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Using spatially explicit surveillance 
models to provide confidence in the 
eradication of an invasive ant
Darren F. Ward1,2, Dean P. Anderson3 & Mandy C. Barron3

Effective detection plays an important role in the surveillance and management of invasive species. 
Invasive ants are very difficult to eradicate and are prone to imperfect detection because of their 
small size and cryptic nature. Here we demonstrate the use of spatially explicit surveillance models 
to estimate the probability that Argentine ants (Linepithema humile) have been eradicated from an 
offshore island site, given their absence across four surveys and three surveillance methods, conducted 
since ant control was applied. The probability of eradication increased sharply as each survey was 
conducted. Using all surveys and surveillance methods combined, the overall median probability of 
eradication of Argentine ants was 0.96. There was a high level of confidence in this result, with a high 
Credible Interval Value of 0.87. Our results demonstrate the value of spatially explicit surveillance 
models for the likelihood of eradication of Argentine ants. We argue that such models are vital to give 
confidence in eradication programs, especially from highly valued conservation areas such as offshore 
islands.

The detection of low numbers of individuals is a common problem for biological invasions and pest manage-
ment1,2. Detectability is important for surveillance at the border, for surveys of spread once a species has estab-
lished, and for eradication programs.

Ants are recognised globally as significant exotic invaders3. However, until recently, relatively little had been 
published on detectability for invasive ants4–6, despite invasive ants being prone to poor detection because of 
their small size, variable foraging habits, cryptic nature, and strong association with human transportation3. One 
species, the Argentine ant, Linepithema humile, is highly invasive and has been accidentally introduced by human 
trade to many countries throughout the world7–9. It has invaded numerous habitats, including coastal sage scrub 
in southern California, riparian woodland in California, matorral in Chile, fynbos in South Africa, subalpine 
shrubland in Hawaii, and oak and pine woodland in Portugal3. In terms of their impacts on biodiversity, the pri-
mary effect of Argentine ants is the displacement of native ant species3.

Invasive ants have particular significance for New Zealand, where there are few native ant species10, and many 
globally invasive ant species are not yet present. Argentine ants were first discovered in New Zealand over two 
decades ago11. However, with human-mediated dispersal, they are now relatively widespread, but patchily dis-
tributed, in many North Island towns and cities, and also in several locations in the South Island11. In New 
Zealand, Argentine ants are known to occupy a range of open-canopy ecosystems, including native habitats and 
anthropogenic environments12–14. Recent studies have shown Argentine ants can interfere with the success of 
biological control agents released for the control of boneseed, Chrysanthemoides monilifera ssp. monilifera15 and 
also increase the reproductive output of this weed16. Argentine ants have also been shown to interrupt the decom-
position processes via displacement of invertebrate communities17.

One of the key goals of Argentine ant management in New Zealand is the eradication, and prevention of 
re-establishment, of Argentine ant populations from offshore islands that act as conservation sanctuaries for 
endangered bird18. A major part of this goal is developing surveillance and analytical methods to increase confi-
dence that offshore islands are free of Argentine ants, or that a population has been successfully eradicated.

The aim of this paper is to demonstrate how spatially explicit surveillance data can be used to estimate the 
probability that Argentine ants have been eradicated from a large area. The concept is also applicable to other 
species of invasive ants, and indeed other invasive taxa.
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Results and Discussion
Probability of eradication. The probability of eradication increased sharply as each survey was conducted, 
reflecting the cumulative surveillance effort and system sensitivity with no ants detected (Table 1). The overall 
median probability of eradication of Argentine ants from all survey and surveillance methods using parameter 
set 2 was 0.957 (Table 1). There was a high level of confidence in this result, with a high Credible Interval Value of 
0.87 (i.e. 87% of the probability of eradication estimates were greater than the threshold value of 0.9). The overall 
sensitivity of the surveillance system was relatively insensitive to the parameter set used, although parameter set 
2, with different decay curves for different search methods, gave greater overall sensitivity (Table 1). In addition, 
the estimates of the probability of eradication were insensitive to the prior distributions. The parameter set1 with 
highly informative priors produced a posterior probability of eradication of 0.943, but all other trials were above 
0.95. Using an uninformed prior (i.e. a Pert with a range 0–1) that is skewed low (value =  0.25) requires sizable 
surveillance data in order to achieve a posterior > 0.95. Given that our results meet or exceed this target, there is 
substantial reason to be confident that Argentine ants have been eradicated.

Eradication of ants. Invasive ants are generally regarded as being very difficult to eradicate19,20. Eradication 
is often possible from small scale plots, or when a species is discovered early in its establishment phase in a new 
area. Larger-scale eradication of invasive ants, whilst possible, remains much more demanding19,21. Currently one 
of the major challenges for Argentine ant eradication programmes is finding the location of small ‘survivor’ nests 
after the initial control operation has occurred. Such nests remain restricted to a very small area (< few metres), 
and thus a large proportion of time and resources are spent on finding and controlling only 1% of ants.

