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1b expression in M1
(LPS) macrophages

Sheyda Bahiraii 1,2, Martin Brenner1,2,3, Fangfang Yan1,4,
Wolfram Weckwerth3,5 and Elke H. Heiss1*
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Murine macrophages activated by the Toll-like receptor 4 agonist

lipopolysaccharide (LPS) polarize to the M1 type by inducing proinflammatory

marker proteins and changing their energy metabolism to increased aerobic

glycolysis and reduced respiration. We here show that the aliphatic

isothiocyanate sulforaphane (Sfn) diminishes M1 marker expression (IL-1b, IL-
6, TNF-a, iNOS, NO, and ROS) and leads to highly energetic cells characterized

by both high glycolytic and high respiratory activity as assessed by extracellular

flux analysis. Focusing on a potential connection between high glycolytic

activity and low IL-1b expression in M1 (LPS/Sfn) macrophages, we reveal

that Sfn impedes the moonlighting function of pyruvate kinase M2 (PKM2) in

M1 macrophages. Sfn limits mono/dimerization and nuclear residence of PKM2

accompanied by reduced HIF-1a levels, Stat3 phosphorylation at tyrosine 705,

and IL-1b expression while preserving high levels of cytosolic PKM2 tetramer

with high glycolytic enzyme activity. Sfn prevents glutathionylation of PKM2 in

LPS-stimulatedmacrophages whichmay account for the reduced loss of PKM2

tetramer. Overall, we uncover PKM2 as a novel affected hub within the anti-

inflammatory activity profile of Sfn.
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Introduction

Macrophages are cells of the innate immune system with a

variety of functions, including combat of infections, initiation or

resolution of inflammation, phagocytic clearance of debris,

antigen processing and presentation to T-cells, as well as

maintenance of tissue homeostasis, shortly they “SHIP,” i.e.

sample, heal, inhibit, and present (1). In order to engage in

such diverse and context-dependent activities, macrophages are

highly plastic and adopt distinctive functional phenotypes or

polarization states. There are the classically activated pro-

inflammatory M1 type and the alternatively activated anti-

inflammatory M2 type, representing only the extremes of a

continuum of possible distinct intermediates. M1 macrophages

are typically induced by lipopolysaccharide (LPS) alone or

interferon (IFN)-g/LPS, kill and clear pathogens, and show

increased expression of proinflammatory markers, such as

interleukin (IL)1-b, IL-6, tumor necrosis factor (TNF)-a, or
inducible NO synthase (iNOS or NOS2), and produce

microbicidal reactive oxygen species (ROS) and nitric oxide

(NO). M2(a) macrophages are obtained after stimulation with

IL-4 or IL-13 and participate in tissue remodeling, wound repair,

and express transforming growth factor (TGF)-b, arginase 1,

mannose receptor (Mrc1; CD206), IL-10, or C-type lectins

(Mgl1/2) and produce polyamines (2, 3). Notably, macrophage

polarization is accompanied and partly causally driven by

characteristic shifts in their energy metabolism. Those allow a

sufficient supply of needed ATP reducing equivalents and

building blocks, as well as substrates for necessary

posttranslational modifications or epigenetic tags. M1

macrophages stand out by the elevated activity of aerobic

glycolysis (similar to the Warburg effect in cancer cells), a

broken tricarboxylic acid (TCA) cycle with an accumulation of

citrate, itaconate, and succinate, as well as the use of

mitochondria for ROS rather than for ATP production. M2

macrophages usually show coupled oxidative phosphorylation

(OXPHOS) with augmented fatty acid oxidation, an intact TCA

cycle, or an increased hexosamine pathway (4–7).

Sulforaphane (Sfn), an aliphatic isothiocyanate found as a

glucosinolate precursor in cruciferous vegetables, is highly

investigated in the context of cancer prevention and

inflammation-related disorders, including psoriasis ,

inflammatory bowel disease, neurodegeneration, or

atherosclerosis (e.g., 8–13). Numerous in vitro and in vivo

studies revealed the ubiquitin ligase adapter Keap1 as one of

Sfn’s main targets (14, 15). Keap1, in turn, is an inhibitor (by

triggering proteasomal degradation) of the cytoprotective

transcription factor nuclear factor E2-related factor (Nrf)2,

which is primarily involved not only in the adaptive

homeostatic response to redox-, proteotoxic-, or xenobiotic

insults but also in diminishing inflammation (16, 17).

Intriguingly, activated Nrf2 has also an impact on cellular
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metabolism (18–21). The consolidated anti-inflammatory

property of Sfn, the connection between activated Nrf2 and

cellular bioenergetics, as well as the important role of

metabolism for macrophage biology, prompted side-by-side

examination of the influence of Sfn on murine macrophage

polarizat ion and bioenerget ics as wel l as of their

potential interdependence.
Material and methods

Reagents and chemicals

Stimuli for macrophage polarization, i.e., LPS from

Escherichia coli O55:B5 (#L2880) and mouse IL-4 (#SRP3211),

as well as Sfn (#S4441), TEPP-46 (#505487), FX11 (#427218), 2-

deoxy-D-glucose (2-DOG) (#D8375), rotenone (rot) (#R8875),

antimycin A (AA) (#A8674), oligomycin (#O4876), sodium

pyruvate (#P5280), a-D-glucose (#158968), sulfanilamide

(#S9251), and napthyl-ethylene-diamine (#8.06206) were

purchased from Sigma Aldrich. Dimethyl sulfoxide (DMSO)

