severity of
illness suggests that age-related differences in
SARS-CoV-2 infection outcomes are
independent of the primary IFN response to
the virus in the nasal mucosa.

Age-related differences in expression of
ACE2 and TMPRSS2 have been proposed as

Figure 2. (Continued). A/California/07/2009, and RSV/S2 ts1C in RNA-sequencing data for all participant samples (n=105). Heatmap of viral
genes for SARS-CoV-2, IV, and RSV. Log-transformed pseudocounts (counts per million [CPM]1 1) are shown. (B) Normalized reads were
averaged for all 11 SARS-CoV-2 viral genes. Average SARS-CoV-2 reads did not differ between children (yellow circle) and adults (purple
triangle). Log-transformed pseudocounts (CPM1 1) are shown. (C) Averaged SARS-CoV-2 viral reads did not correlate with ACE2 expression.
Log-transformed pseudocounts (CPM11) are shown. Pearson correlation coefficient (r) and P value are shown. (D) Normalized expression of
ACE2 and TMPRSS2 was similar across all participant groups; differences not significant, Kruskal-Wallis testing with Benjamini-Hochberg FDR
correction; all adjusted P values.0.05. Log-transformed pseudocounts (CPM11) are shown. (E) ACE2 and TMPRSS2 expression did not
correlate with age in uninfected nor infected participants. Pearson correlation coefficients (r) and P values are shown. Log-transformed
pseudocounts (CPM11) are shown.
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Figure 3. Cell-type deconvolution of the transcriptomic signatures in the nasal mucosa demonstrates an influx of immune cells after viral
infection. (A) Heatmap demonstrating the relative abundance of cell types as determined by in silico deconvolution of bulk RNA-sequencing
gene expression profile (see METHODS). Hierarchical clustering on samples from 105 participants identified six clusters enriched for immune or
epithelial cells. Z-score normalized relative abundance values are shown. (B) Relative abundance of immune and epithelial cell types across all
six participant groups. Participants with a viral infection had a significantly higher relative abundance of immune cells than healthy participants.
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modulators of clinical severity of SARS-CoV-
2 infections. ACE2 is the cell surface receptor
bound by the SARS-CoV-2 spike protein,
and TMPRSS2 is a host protease that cleaves
the spike protein to allow for efficient
binding and cell entry (8). Previous studies
have demonstrated an association between
age and the expression of ACE2 and
TMPRSS2, suggesting that low levels of
expression of ACE2 and TMPRSS2 in
pediatric airway epithelial cells could protect
children from severe infection (11, 12, 40). In
our cohort, we did not observe a difference
in the expression of ACE2 or TMPRSS2
between children and adults, in agreement
with recent publications (55, 56). Although
some reports suggested thatACE2
expression may increase in response to IFN
stimulation (7, 40), we saw no increase in the
expression of ACE2 and TMPRSS2
expression during active SARS-CoV-2 or
other viral infections, supporting previous
reports that IFN signaling does not lead to
increased ACE2 expression (41–43).

Our study’s unique strength is the
inclusion of the appropriate controls: healthy
children and adults and children infected
with other respiratory viruses. This allowed
us to report our findings on SARS-CoV-2
infection in the context of RSV and IV
infections, which are known to induce severe
illness requiring hospitalization and
respiratory support. We found a high degree
of similarity in the local response to SARS-
CoV-2, RSV, and IV infections. This finding
agrees with Mick and colleagues’ report
using metatranscriptomics on
nasopharyngeal swabs that revealed
substantial overlap between SARS-CoV-2
and other acute respiratory infections in
adults (57). Although there was one module
of 92 genes that only correlated with SARS-
CoV-2 viral reads and not RSV or IV viral
reads, this module did not correlate with
severity of illness or outcomes. Thus, our
findings suggest that other factors, such
as systemic immune responses, may
determine the differences in disease
severity between children with SARS-CoV-2,
RSV, and IV.