Recent work on formulating requirements for the eradication success of invasive ants includes a number of 
factors, such as the importance of operational requirements (e.g. lines of authority, sufficient resources for the 
task) and on early intervention19, which currently gives a far greater chance of success for invertebrate eradication 
efforts20. However, improving detectability at low densities is also one of the most critical factors to increase the 
success of ant eradication19. Typically ‘eradication success’ is declared after a certain time when the pest has not 
been found, for example, two years post-treatment has been the minimum standard used for most published 
ant22 and vertebrate eradications23. However, the lack of detection after just waiting a certain time period does not 
prove a pest is absent. A pest may still be present in an area somewhere but remains undetected through poor sur-
veillance coverage and/or intensity, or purely by chance. That is why it is critical to interpret negative surveillance 
data (non-detections) in light of the surveillance system sensitivity.

Proof of eradication modelling. Modelling the probability of eradication is a valuable technique, provid-
ing a level of confidence in the overall result and justification for the allocation of resources required to meet a 
set probability level. This type of modelling is also very useful in understanding the resources needed to achieve 
certain confidence levels. For example, modelling will help avoid prematurely declaring success due to insufficient 
survey effort or, conversely, avoid wasting resources on surveys when the pest has been eradicated from an area. 
Modelling may also identify spatial gaps in surveys, where search effort has been too low, allowing for subsequent 
surveys to be directed to search these areas. This ensures there are no refuges available for a pest population, and 
ultimately gives increased confidence of the overall probability of eradication.

Conclusions
Here, we demonstrated a technique that estimated the confidence in the eradication of an invasive ant based on 
defining the relationship between surveillance effort and the probability of detecting the target organism, a tech-
nique previously used in eradications of vertebrates23 and wildlife disease24. In general, this modelling technique 
provides useful information about the probability of eradication of a pest species, and thus gives confidence of 
eradication at very low densities. Such modelling could be applied to many populations of Argentine ants, and 
assist in the eradication of this pest from many locations around the world.

Parameter set Survey Date
Median system 

sensitivity
Probability of 

eradication CIV

1

March 2013 0.448 (0.443, 0.453) 0.419 (0.112, 0.690) 0

October 2013 0.644 (0.640, 0.647) 0.668 (0.259, 0.860) 0.001

November 2013 0.682 (0.679, 0.686) 0.863 (0.523, 0.951) 0.309

February 2014 0.682 (0.679, 0.685) 0.951 (0.773, 0.983) 0.831

2

March 2013 0.149 (0.147, 0.150) 0.312 (0.074, 0.607) 0

October 2013 0.713 (0.709, 0.718) 0.611 (0.215, 0.843) 0

November 2013 0.734 (0.730, 0.739) 0.855 (0.508, 0.952) 0.293

February 2014 0.736 (0.732, 0.741) 0.957 (0.797, 0.986) 0.870

Table 1.  Model results for the median system sensitivity and probability of eradication with 90% credible 
intervals in brackets. The credible interval value (CIV) is the proportion of the posterior probability of 
eradication that is greater than 0.9 (CIV threshold). Parameter set 1: detection and decay parameters equal 
for all three surveillance methods. Parameter set 2: detection and decay parameters individualised for each 
surveillance method.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:34953 | DOI: 10.1038/srep34953

Methods
Study site. The study took place on Schoolhouse Bay (− 36.428°S, 174.831°E), one of many bays on Kawau 
Island, a large (19 km2) island in the Hauraki Gulf, <2 km from the mainland and about 40 km north of Auckland, 
New Zealand. Argentine ants were first found at Schoolhouse Bay in 2010. Kawau Island has a warm temperate 
climate and the majority of the island is covered in scrub and regenerating forest. Kawau Island is part of the 
Hauraki Gulf Marine Park, an extensive area of 50 islands spread over 1.2 million hectares that includes publically 
accessible recreation areas and sanctuaries for endangered species. Several islands are subject to the removal of 
invasive animals, including Argentine ants.

Ant control and post-control surveys. Control of Argentine ants at Schoolhouse Bay took place on 3 
October 2012 with a team of 12 people. Xstinguish™  Argentine ant bait was laid across the infested area and a 
50 m buffer zone (~3 ha in total) at ~2 m intervals. Four post-control surveys were undertaken (12th March 2013, 
29th October 2013, 12th November 2013, and 21st February 2014) to monitor the initial outcome of the control 
operation, and quantify the probability of successful eradication. Three different surveillance methods were uti-
lised to detect Argentine ants during these surveys: (i) visual hand searching (visual searching in and around veg-
etation and houses, lifting logs and stones); (ii) baited vials (n =  500 vials, with a non-toxic food source [paste of 
mixed sausage meat and sugar] placed into a plastic vial, opening with diameter of 25 mm); and (iii) a sniffer-dog 
(trained to detect the presence of Argentine ants25).