(#M81802, Sigma, Sigma Aldrich, Vienna, Austria) was used as

vehicle control and solvent for stock solutions of Sfn, TEPP-46,

and other commonly used inhibitors. The DMSO concentration

was even throughout the different conditions of one experiment

and never exceeded a final concentration of 0.2%. 2′,7′-
Dichlorodihydrofluorescein diacetate (H2DCFDA; #D399) was

obtained from Invitrogen. Disuccinimidylsuberate (DSS) was

provided by Thermo Fisher Scientific (#A39267). Media and

supplements for cell culture were provided by Invitrogen or

Lonza. Anti-PKM2 (#3198), anti-phospho-PKM2 (Tyr105)

(#3827), anti-IL-1b (#12242), anti-HIF-1a (#14179), anti-

phospho-Stat3 (Tyr705) (#9131), anti-a/b-tubulin (#2148),

anti-lamin B1 (#12586S), anti-rabbit secondary horseradish-

peroxidase (HRP)-labeled (#7074), and anti-mouse secondary

HRP-labeled antibodies (#7076) were purchased from Cell

Signaling Technologies, anti-actin antibody was from MP Bio

(#0869100-CF), and the anti-glutathione (#sc-52399) antibody

was obtained from Santa Cruz.
Cultivation and treatment of cells

Immortalized bone marrow-derived macrophages (iBMDM)

were kindly provided by Laszlo Nagy (Debrecen University,

Hungary) and cultured in Dulbecco’s modified Eagle’s medium

(DMEM)/high glucose supplemented with 10% filtered L-929

cell-conditioned medium containing macrophage colony-

stimulating factor (M-CSF), 10% heat-inactivated FBS, 2 mM

L-glutamine, 100 IU/ml penicillin, and 100 µg/ml streptomycin

(iBMDM medium) at 37°C with 5% CO2. L-929-conditioned

media were prepared by seeding L-929 cells (1.7 × 107) in 40 ml
frontiersin.org

https://doi.org/10.3389/fimmu.2022.935692
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bahiraii et al. 10.3389/fimmu.2022.935692
of complete DMEM incubated at 37°C with 5% CO2 for 7 days.

J774A.1 murine macrophages (LGC PromoChem) were cultured

in DMEM/high glucose containing 10% heat-inactivated FBS, 2

mM L-glutamine, 100 IU/ml penicillin, and 100 µg/ml

streptomycin (complete DMEM) at 37°C with 5% CO2. For

polarization and treatment, iBMDM were seeded in iBMDM

medium (10 × 104 cells/well for 96-well plates, and 1.5 × 106

cells/well for 6-well plates) 24 h prior to the experiments. The

medium was then replaced with complete DMEM medium

containing the desired test compounds and inhibitors, and

cells were incubated for 30 min at 37°C. Polarization was

initiated by the addition of LPS (25 ng/ml) and IL-4 (20 ng/

ml) to obtain proinflammatory M1 (LPS) and anti-inflammatory

M2 (IL-4) macrophages, respectively. J774A.1 cells were handled

accordingly, except that they were routinely cultured in complete

DMEM and exposed to 500 ng/ml LPS for successful M1

polarization. For a graphic depiction of the treatment protocol,

please refer to Supplementary Figure S1. For the rest of the

manuscript, we refer to LPS- and IL-4–treated macrophages as

M1 (LPS) and M2 (IL4), respectively, and to macrophages

pretreated with Sfn for 30 min and then exposed to LPS as M1

(LPS/Sfn).
Assessment of nitric oxide/nitrite

Cells were seeded in 96-well plates and treated as indicated.

An aliquot of the cell culture supernatant was then mixed 1:1

with the freshly prepared Griess reagent (0.5% sulfanilamide,

0.05% naphthyl-ethylene-diamine) and incubated for 10 min at

room temperature. The absorbance was measured at a

wavelength of 550 nm using a microplate spectrophotometer

(TECAN Sunrise™ Austria).
TABLE 1 List of qPCR primers (5’-3’).

mrc1 Fwd: CTCTGTTCAGCTATTGGACGC
Rev: CGGAATTTCTGGGATTCAGCTTC

arg1 Fwd: TTTTAGGGTTACGGCCGGTG
Rev: CCTCGAGGCTGTCCTTTTGA

mgl1 Fwd: TGCAACAGCTGAGGAAGGACTTGA
Rev: AACCAATAGCAGCTGCCTTCATGC

mgl2 Fwd: GCATGAAGGCAGCTGCTATTGGTT
Rev: TAGGCCCATCCAGCTAAGCACATT

cd36 Fwd: GAGCAACTGGTGGATGGTTT
Rev: GCAGAATCAAGGGAGAGCAC
Assessment of intracellular reactive
oxygen species