Given that the expression of SARS-
CoV-2 entry factors and the local IFN
response at the primary site of infection does
not differ between children and adults, other
factors must mediate the relative protection
in children and unpredictable susceptibility
in elderly adults infected with SARS-CoV-2.
We observed an age-related difference in
neutrophil and T-cell–related gene
expression in participants with
asymptomatic to mild SARS-CoV-2
infection. Despite similar relative abundance
of neutrophils in the nasal mucosa (Figure 3),
adults with SARS-CoV-2 infection
demonstrated increased expression of
neutrophil migration and activation genes
compared with children. The biological
impact of the increased gene expression in
adults, but not children, is unclear. Future
studies sampling the nasal mucosa over
several days would provide useful insight
into the functional consequence of these
differences in gene expression on neutrophil
recruitment and activation over the course of
infection. In a study exposing healthy adult
volunteers to RSV, the presence of
neutrophilic inflammatory signals in the
nasal mucosa before exposure was associated
with development of symptomatic disease
(58). This suggests neutrophil activation may
be a risk factor for symptomatic viral
infection in adults. Children with severe viral
pneumonia have been reported to have an
increased ratio of CD81 to CD41T cells
(59). We observed that the relative
abundance of T cells in the nasal mucosa was
similar in our cohort of children and adults
infected with SARS-CoV-2. However, CD8
was a leading-edge gene in the T cell
activation GSEA, which was enriched in
adults compared with children. In contrast,
CD4 had one of the highest enrichment
scores in the TCR pathway GSEA, which was
enriched in children compared with adults
(Figure 6D, Figure E4E, and Table E6). These
exploratory data suggest a potential age-
related difference in T-cell subset ratios in
the nasal mucosa of children and adults
infected with SARS-CoV-2. Further
investigation is needed to assess how

differences in neutrophil activation and
T-cell subsets may contribute to age-related
differences in severity of SARS-CoV-2
infection.

Even before the COVID-19 pandemic,
a substantial number of individuals in the
population had antibodies and T cells that
recognize b coronaviruses and can cross-
react with SARS-CoV-2. These antibodies
and T cells are generated over time as
individuals are exposed to seasonal
coronaviruses (53, 54). In our cohort, we
observed an increase in TCR signaling and
T-cell activation gene expression in adults
compared with children with
asymptomatic to mild SARS-CoV-2. This
finding may represent increased TCR
signaling and activation in the setting of
cross-reactive T cells. Such cross-reactive
memory T cells have been reported for
SARS-CoV (60) and recently for SARS-
CoV-2 (61–65). This observation initially
led to speculation that these cross-reactive
antibodies and T cells could play a
protective role in children and young
adults and that vanishing adaptive
immunity would make elderly individuals
more susceptible to SARS-CoV-2.
However, in another study, a larger
number of SARS-CoV-2 cross-reactive
memory T cells was observed in the elderly
and patients with severe compared with
mild COVID-19 (65). Importantly, these
cross-reactive T cells exhibited lower
avidity and reduced antiviral responses
when stimulated with SARS-CoV-2
peptides compared with T cells from
patients who recovered from COVID-19.
Thus, instead of being protective, these
cross-reactive, low-avidity T cells, which
are less efficient at virus elimination,
could contribute to prolonged
inflammatory signaling. This hypothesis
is attractive as it explains the differences
in the epidemiology of SARS-CoV-2,
which disproportionately affects elderly
individuals. Children and young adults,
who likely have fewer lifetime
coronavirus exposures, often have only
mild symptoms, despite having viral

Figure 3. (Continued). Adjusted P values calculated using the Kruskal-Wallis test with Benjamini-Hochberg FDR correction are shown. Adjusted
P values,0.05 were considered statistically significant. (C) Number of days between symptom onset and day of sample collection were similar
for immune-enriched and epithelial-enriched samples. n.s. = not significant, by Mann-Whitney U test. (D) SARS-CoV-2 viral load, defined as
average normalized reads for 11 SARS-CoV-2 viral genes, is significantly higher in immune-enriched clusters in comparison to epithelium-
enriched clusters. Log-transformed pseudocounts (CPM11) are shown. The adjusted P value calculated by Mann-Whitney U test is shown.
(E) Normalized expression of ACE2 in epithelial- and immune-enriched samples is similar across all participant groups; differences are not
significant. Kruskal-Wallis testing with Benjamini-Hochberg FDR correction; all adjusted P values.0.05. Log-transformed pseudocounts
(CPM11) are shown.
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Figure 4. Transcriptional signatures associated with viral infection enrich for inflammatory and IFN response genes in children and adults. (A) A
total of 2,170 HVGs for all participant samples (n=105) were analyzed using WGCNA. Module–trait relationships were identified for seven
modules. Modules 1–7 contain 33, 199, 248, 992, 375, 32, and 51 genes, respectively. A total of 240 genes that did not fall into any module
were assigned to the null module. (B) Gene ontology (GO) biological process enrichment for modules correlating with SARS-CoV-2 viral reads.
(C) A total of 2,024 HVGs identified among pediatric participant samples only (n=76) were analyzed using WGCNA. Module–trait relationships
were identified for seven modules. Modules 1–7 contain 43, 385, 823, 92, 200, 204 and 46 genes, respectively. A total of 231 genes that did not
fall into any module were assigned to the null module. (D) GO biological process enrichment for modules correlating with SARS-CoV-2 reads.
(E) Scatterplot of correlation between gene significance (GS) for SARS-CoV-2 reads versus module membership (MM) in modules 3, 4, and 5.
Pearson correlation coefficients (r) and P values are shown. P values,0.05 were considered statistically significant. Linear regression line (blue)
with a 95% confidence interval (gray) are shown. Coll cannula= low-flow or high-flow nasal cannula at time of sample collection; Coll none=no
respiratory support at time of sample collection; Coll O2= supplemental oxygen at time of sample collection; Coll ppv=positive pressure
ventilation (PPV) (noninvasive or invasive) at time of sample collection; Hosplos= hospital length of stay; HVGs= highly variable genes; ICU
los= ICU length of stay; Oxy duration=duration of oxygen therapy; Peak cannula= low-flow or high-flow nasal cannula was the highest
respiratory support received during hospitalization; Peak none=no respiratory support during hospitalization; Peak O2= received supplemental
oxygen during hospitalization; Peak ppv=PPV was highest respiratory support received during hospitalization; reg. = regulation; Resp
Illness= respiratory illness; Supp dur= cumulative duration of any support (days); Sx coll = time between symptom onset and collection (days);
WGCNA=weighted gene coexpression network analysis.
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loads in the upper airways comparable
to adults (3, 14). Although multiple
studies have investigated the adaptive
immune response in adults infected
with COVID-19, similar systematic
studies in the pediatric population are
lacking.

