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ABSTRACT Fitness benefits from division of labor are well documented in microbial
consortia, but the dependency of the benefits on environmental context is poorly under-
stood. Two synthetic Escherichia coli consortia were built to test the relationships between
exchanged organic acid, local environment, and opportunity costs of different metabolic
strategies. Opportunity costs quantify benefits not realized due to selecting one phenotype
over another. The consortia catabolized glucose and exchanged either acetic or lactic acid
to create producer-consumer food webs. The organic acids had different inhibitory prop-
erties and different opportunity costs associated with their positions in central metabolism.
The exchanged metabolites modulated different consortial dynamics. The acetic acid-
exchanging (AAE) consortium had a “push” interaction motif where acetic acid was
secreted faster by the producer than the consumer imported it, while the lactic acid-
exchanging (LAE) consortium had a “pull” interaction motif where the consumer imported
lactic acid at a comparable rate to its production. The LAE consortium outperformed
wild-type (WT) batch cultures under the environmental context of weakly buffered condi-
tions, achieving a 55% increase in biomass titer, a 51% increase in biomass per proton
yield, an 86% increase in substrate conversion, and the complete elimination of by-prod-
uct accumulation all relative to the WT. However, the LAE consortium had the trade-off of
a 42% lower specific growth rate. The AAE consortium did not outperform the WT in any
considered performance metric. Performance advantages of the LAE consortium were sen-
sitive to environment; increasing the medium buffering capacity negated the performance
advantages compared to WT.

IMPORTANCE Most naturally occurring microorganisms persist in consortia where metabolic
interactions are common and often essential to ecosystem function. This study uses syn-
thetic ecology to test how different cellular interaction motifs influence performance proper-
ties of consortia. Environmental context ultimately controlled the division of labor perform-
ance as shifts from weakly buffered to highly buffered conditions negated the benefits of the
strategy. Understanding the limits of division of labor advances our understanding of natural
community functioning, which is central to nutrient cycling and provides design rules for
assembling consortia used in applied bioprocessing.
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Division of labor can enhance the fitness of interacting microorganisms via mechanisms
that modulate growth rates or improve biomass yields (1–4). However, constraints on

division of labor due to environmental context are largely undocumented. This knowledge

Editor Alejandra Rodríguez-Verdugo,
University of California, Irvine

Ad Hoc Peer Reviewer Davide Ciccarese, MIT

Copyright © 2022 Beck et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Ross P. Carlson,
rossc@montana.edu.

*Present address: Kathryn Pintar, Seeq! Inc., St.
Paul, Minnesota, USA.

§Present address: Diana Schepens, Whitworth
College, Spokane, Washington, USA.

^Present address: Ashley Schrammeck, Glaxo
Smith Kline Inc., Hamilton, Montana, USA.

1Present address: Timothy Johnson, Bechtel
National Inc, Richland, Washington, USA.

‡Present address: Alissa Bleem, Renewable
Resources and Enabling Sciences Center,
National Renewable Energy Laboratory,
Golden, Colorado, USA.

The authors declare no conflict of interest.

Received 19 January 2022
Accepted 6 June 2022
Published 28 June 2022

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00051-22 1

RESEARCH ARTICLE

https://orcid.org/0000-0001-8445-2052
https://orcid.org/0000-0001-5555-6741
https://orcid.org/0000-0002-2464-7111
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/msystems.00051-22
https://crossmark.crossref.org/dialog/?doi=10.1128/msystems.00051-22&domain=pdf&date_stamp=2022-6-28


gap includes division of labor strategies such as the exchange of organic acids. Secretion of
organic acids in the presence of O2, a phenotype often termed “overflow metabolism,” is a
commonmicrobial strategy for acclimating to stresses such as imbalances in electron donors
and acceptors, imbalances in anabolic and catabolic nutrients, constrained cellular volume,
and/or limited cellular surface area (5–11). Therefore, the phenotype a cell uses to acclimate
to one environmental stress, like nitrogen limitation, can create additional stresses including
high concentrations of inhibitory organic acids. These secreted organic acids can create and
influence food webs where microorganisms coexist in interdependent communities (12–18).
Ultimately, environment and metabolism are interrelated and can influence each other cre-
ating complicated ecological networks (19, 20).