After the indicated treatments, cells were incubated with 20

µM of the ROS-sensitive dye 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCFDA) for 30 min at 37°C. After washing steps

with PBS, fluorescence (geo mean after correction for

autofluorescence) was monitored by flow cytometric analysis

in the FL1H channel of a FACSCalibur™ (BD Biosciences).
nos2 Fwd: CAGAGGACCCAGAGACAAGC
Rev: TGCTGAAACATTTCCTGTGC

il6 Fwd: GAGGATACCACTCCCAACAGACC
Rev: AAGTGCATCATCGTTGTTCATACA

il1b Fwd: CAACCAACAAGTGATATTCTCCATG
Rev: GATCCACACTCTCCAGCTGCA

ppia Fwd: CCAAGACTGAATGGCTGGATG
Rev: TGTCCACAGTCGGAAATGGTG
RNA extraction and qPCR analysis

Total RNA was extracted using an RNA isolation kit (#845-

KS-2040250, IST Innuscreen GmbH) according to the

manufacturer’s protocol. RNA integrity was routinely assessed

by agarose gel electrophoresis, and quantification was achieved by
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spectrometric measurements using a NanoDrop 2000 (Thermo

Fisher Scientific), also allowing a purity check via the A260/A280

ratio (≥2.0). cDNA was synthesized from 1 mg of RNA using a

High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher-

#4368813), again following the manufacturer’s instructions.

mRNA quantitation was performed using the Luna Universal

qPCR Master Mix (#M3003E, New England Biolabs) and the

LightCycler®480 Real-Time PCR System (Roche Diagnostics

GmbH), using a cycling protocol of one denaturation step

(10 min at 95°C) and up to 45 amplification cycles (15 s at 95°

C, 30 s at 60°C) as well as melting curves between 55 and 95°C.

The quality of the amplification was ensured by a single peak in

the melting curve, only one amplicon of the desired size on an

agarose gel, and no amplification in the negative (no template)

control. Data analysis was performed by using the (2–DDCt)

method. Used gene-specific primers were designed with the help

of Primer3 and BLAST (for sequences, see Table 1) and ordered

from Thermo Fisher Scientific. Their amplification efficiencies

were confirmed to range between 95.0% and 100% under our

experimental conditions. ppia was taken as a reference gene as it

excelled in pilot experiments over other tested reference genes

(actin, 18S, stx5, or hprt1) in the used experimental setups due to

its stable expression throughout the employed treatment regimens

and its Cq values close to the ones of the investigated target genes.
Assessment of polyamine synthesis, TGF-
b− or TNF-a secretion

After treatment as indicated, the total polyamine content

was measured by the Total Polyamine Assay Kit from Biovision

(#K475-100). Cytokine release (TNF-a and TGF-b) was assessed
frontiersin.org

https://doi.org/10.3389/fimmu.2022.935692
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bahiraii et al. 10.3389/fimmu.2022.935692
using the Mouse Tumor Necrosis Factor a ELISA Kit (#

RAB0477, Sigma Aldrich) or Transforming Growth Factor b-1
Mouse ELISA Kit (#BMS608-4, Invitrogen).
Protein extraction, crosslinking, and
Western blot analysis

Total cell lysates were obtained by incubation of washed

cells with NP40 lysis buffer (150 mM NaCl, 1% NP40, 10 mM

DTT in 50 mM Tris (pH 8.0)) with a mixture of protease and

phosphatase inhibitors on ice for 10 min. Cell lysates were

then scraped from the culture plates, followed by short

sonication. After centrifugation for 15 min (11,000×g at 4°

C), supernatants containing total protein were collected. For

fractionation of nuclear and cytosolic proteins, the NE-PER

nuclear and cytoplasmic extraction kit (#78833, Thermo

Fisher Scientific) was used following the manufacturer’s

instructions. For assessing mono/di/tetramers of PKM2, 5

mM of the crosslinker DSS was added to the cells for 30 min

prior to quenching with Tris-HCl (pH 7.5) to a final

concentration of 20 mM for 15 min at room temperature

and subsequent lysis. The protein concentration of the

samples was determined by the ROTI®Quant (#K0151, Carl

Roth) protein assay. Equal amounts of protein were separated

on 7.5% or 10% sodium dodecyl sulfate-polyacrylamide gels

by denaturing electrophoresis (SDS-PAGE) and transferred

to a 0.2-mm polyvinylidene difluoride membrane (PVDF).

The membranes were blocked with 5% bovine serum

albumin (BSA) in TBST for 1 h at room temperature and

incubated with specific primary antibodies at 4°C overnight

(antibody dilution 1:1,000 in TBST), followed by HRP-

conjugated secondary antibody incubation at room

temperature for 1 h. Signal intensity was measured using

enhanced chemiluminescence (ECL) and an Amersham

ImageQuant 800 imager (Cytiva). The densitometric

analysis of the bands was measured using proprietary

Cytiva or ImageJ software.
Immunoprecipitation

For assessment for glutathionylated PKM2, cell lysates were

prepared under nonreducing conditions and incubated with

anti-GSH antibody (dilution 1:100) at 4°C overnight. The

lysates were then added to washed magnetic A/G sepharose

beads (#88802, Pierce) and rolled end-over-end for 2 h at room

temperature. Beads were then thoroughly washed, and bound

antigen/antibody complexes were eluted by incubation with SDS

sample buffer (again, no reducing agent) at room temperature

for 10 min. Subsequent immunoblot analysis followed the

protocol described above.
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Extracellular flux analysis

Cells were seeded and treated as desired. On the day of

measurement, cells were scraped and plated (1 × 105 cells/well)

in XF24e-cell culture plates precoated with Corning® Cell-Tak

adhesive (#CLS354240, Sigma Aldrich). Cells were incubated in

an XF assay medium (pH 7.4/37°C) (#103575-100, Agilent

Technologies) supplemented with 2 mM glutamine, 1 mM

pyruvate, and 25 mM glucose for 1 h at 37°C in a non-CO2

incubator. Real-time extracellular acidification (ECAR) and

oxygen consumption (OCR) rates were measured in an XF24e

Flux Analyzer (Seahorse Bioscience-Agilent Technologies).