Our study has several limitations. First,
our institution used two different PCR
platforms for the detection of SARS-CoV-2
during the study period. Owing to
differences in methodology, viral loads
cannot be directly compared between the
platforms. Moreover, PCR testing was not

available for the adults accompanying
children infected with SARS-CoV-2 during
the study period. To overcome this
limitation, we used dual RNA-seq, which
allows for simultaneous host transcriptomic
analysis and pathogen characterization (21).
By creating custom hybrid genomes, we were
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able to identify and quantify viral transcripts
in our samples as a surrogate for viral load,
thus enabling comparison across all groups
in our study. Second, although our study
includes children infected with other
respiratory viruses (RSV and IV), which
serve as proper controls to SARS-CoV-
2–infected children, it primarily includes
hospitalized children with SARS-CoV-2,
representing a minority of pediatric SARS-
CoV-2 infections. However, 14% of our
pediatric cohort were asymptomatic with
incidental SARS-CoV-2 diagnoses and 71%
of symptomatic SARS-CoV-2–infected
children never required supplemental oxygen
or other respiratory support, making them
comparable to our adult cohort. The local
host response in the nasal mucosa of
asymptomatic children could not be
distinguished frommore severely affected
pediatric participants, suggesting factors
outside the upper respiratory tract drive
severe SARS-CoV-2 infections in children.
Third, our transcriptomic analysis was
performed on a biopsy from a complex tissue
containingmultiple epithelial and immune
cell types (44). Thus, our results would have
been affected by the changes in the
abundance of the specific cell types, either
owing to age- or disease-related differences in
tissue composition or operator sampling bias,
if we did not account for sample composition.

We applied in silico tissue deconvolution
(38) to account for differences in tissue
composition, which allowed us to perform a
more accurate comparison between samples
with similar compositions. This comparison
demonstrated that among subjects with
high SARS-CoV-2 viral load and similar
cellular composition, children exhibit
decreased TCR signaling, decreased T cell
activation, and increased macrophage
activation on a per-cell level. The use of
complementary techniques that enable
analysis at the single-cell level, such as
single-cell RNA-seq, will allow for a more
cell-type–specific assessment of changes
associated with SARS-CoV-2 or other viral
infections. Recently, single-cell RNA-seq
has been applied to understand virus-host
interactions in children infected with IV
(66), and similar efforts are underway in
SARS-CoV-2 (67). However, single-cell
RNA-seq has several limitations that do not
apply to bulk RNA-seq. Sample processing
and cryopreservation are tolerated to
different degrees by different cell types, with
certain populations, such as neutrophils,
particularly difficult to recover. Unlike with
bulk RNA-seq, where cells are immediately
lysed and stored for RNA isolation, true cell
proportions will not be captured using
cryopreserved samples for single-cell RNA-
seq.

Conclusions
We present evidence that the IFN response
to SARS-CoV-2 infection at the primary site
of infection is similar between children and
adults and comparable in magnitude to other
common respiratory viruses. In contrast,
TCR signaling, T-cell activation, and
neutrophil activation is increased in adults
compared with children with mild SARS-
CoV-2 infection (Figure E5). Our findings
suggest that adults may be at increased risk
for severe SARS-CoV-2 infection compared
with children owing to age-related
differences in the cellular immune response
to SARS-CoV-2.�
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