Cross-feeding organic acids has costs for the producer such as the loss of potential
cellular energy based on the chemical properties of the exchanged metabolite. The accumu-
lation of organic acids may inhibit the growth of both the producer and consumer due to
cytosol acidification, membrane solubilization, or the reduction of thermodynamic driving
forces necessary for chemical reactions (21–23). Organic acid exchange can also modulate
consortia functioning via the relative rates of metabolite excretion and consumption. A con-
sortium can display a “push”metabolite interaction where the organic acid is secreted faster
by the producer than imported by the consumer, or the consortium can demonstrate a
“pull”metabolite interaction where the consumer strain imports the metabolite at a compa-
rable rate to its production (24, 25). Environmental context influences the costs of organic
acid exchange, yet these costs are poorly characterized especially for environments that are
weakly buffered or acidic (26–28). These conditions are relevant to many natural habitats.
For example, the pH of the human colon shifts dynamically from pH 5 to 8 as a function of
axial position, reflecting the limited buffering capacity of colon contents and a dependency
on local microbial metabolism (29). Additionally, aquatic ecosystems including estuarine and
freshwater systems have weak pH buffering capacities (30–32), although complex environ-
ments such as blood and some humic soils can have higher buffering capacities (33–35).

Natural microbial communities are often complex, comprised of hundreds or thousands
of interacting species (36, 37), whereas synthetic consortia can be engineered to have a trac-
table number of defined phenotypes and interactions (23, 38, 39). Synthetic consortia can
illuminate basic ecological properties and mechanisms of interaction that can be extrapo-
lated to natural communities. The ability to control variables within synthetic communities
also provides a powerful tool to investigate ecological theories (40). To this end, synthetic
communities have been applied to problems of understanding the benefits of cooperation,
the role of division of labor in the simultaneous utilization of different sugars, mechanisms
for enhanced conversion of cellulose to biofuels, and the role of quorum sensing in coordi-
nating consortial behavior, among others (1, 2, 21, 41, 42).

The present study uses synthetic ecology to test two consortia interaction hypotheses. First,
it is hypothesized that environmental context, namely, medium pH buffering capacity, influences
whether division of labor, involving organic acid exchange, is a competitive consortial interaction
strategy. Secondly, it is hypothesized that not all metabolite exchanges are created equal, as
push versus pull metabolite exchanges when combined with environmental constraints will
result in different consortial performance. These hypotheses were evaluated by constructing two
organic acid exchanging consortia: one consortium was based on acetic acid exchange (AAE)
and the other on lactic acid exchange (LAE). Additionally, the hypotheses were tested using a
dynamic computational model of cellular interactions that accounted for the rates of organic
acid exchange and the inhibitory properties of the exchanged organic acids. Understanding the
limits of division of labor strategies as a function of environment advances our understanding of
consortia design principles essential for rational control of their catalytic potential.

RESULTS
Organic acids and culture pH are major mediators of growth inhibition. Protonated

organic acids can diffuse across cellular membranes and inhibit cell growth (22, 43). Acetic
and lactic acids have different pKa values (4.76 and 3.86, respectively) and different molecular
weights (60 and 90 g mol21, respectively); both parameters influence the inhibitory properties
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of the organic acids (22). The inhibitory effects of acetic and lactic acids on wild-type
Escherichia coli K12 MG1655 were quantified using two different contexts. First, the inhibitory
properties of the organic acids were measured when the metabolites were present as the sole
reduced carbon source in M9 medium, and second, when the organic acids were present
along with glucose in M9 medium (Fig. 1). The inhibitory properties were quantified using spe-
cific growth rate and plotted against (i) the total organic acid concentration ([HA1 A2], where
HA is the protonated organic acid and A2 is the base), and (ii) the protonated organic acid