ECAR and OCR were monitored under basal conditions (as

well as after rotenone (Rot, 0.5 µM)/antimycin A (AA; 0.5 µM)

and 2-DOG injections (50 mM), using the proprietary glycolytic

rate assay protocol from Agilent (#103344-100). Data were

ana lyzed us ing the Wave sof tware package from

Agilent Technologies.
GC/MS-based analysis of citric acid,
itaconic acid, and succinic acid

iBMDM (5 × 105 cells/well) were washed with 2 ml of warm

0.9% NaCl and extracted in 1 ml precooled (−80°C) 80%MeOH.

A total of 5 µl of an internal standard mixture (norvaline, 10

mM; norleucine, 1.25 mM; phenyl b-D-glucopyranoside, 1.25
mM; raffinose, 1.25 mM) was added. Samples were shaken at 700

rpm for 15 min at 4°C and then centrifuged at 21, 000×g for

10 min at 4°C. In total, 450 µl of the supernatant was transferred

and dried in a vacuum concentrator (ScanVac, LaboGene) with a

stepwise gradient. Samples were stored at −80°C until further

processing. Derivatization was started by the addition of 20 µl of

methoxyamine hydrochloride solution (40 mg*ml−1 pyridines)

to the pellet and incubation for 90 min at 30°C and 700 rpm. For

silylation, 80 µl of n-methyl-N-trimethylsilyltrifluoracetamide

(MSTFA) was added and shaken for 30 min at 37°C and 750

rpm. The samples were centrifuged at 14,000×g for 4 min and

24°C. Furthermore, 70 µl of the supernatant was transferred to

glass vials with inserts and sealed with crimp caps. Even-

numbered n-alkanes (C10–C40) were measured with each

batch for retention index calculation. Metabolites were

analyzed utilizing gas chromatography and time-of-flight mass

spectrometry on a Pegasus BT GC-TOF-MS (LECO

Corporation, St. Joseph, MI, USA), according to a previously

established method with modifications (22). Each batch

consisted of a quality control mix, samples, blanks, and an

a lkane s tandard . Samples were separa ted by gas

chromatography (7890B, Agilent, Santa Clara, CA, USA) on

an Agilent column HP5MS (30 m length, 0.25 mm diameter,

0.25 µm film; Agilent Technologies, Santa Clara, USA) with a

flow rate of 1 ml helium/min in split-less mode. The following
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settings were used: injection temperature of 230°C, transfer line

of 250°C, temperature gradient as follows: 70°C for 1 min, then

increase by 9°C/min up to 340°C and hold for 15 min.

Metabolites were recorded on a BT-TOF mass spectrometer

(LECO Corporation) with an acquisition rate of 10 spectra/s, a

mass range of 50 to 550, and an ion source temperature of 250°C.

Files were deconvoluted and processed using the software

ChromaTOF (LECO Corporation, version 5.51.50.0.68774)

and matched to an in-house reference library. The metabolite

data set was normalized to the internal standard for the

corresponding split measurement with the minimum retention

index difference and the cell number for each condition with two

replicates, performed in a parallel experiment. ANOVA, Tukey’s

table, and boxplots were performed using the online tool

Metaboanalyst v5.0 with the following settings: no data

filtering, log transformation (base 10), and autoscaling.
Statistics

Unless stated otherwise, at least three independent biological

replicates were performed for the experiments. The bar graphs

depict the mean ± standard deviation (SD). Groups were

compared via ANOVA and multiple-comparisons tests by

using GraphPad Prism 6 software. Differences were considered

as significant if p < 0.05.
Results

Sfn impedes M1 marker expression in
LPS-treated iBMDM

In a first step, we investigated the influence of Sfn during M1

(LPS) and M2 (IL4) polarization of iBMDM. For all experiments,

Sfn concentrations were between 1 and 10 µM, which showed no

negative impact on the viability of differentiated iBMDM

(Supplementary Figure S2) after 24 h of incubation. In line with

previous reports (23–25), the presence of Sfn led to a significant

reduction of M1 traits in LPS-stimulated iBMDM: it significantly

reduced mRNA expression of ilb, il6, and nos2, diminished TNF-

a release, and reduced ROS and NO production (Figure 1).

Concerning M2 (IL4) polarization, Sfn did not elicit any (mgl1,

mgl2, arg1, cd36) or very minor (mrc1) inhibition or activation of

M2 marker mRNA expression or TGF-b secretion (Figure 2). It

significantly blunted only polyamine synthesis, a typical M2

response downstream of arginine conversion to urea (Figure 2).