We used several ‘paths’ to cover the entire Schoolhouse bay area. These paths were recorded with GPS and 
used for all three surveillance methods (Table 2; Fig. 1). Areas covered by houses were excluded from the area of 
inference because no internal searching of houses has been carried out by us (but informally by residents). Data 
was analysed with a spatially explicit surveillance model, as described below. The model estimated the sampling 
sensitivity for each survey and updated the overall probability of eradication with each survey.

Proof of eradication modeling. We used a spatially explicit surveillance model of Anderson et al.24, ini-
tially developed for disease eradication in vertebrates, to estimate the probability that Argentine ants had been 
eradicated from the Schoolhouse Bay area given negative surveillance results since control was applied. The 
model estimated the overall sensitivity of the surveillance (i.e. the probability of detecting Argentine ants given 
they were present) using a 1-m grid-cell resolution across the modelled landscape. Following a survey where ants 
were not detected, the sensitivity of the surveillance method was used to update the probability of ant eradication 
using Bayes theorem.

Under the framework from the aforementioned model, there are two key parameters for estimating the prob-
ability of detection in a given grid cell24. The first was the maximum probability of detecting an ant or its nest (g0) 
if the surveillance device was placed directly on top of it. The second was a spatial decay parameter (σ), which 
modifies how the probability of detection declined with distance from the surveillance device. Consequently, a 
device can detect ants or nests that were in the same or neighboring grid cells.

The baited vials were spaced 2 m apart along the path. The g0 and σ parameters for the baited vials were derived 
by fitting a half-normal function to the curve shown in Fig. 2 of Stringer et al.6, which described the probability of 
detecting foragers from a small nest of the fire ant (Solenopsis invicta) using baited vials placed out for 1–2 hours 
at different distances from the nest. The fitted values were: g0 =  0.548 and σ =  1.331 (Fig. 2). Although the above 
parameters were developed for fire ants, they are biologically relevant to Argentine ants, as when ant colonies (no 
matter what species) are very small, they have a very small foraging area, and thus their detection (by baits, visual 
searching, etc.) is harder.

We developed two model sets. Because human visual searchers and sniffer dogs move continuously along 
a path, we divided the path up into regularly spaced ‘search points’. In the first instance (parameter set1) we 
assumed the same g0 and σ values as those described by Stringer et al.6 and 2-m spacing between search points 
for all three surveillance methods. Secondly (parameter set2), we attempted to better represent the detection 

Path
Surveillance 

Method
March 
2013

October 
2013

November 
2013

February 
2014

1 Baited vial × × × 

2 Baited vial × × × 

3 Baited vial × × 

4 Baited vial × 

1 Visual × × × × 

2 Visual × × × × 

3 Visual × × × × 

4 Visual × × × 

1 Dog × × × 

2 Dog × × × 

3 Dog × 

4 Dog × × × 

Table 2.  Details of the surveillance methods utilised along different paths (see Fig. 2) and survey periods. 
‘×’ surveillance was undertaken.
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range of visual searching and sniffer dogs, for which information was specifically available for Argentine ants25,26. 
We modified values from Stringer et al.6, restricting visual searching to a 1-m decay and increasing the decay of 
the sniffer dog to 4 m. We also changed the search-point spacing to give an equal detection probability along the 
path bearing (distance =  0) as a result of the overlapping detection kernels. For the visual searchers in parameter 
set2 we used g0 =  0.733, σ =  0.4 and a search-point spacing of 1 m. For the sniffer dogs in parameter set2 we used 
g0 =  0.750, σ =  1.65 and a search-point spacing of 2 m (Fig. 2). This was equivalent to a per-cell probability of 
detection 0.75 and 0.9 of detecting an ant nest if the search point of person or dog, respectively, was in the same 
cell as the ant. In both parameter sets σ and g0 parameter values were allocated a standard deviation equivalent to 
a 10% Coefficient of Variation around the mean value to account for the uncertainty in model parameters.

A relatively pessimistic ‘prior’ probability of eradication being successful was specified using a Pert distribu-
tion with a most likely value of 0.25 (range 0–0.75). The ‘prior’ is our estimated probability that ants were absent 
from the island at the time of the first post-treatment surveys. We suggest that the value of 0.25 is appropriate 
given the uncertainty in the control operation. We assessed the sensitivity of the estimated probability of erad-
ication to the prior distribution. Retaining a most likely prior value of 0.25, analysis for both parameter sets 
were repeated using a highly informative distribution (range 0–0.4) and an uninformative distribution (0–1). 
The design prevalence or the minimum number of 1-m2 grid cells within the Schoolhouse Bay Area likely to be 
infested if ants were still present was set to one (i.e. one surviving colony).

The annual probability of re-introduction of ants into Schoolhouse Bay was assumed to be very low (because 
of ongoing education of the public and surveillance in the area), and described by a Pert distribution with a most 
likely value of 0.01 (range 0–0.012). Point locations of the baited vials used in this study were derived by spacing 
500 vials along the Schoolhouse Bay search paths27 using the ArcGIS 10.2.1 ‘Construct Points’ function. The same 
tool was used to assign equally spaced search points for the visual searchers and sniffer dog.
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