FIG 1 Inhibition of wild-type Escherichia coli cultures as a function of organic acids, pH, and osmotic
pressure. (A and B) E. coli specific growth rate in conventional M9 medium as a function of acetic acid
and lactic acid concentration when the organic acids were the sole substrates. (A) Abscissa plots the total
concentration of the metabolite (protonated [HA] and unprotonated [A2]). (B) Abscissa plots only
the protonated metabolite (HA) concentration. Colored lines represent the specific growth rate predicted with
selected models. R2 = 0.98 for acetic acid; R2 = 0.93 for lactic acid. Selected equations and parameters are listed
in Table 1. (C and D) E. coli specific growth rate in conventional M9 medium as a function of acetic acid and
lactic acid concentration when 56 mM glucose was added in addition to the organic acid. (C) Abscissa plots
the total concentration of the metabolite (protonated [HA] and unprotonated [A2]). (D) Abscissa plots only the
protonated metabolite (HA) concentration. Colored lines represent the specific growth rate predicted with
selected models. R2 = 0.97 for acetic acid and glucose; R2 = 0.98 for lactic acid and glucose. Selected equations
and parameters are listed in Table 1. (E) Specific growth rate of E. coli cultures as a function of medium pH.
Cultures grown in conventional M9 medium with 56 mM glucose as the sole carbon source (no added organic
acids). Line represents the specific growth rate predicted with selected model [r(3) = 0.998, P , 0.001].
Selected fit equation and parameters are listed in Table 1. (F) Effect of osmotic pressure on specific growth
rate of E. coli cultures. Growth was tested at 1, 1.5, 2, and 2.5� the concentration of conventional M9 medium
components (converted to concentration of dissolved solutes with Visual MINTEQ 3.1). Each point represents
the average of at least three biological replicates with error bars representing standard deviation (SD).
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concentration only ([HA]; calculated using the Henderson-Hasselbalch equation). Both acetic
and lactic acid supported E. coli growth in M9 medium as the sole substrate; specific growth
rates increased with increasing organic acid concentrations up to a critical threshold, after
which further increases in organic acid reduced the specific growth rate. The maximum specific
growth rate on acetic acid was ;0.23 h21 at a total concentration of ;20 mM ([HA 1 A2]),
while the maximum specific growth rate on lactic acid was ;0.4 h21 at a total concentration
of;100 mM (Fig. 1A). Acetic acid was inhibitory to growth at lower total concentrations than
lactic acid (Fig. 1A). However, the protonated, uncharged form of the organic acids is a major
mediator of inhibition due to enhanced diffusion across cellular membranes (22). When the
specific growth rates were plotted as a function of the protonated organic acid concentrations
([HA]), lactic acid was more inhibitory than acetic acid at higher concentrations (Fig. 1B).

Adding glucose (56 mM) to the M9 medium changed the metabolic role of acetic acid
(Fig. 1C). E. coli preferentially consumed glucose as the carbon and energy source while acetic
acid served as an inhibitor. The specific growth rates of the cultures in the presence of glucose
and acetic acid never exceeded the specific growth rate of the glucose-only medium. However,
mixtures of glucose and lactic acid increased the specific growth rates of the cultures over glu-
cose-only medium (Fig. 1C). The maximum specific growth rate (;0.73 h21) peaked at a total
lactic acid concentration of ;80 mM, after which the specific growth rate decreased. Acetic
acid was more inhibitory than lactic acid when examined on a total concentration basis in the
presence of glucose (Fig. 1C). However, examination of the data on a protonated acid basis
quantified the more inhibitory nature of lactic acid at higher concentrations (Fig. 1D).

pH and osmotic pressure were also investigated as separate environmental parameters.
Growth inhibition, quantified as culture specific growth rate, was measured for each variable.
Specific growth rate for E. coli cultures grown in M9 medium with glucose decreased as the
pH decreased (Fig. 1E). The specific growth rate was minimally affected over the tested range
of osmotic pressures, which represented 1 to 2.5� M9 salts with 56 mM glucose (Fig. 1F).