This may be due to the reported inhibition of ornithine

decarboxylase, an enzyme in the polyamine synthesis pathway

(26), which, however, awaits experimental proof in our system.

Sfn had no impact on investigated markers in naïve macrophages

(Supplementary Figure S3).
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M1(LPS/Sfn) iBMDM show an intact TCA
cycle and both high glycolytic and
respiratory activities

In the next step, selected metabolic features were assessed by

extracellular flux and MS-based metabolite analyses. First, we

successfully confirmed expected bioenergetic changes during

polarization to M1 (glycolysishigh/OXHOSlow) and M2

(glycolysislow/OXHOShigh) macrophages under the used iBMDM

cultivation and treatment conditions (Supplementary Figure 4).

As the preceding functional marker analysis had uncovered that

Sfn mainly affected M1 polarization, we continued to compare

metabolic features of M0, M1 (LPS), and M1 (LPS/Sfn). Judged

against M0 and M1 (LPS), M1 (LPS/Sfn) showed elevated

glycolytic activity as evident in higher ECAR values (Figure 3A).

Sfn also enabled macrophages to maintain higher OXPHOS rates

after LPS stimulation than seen in control M1 (Figures 3B, C). Sfn

was able to blunt the breaks in the TCA cycle, which were obvious

by increased levels of citrate, itaconate, and succinate after 24 h in

M1 (LPS) (Figure 3D).

To sum up, Sfn showed nomarked impact onM2 polarization

but impeded expression of proinflammatory M1 markers, favored

an intact TCA cycle, and preserved OXPHOS with concomitant

high glycolytic activity in LPS-treated macrophages.
Interference with glycolysis does not
attenuate the inhibitory effect of Sfn on
IL-1b expression

Notably, the expression of IL-1b is highly dependent on and

driven by increased aerobic glycolysis during M1 polarization

(27–29). Therefore, the observation of increased glycolytic rate

and parallelly inhibited IL-1b expression in Sfn-treated M1

(LPS) macrophages was somewhat counterintuitive. In order

to assess whether elevated glycolytic activity truly contributed to

the inhibition of IL-1b expression by Sfn, DOG as an inhibitor of

hexokinase or FX11 as an inhibitor of lactate dehydrogenase (at

submaximal inhibitory concentrations to impede but not

completely wipe out glycolysis and M1 polarization) were co-

administered to M1 macrophages. As expected, the glycolytic

inhibitors reduced il1bmRNA expression upon LPS stimulation

(Figures 4A, B), but they could not markedly weaken the anti-

inflammatory potential of Sfn (Figures 4C, D), as evident in

comparable inhibition rates in the presence and absence of

glycolytic inhibitors. A similar picture was observed when

examining protein levels of pro-IL-1b: DOG alone already

reduced expression of the cytokine precursor but could not

diminish the relative inhibition by Sfn (Figure 4E). These data

suggest that the observed increased glycolytic activity per se was

not essential but rather a bystander in the inhibition of IL-1b
expression upon Sfn exposure.
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M1 (LPS/Sfn) displays reduced HIF-1a
abundance and Stat3 (Y705)
phosphorylation accompanied by
reduced dimerization, nuclear
translocation, and glutathionylation
of PKM2

To shed more light on mechanisms beyond increased

glycolytic activity in M1 (LPS/Sfn), cellular glucose uptake

rates and expression of glycolytic enzymes were further

examined. Whereas LPS stimulation induced a significant

increase in the glucose uptake rate, there was no significant

difference between M1 (LPS) and M1 (LPS/Sfn) macrophages

(Supplementary Figure S5A). Moreover, Sfn did not markedly

alter the expression of key glycolytic enzymes in M1

macrophages , including hexokinase (HK) 1, HK2,
Frontiers in Immunology 06
phosphofructokinase (PFK)1, PFK2, or pyruvate kinase (PK)

M2 (Supplementary Figure S5B). Regarding the latter, it is

noteworthy that PKM2 has—next to its canonical enzymatic

activity in glycolysis—moonlighting, i.e., nonmetabolic

functions. As a tetramer, the enzyme resides in the cytosol and

shows high glycolytic enzymatic activity in converting

phosphoenolpyruvate to pyruvate. As a monomer/dimer, it

shows reduced enzymatic activity in glycolysis but can

phosphorylate and activate proteins such as signal transducer

and activator of transcription (Stat)3, and translocate to the

nucleus, where it can act as a stabilizing scaffold for hypoxia-

inducible factor (HIF)-1a, thus driving expression of genes,

including il1b (30–32). Focusing on the nuclear PKM2-HIF-

1a/Stat3-IL-1 axis in M1 (LPS/Sfn), immunoblots revealed that

Sfn was able to block Stat3 phosphorylation, HIF-1a
stabilization, and pro-IL-1b expression in M1 macrophages
A