Organic acid and pH inhibition equations were parameterized using culturing data. A
variety of kinetic equations for modeling inhibitory compounds was tested (44). Many of
the equations fit the data well (Fig. S1). Selected fits for each organic acid and condition
are presented in Table 1. Predicted values are plotted against experimental data in Fig. 1B
[r(5) = 0.992, P , 0.001 for acetic acid; r(6) = 0.967, P , 0.001 for lactic acid] and Fig. 1D

TABLE 1 Selected expressions and parameters used to model organic acid growth and inhibition kinetics for wild-type Escherichia colia

Condition Best-fit expression Parameters

Acetic acid as sole substrate
m ¼ mm

A

KA 1A

� �
e
2

A

KI,

wherem is growth rate (h21) and
A is concn of protonated acetate (mM)

mm = 0.4 h21

KA = 0.0723 mM
KI = 0.760 mM
R2 = 0.98

Lactic acid as sole substrate
m ¼ mm

L

KL 1L

� �
e
2

L

KI,

wherem is growth rate (h21) and
L is concn of protonated lactate (mM)

mm = 0.5 h21

KL = 0.0038 mM
KI = 0.317 mM
R2 = 0.93

Acetic acid with glucose
m ¼ mm

G

KG 1G

� �
e2KA ,

wherem is growth rate (h21),
G is concn of glucose, and
A is concn of protonated acetate (mM)

mm = 0.65 h21

KG = 0.005 mM
K = 1.35 mM21

R2 = 0.97

Lactic acid with glucose
m ¼ mm

G

KG 1G

� �
1

L

KL 1L

� �" #
e2aL ,

wherem is growth rate (h21),
G is concn of glucose (set to 56 mM), and
L is concn of protonated lactate (mM)

mm = 0.65 h21

KG = 0.005 mM
KL = 0.0743 m,
a = 4.44 mmol21

R2 = 0.98

pH
m ¼ mm 12

H

H�

� �
,

wherem is growth rate (h21), and
H is concn of protons (M)

mm = 0.665 h21

H� = 1024.4 M (critical threshold above which growth is not possible)

aSee Fig. S1 for additional equations and github for Python code and data.
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[r(5) = 0.991, P , 0.001 for acetate; r(7) = 0.998, P , 0.001 for lactate]. Additional results and
code can be found in the supplemental information (Fig. S1). Equations reported in the litera-
ture fit the culture properties for acetic acid as the sole substrate, for combinations of acetic
acid and glucose, and for lactic acid as the sole substrate (44). The combination of lactic acid
and glucose required a dual substrate equation with an inhibition term to model the data well
(Fig. 1D and Fig. S1).

A pH inhibition equation, separate from organic acids, was also fit to the experimental
data [r(3) = 0.998, P , 0.001; Fig. 1E and Table 1]. The parameterized equations considering
organic acids, glucose, and pH were combined into a predictive model for E. coli growth
under multiple environmental stresses. The model was tested with an independent experi-
mental data set quantifying E. coli growth in the presence of glucose with varying concen-
trations of acetic acid, different initial pH values, and different osmotic pressures. The pre-
dicted values matched the experimental data well, with a Pearson’s correlation coefficient of
0.99 and corresponding P value� 0.01 (Fig. S2).

Producer-consumer consortia built to exchange either acetic or lactic acids. Acetic
acid and lactic acid display different inhibitory properties, support different specific growth
rates, confer different amounts of chemical energy, and require different enzymatic pathway
investments for their production or consumption (Fig. 1 and 2). Two E. coli-derived synthetic

FIG 2 Representations of the central metabolism of the five E. coli phenotypic guilds: generalist (wild-type [WT]), producer secreting
acetic acid (ProdA), consumer catabolizing acetic acid (ConsA), producer secreting lactic acid (ProdL), and consumer catabolizing lactic acid
(ConsL). Metabolite exchanges necessitate costs which are translated into fitness considerations for the five guilds including catabolic
efficiency of relevant substrate, ATP opportunity costs for a guild phenotype, and central metabolism proteome investment costs. Numbers in
figures refer to enzyme catalyzed reactions, see Table S1 and S2 for key. AA, amino acids; Cmol, carbon mole.
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consortia were designed to test different organic acid exchange strategies hypothesized to
change with both environmental context and interaction motif (push or pull metabolite
exchange). The consortia were assembled by combining pairs of E. coli strains engineered
for different phenotypes termed guilds: the producer guilds catabolized glucose and produced
either acetic acid or lactic acid, and a consumer guild catabolized the organic acids (45, 46).