B

D

E

FC

FIGURE 1

Sfn impedes M1 marker expression during macrophage polarization initiated by LPS. IBMDM macrophages were pretreated with DMSO or the
indicated concentrations of Sfn for 30 min before they were stimulated with LPS (25 ng/ml) for 24 h. RNA was extracted, reversely transcribed,
and subjected to qPCR analysis for il1b (A), il6 (B), and nos2 (C) mRNA expression. Ppia served as a reference gene; data were referred to as M0
controls. Secretion of TNF-a (D) was assessed using an ELISA, and nitric oxide (E) was measured by monitoring nitrite levels via the Griess assay
as described in the Methods section. Levels of intracellular ROS (F) were determined by H2DCF-DA staining and subsequent flow cytometric
analysis. Data depict mean ± SD from at least three independent biological replicates (*p < 0.05, **p < 0.01, ***p < 0.001; ANOVA, followed by
multiple comparisons test).
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(Figures 5A–C). Moreover, compared to control M1 (LPS) cells,

tetramerization of PKM2 was obviously preserved in M1 (LPS/

Sfn) or M1 (LPS/TEPP-46) macrophages (the known glycolytic

PKM2 activator TEPP-46 was used as positive control)

(Figure 6A). Consistently, nuclear PKM2 showed elevated

signals in M1 (LPS) macrophages which were markedly

lowered in the presence of Sfn or TEPP-46 (Figure 6B).

Impeded tetramerization can be driven by binding to tyrosine-

phosphorylated peptides or various posttranslational

modifications of PKM2, including phosphorylation at tyrosine

105 or modification of cysteine residues by disulfide formation

with glutathione (33–35). Examination of phospho- and total

PKM2 did not uncover any consistent differences between the

investigated samples after an incubation of 6 h (Figure 7A).

Howeve r , g l u t a t h i ony l a t ed PKM2 (de t e c t ed v i a

immunoprecipitation of protein-bound glutathione and

subsequent immunoblot for PKM2) reproducibly gave a

stronger signal for control M1 (LPS) than for M1
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macrophages treated with Sfn (Figure 7B). These data may

indicate that Sfn counteracts glutathionylation and dimer

formation of PKM2. Like this, Sfn on the one hand may

maintain tetramer formation and high enzymatic activity of

PKM2 in glycolysis, and on the other hand, it reduces nuclear

PKM2 abundance and IL-1b expression via Stat3 and/or HIF1.

Notably, examining cellular ratios of reduced glutathione and

glutathione disulfide (GSH/GSSG) (Supplementary Figure S6)

6 h after treatment showed lower values in M1 (LPS/Sfn)

compared to M1 (LPS), possibly suggesting limited substrate

(GSH) supply for PKM2 modification in the presence of Sfn.
Discussion

Compared to control M1 (LPS), M1 (LPS/Sfn) macrophages

showed (i) reduced expression of typical M1 markers, including

IL-1b, and (ii) both high glycolytic and high respiratory activity
A

B

D

E

F

G

C

FIGURE 2

Sfn does not markedly interfere with M2 marker expression during macrophage polarization initiated by IL-4. IBMDM macrophages were
pretreated with DMSO or with the indicated concentrations of Sfn for 30 min before they were stimulated with IL-4 (20 ng/ml) for 24 h. RNA
was extracted, reversely transcribed, and subjected to qPCR analysis for mrc1 (A), mgl1 (B), mgl2 (C), arg1 (D), and cd36 (E) mRNA expression.
Ppia served as a reference gene; data were referred to as M0 controls. Production of total polyamines (F) was assessed by a commercial kit and
TGF-b (G) by an ELISA as described in the Methods section. Data depict mean ± SD from at least three independent biological replicates (*p <
0.05; ***p < 0.001;****p < 0.0001; ANOVA, followed by multiple comparisons test).
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as well as an unbroken TCA cycle. The increased cellular

glycolytic activity per se (iii) apparently was not essential for

the inhibitory action of Sfn on IL-1b expression but (iv)

coincided with reduced PKM2 glutathionylation and elevated

levels of tetrameric highly active PKM2. (v) The concomitantly

reduced levels of (nuclear) PKM2 mono/dimer with

nonmetabolic function were the ones to be followed by less

HIF abundance, Stat3 tyrosine phosphorylation, and blunted IL-

1b expression.

This study was driven by the notions that macrophage

polarization might be fine-tuned by interfering with cellular
Frontiers in Immunology 08
metabolism (36) and that bioactive natural products may

metabolic targets affect for eliciting bioactivity (37, 38). We,

therefore, set out to dissect a potential causative relation between

increased glycolytic activity and decreased IL-1b expression in

Sfn-treated M1 macrophages. Although not within the scope of

this study, the crucial role of mitochondria or OXPHOS in

macrophage biology (39–40) deserves further attention in the

context of a potential immunometabolic action of Sfn. This is

particularly noteworthy given that activated Nrf2, a well-

accepted target of Sfn, is known to affect mitochondrial

function (41–43) and M1 (LPS/Sfn) macrophages already
A

B

D

C

FIGURE 3

Sfn leads to high glycolytic and respiratory activities and blunts TCA cycle breaks in M1 (LPS) macrophages. IBMDM macrophages were
pretreated with DMSO or with the indicated concentrations of Sfn for 30 min before they were stimulated with LPS (25 ng/ml) for 24 h. A total
of 100,000 cells were then subjected to glycolytic rate assay and extracellular flux analysis as described in detail in the Methods section.
(A) Depicts glycolytic activity (as evident in extracellular acidification rate (ECAR) in mPH/min), (B) OXPHOS activity (as evident oxygen
consumption rate (OCR) in pmol/min), and (C) the ratio between basal mitoOCR/glycoPER. Bar graphs depict compiled data of basal ECAR and/
or OCR from three different biological replicates given as mean ± SD. (**p < 0.01; ***p < 0.001; ANOVA, followed by multiple comparisons test).
Graphs on the right show exemplary data from the performed glycolytic rate assays. (D) MS-based determination of citrate, itaconate, and
succinate levels in M0, M1 (LPS), and M1 (LPS/Sfn) after 24 h incubation ([Sfn] = 10 µM). Graphs depict compiled data from at least five
independent biological replicates (arb. units, arbitrary units; detailed information can be found in the Methods section).
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seemed to favor an intact TCA cycle and higher respiratory

activity compared with control M1 (LPS) (see Figure 3).

Based on available knowledge, the assumption of a direct

causal connection between the diminished IL-1b and elevated

glycolytic activity appeared daring, as a switch to increased

glycolysis had commonly been described as proinflammatory

and essential to drive IL-1b expression (29, 44, 45). Experiments

with two different pharmacological glycolytic inhibitors indeed

strongly suggested that the unhindered flow of intermediates

through the glycolytic reactions was dispensable and not the

prime explanation for the inhibitory effect of Sfn on IL-1b
mRNA and protein levels. Rather, the observed increased
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extracellular acidification seemed to occur collaterally to an

impeded moonlighting function of PKM2. That is to say, Sfn

decreased nuclear mono/dimeric PKM2 and increased levels of

highly metabolically active PKM2 tetramer in the cytosol

compared to control M1 (LPS). Hence, cytosolic conversion of

phosphoenolpyruvate to pyruvate (and then lactate) was

increased (and measurable as increased ECAR) and the

nuclear PKM2/Stat3-HIF axis/IL-1b was reduced, as seen in

Figures 3, 5. Notably, Sfn did not significantly alter M2 traits of

murine macrophages, as observed for other PKM2 activators,

such as TEPP-46 or DASA-58 (31), suggesting additional targets

for Sfn. One conceivable candidate in this context could be
A B

D

E

C

FIGURE 4

DOG or the LDH inhibitor FX11 cannot attenuate inhibition of IL-1b expression by Sfn. iBMDM were left untreated (M0), treated with LPS (25 ng/
ml) (M1) and (A) LPS + DOG (2 mM) or (B) LPS + FX11 (10 µM) for 6 h before relative mRNA expression of IL-1b was assessed by qPCR (using
ppia as reference gene). iBMDM were pretreated with DMSO or Sfn (1 or 3 µM) for 30 min in the absence or presence of either (C) 2 mM (DOG)
or (D) 10 µM FX11 before LPS (25 ng/ml) was added for 6 h. Then mRNA expression of il1b was assessed by qPCR (using ppia as reference gene)
and referred to the respective DMSO controls. (E) Murine macrophages were pretreated with DMSO or Sfn (3 µM) for 30 min in the absence or
presence of 2 mM DOG before LPS was added for another 6 h. After protein extraction total cell lysates were then subjected to immunoblot
analysis for pro-IL-1b and actin as a loading control. Representative blots are shown and bar graphs depict compiled densitometric data from
three biological replicates (mean ± SD, n = 3; *p < 0.05, ANOVA).
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polyamine synthesis which was inhibited by Sfn (see Figure 2)

and uncovered as an important step in alternative M2

macrophage activation as well as T-cell differentiation (46–48).

However, Sfn has also been reported to promote M2 polarization

in human PBMC-derived M0 and M1 macrophages in vitro (49)

or in microglial cells when fed to living rats (50). Hence, further

investigations are necessary to completely dissect the influence

of Sfn on M2 macrophage polarization or plasticity with an
Frontiers in Immunology 10
attentive eye on species- and context-dependent differences. A

recent study also revealed that elevated glycolysis early on during

macrophage M1 polarization dampened il6 expression by

restricting acetyl-coenzyme A for histone acetylation and

subsequent gene expression (29). Given that Sfn also reduced

the expression of il6 and other proinflammatory markers in this

study (see Figure 1), it would be interesting to examine whether

any of these observations may be truly reliant on the increase in

glycolytic metabolism in M1 (LPS/Sfn). It becomes more and

more obvious that different M1 markers show distinct

susceptibility to metabolic changes during polarization, also

dependent on the timing of their expression during the

inflammatory process (early vs. late phase genes). This renders

immunomodulation by metabolic changes a highly gene- and

time-sensitive endeavor in which causality needs to be clearly

differentiated from mere correlation.

Impeding nuclear PKM2 may not be the only mechanism by

which Sfn interferes with IL-1b expression. Being an
A

B

C

FIGURE 5

Sfn leads to diminished HIF-1a abundance, Stat3 (Y705)
phosphorylation, and pro-IL-1b expression. iBMDM were
pretreated with DMSO or Sfn at the indicated concentrations for
30 min prior to stimulation with LPS (25 ng/ml). After 6 h, cells
were lysed and total cell lysates were subjected to immunoblot
analysis for HIF-1a (A), p(Y705) Stat3 (B), pro-IL1beta (C), and
actin as a loading control. Representative blots are shown, and
bar graphs depict compiled densitometric data from three
biological replicates (mean ± SD, n = 3; *p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001; ANOVA, followed by multiple
comparisons test).
A

B

FIGURE 6

Sfn prevents tetramer loss and nuclear localization of PKM2 in
M1 (LPS) macrophages. iBMDM were pretreated with DMSO, Sfn
at the indicated concentrations or TEPP-46 (20 µM) for 30 min
prior to stimulation with LPS (25 ng/ml) for 6 h. (A) Cellular
proteins were then crosslinked with DSS as described in the
Methods section and harvested. Lysates were subjected to
immunoblot analysis for PKM2. (B) Cytosolic and nuclear protein
fractions were prepared and subjected to immunoblot analysis
for PKM2 and lamin or tubulin as a nuclear or cytosolic loading
control. Representative blots from three biological replicates
with consistent results are depicted. (high and low exposure
times for the PKM2 blots are shown to account for different
signal strengths between cytosolic and nuclear fractions).
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e l e c t r oph i l i c n a t u r a l p r oduc t w i t h p ronounc ed

polypharmacology, Sfn has been reported to, e.g., inhibit

nuclear factor (NF)-kB (23), activate transcription factor (TF)

EB (51), or strongly induce Nrf2 signaling (52), which all could

directly or indirectly contribute and sum up to the observed

downregulation of proinflammatory markers. Additionally, we

also uncovered reduced succinate levels in M1 (LPS/Sfn) (see

Figure 3), which could contribute to reduced HIF stabilization as

well (53). To what extent the diminished nuclear PKM2 dimer

finally contributes to the reduced expression of IL-1b by Sfn or

whether reduced glutathionylation is the only explanation for

maintained tetramer formation still needs to be clarified. A boost

in protein glutathionylation with the use of diamide (54)

restored PKM2 glutathionylation in M1 (LPS/Sfn) and

significantly interfered with Sfn’s capacity to reduce IL-1b
expression (Supplementary Figure S7A, B), which would be in

line with PKM2 modification as one involved step in the

immunomodulation by Sfn. However, future more target-
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specific approaches, e.g., based on the determination of the

exact sites of glutathionylation or other PTMs in PKM2,

subsequent site-directed mutagenesis, and investigation of the

influence of Sfn on macrophages carrying the mutant forms of

PKM2, need to follow in order to unambiguously solve this issue.

Involvement of Nrf2 in the PKM2 axis is plausible, as Sfn

knowingly leads to Nrf2 stabilization (see also Supplementary

Figure S8) and reduced PKM2 glutathionylation (see Figure 7) in

our cell system, and Nrf2 is a prime regulator of glutathione

pathways (and glycolysis) in macrophages (41). To explicitly

corroborate this hypothesis, macrophages with an Nrf2

knockdown should be investigated with regard to PKM2

dimerization and IL-1b expression upon LPS + Sfn treatment.

Interestingly, recent studies suggest PKM2-mediated

transactivation of Nrf2 in neurons (55, 56), starting to paint a

picture of complex mutual crosstalk between Nrf2 and PKM2.

Our study used bulk cultures of murine macrophages in in

vitro culture and assessed a limited set of readouts at a few time
A

B

FIGURE 7

Sfn does not affect Y105 phosphorylation but glutathionylation of PKM2 in M1 (LPS) macrophages. iBMDM were pretreated with DMSO or the
indicated concentrations of Sfn for 30 min prior to stimulation with LPS for 6 h. (A) Total cell lysates were immunoblotted for p(Y105), total PKM2,
and actin as a loading control. Representative blots of at least three independent experiments are depicted. Bar graphs represent compiled
densitometric data. (B) Macrophages were pretreated with Sfn (5 or 10 µM) for 30 min before LPS was added for another 6 h. Proteins were
harvested under nonreducing conditions. Lysates (input) or immunoprecipitates obtained with an antibody specific for protein-bound glutathione
were subjected to immunoblot analysis for PKM2. Representative blots of three independent experiments with consistent results are depicted.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.935692
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bahiraii et al. 10.3389/fimmu.2022.935692
points. Such snapshots, by definition, cannot fully capture the

dynamic behavior of metabolism or the functional properties of

single and plastic macrophages, miss feed-back and feed-

forward loops, metabolite fluxes over time, impact of different

oxygen tensions on metabolism or signaling, as well as the fuel

competition and crosstalk that takes place between neighboring

cells in living organisms. Future studies with multiomics

approaches and isotope-labeled flux analyses on a single cell

level or even metabolic analyses in vivo may give deeper and

more comprehensive insights (57). Despite the mentioned

limitations and gaps, this work could, for the first time,

uncover moonlighting of PKM2 to be affected by Sfn in LPS-

stimulated macrophages and may also be relevant for other

settings. Likewise, modulation of PKM2 has already been

exploited by various small molecules to mediate potential

health benefits (e.g., 58–62). Staying in the field of

immunology, Sfn-mediated interference with mono/dimer

formation of PKM2 should be examined during Th1 or Th17

differentiation of T-helper cells (63–65), especially as Sfn already

showed promise for diseases with a strong Th17 component,

such as psoriasis (66) or arthritis (67). The full impact of Sfn on

immunometabolism is only beginning to emerge and very likely

warrants some exciting additions to the activity profile of this

natural product.
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