The producer guilds were designed for overflow phenotypes analogous to published
metabolisms for either nitrogen- or iron-limited E. coli growth (47). The producer strain
specializing in acetic acid secretion (ProdA) was created using four gene deletions (DaceA
DldhA DfrdA DatpF). The DatpF gene deletion resulted in elevated substrate-level phosphoryl-
ation and high acetic acid secretion from glucose catabolism, analogous to other published
systems (48, 49). A second producer guild specializing in lactic acid secretion (ProdL) had four
respiration-associated operons deleted (DcbdAB DcydAB DcyoABCD DygiN) (50). The consumer
strain catabolized either acetic or lactic acid (ConsA/ConsL), but not glucose, and was con-
structed by deleting four genes associated with glucose transport and phosphorylation
(DptsG DptsM Dglk Dgcd) (46). Wild-type E. coli K12 MG1655 (WT) was used as the generalist
guild for all comparisons. Monocultures of each guild were characterized in conventional M9
medium with their respective substrates to quantify their physiology (Table 2).

Catabolic efficiency and opportunity costs differ among the guilds. Cellular energy
production was analyzed for all five guilds: (i) generalist (WT), (ii) acetic acid producer
(ProdA), (iii) lactic acid producer (ProdL), (iv) consumer based on acetic acid oxidation (ConsA),
and (v) consumer based on lactic acid oxidation (ConsL) using a published E. coli metabolic
model (51, 52) (Fig. 2 and Table S1 and S2). ProdA produced 4 mol ATP (mol glucose)21 while
ProdL produced 2 mol ATP (mol glucose)21. ProdA extracted more energy from glucose via
substrate-level phosphorylation using the Pta enzyme. The exchanged organic acids have the
same degree of reduction (4 electron mol Cmol21) but different chemical energies (quantified
here as enthalpy of combustion (DHc°) = 875 and 1,362 kJ mol21 for acetic acid and lactic
acid, respectively), largely due to the difference in the molecular weights of the molecules.
Additionally, the molecules entered central metabolism at different positions, influencing
their potential for substrate level phosphorylation. ConsA and ConsL produced 7 and 12 mol
ATP (mol organic acid)21, respectively. The in silico model of the WT generalist produced
26 mol ATP (mol glucose)21 when the substrate was completely oxidized (Fig. 2 and Table S2).

Cross-feeding by-products, such as organic acids, necessarily entails opportunity costs for
the producer guild. Here, opportunity costs are a quantification of benefits not realized by a
cell due to use of a particular phenotype (5, 24). The exchange of a reduced metabolite pre-
cluded its use by the producer guild for other functions such as cellular energy generation.
Opportunity costs were quantified based on cellular energy that was not generated due to
metabolite secretion (51, 52) (Fig. 2 and Table S2). The opportunity cost for ProdA was 22 mol
ATP (mol glucose)21 while the opportunity cost for ProdL was 24 mol ATP (mol glucose)21.

Proteomic investment costs for each guild were heavily influenced by a few enzyme-
catalyzed reactions.Metabolic phenotypes require the assembly of the necessary proteomes
(51, 52). An in silico analysis quantified the amino acid requirements to realize the core
proteomes of the five guilds. In silico analysis considered the minimum proteome proxy
for modeling the relationship between flux and enzyme concentration, as described previ-
ously (51, 52). This proxy assumes that the concentration of all central metabolism enzymes

TABLE 2 Physiological properties of E. coli generalist and producer/consumer guilds in monoculturea

Generalist (WT)
Acetate producer
(ProdA)

Lactate producer
(ProdL) Consumer (ConsA/ConsL)

Carbon source Glucose (n = 4) Glucose (n = 3) Glucose (n = 9) Acetic acid (n = 2)/lactic acid (n = 9)
Maximum growth rate 0.65 h21 6 0.01 0.54 h21 6 0.007 0.24 h21 6 0.003 0.14 h21 6 0.003/0.41 h21 6 0.01
Biomass yield 0.43 g biomass per g

glucose6 0.02
0.20 g biomass per g
glucose6 0.01

0.05 g biomass per g
glucose6 0.001

0.24 g biomass per g acetic acid6 0.00/
0.48 g biomass per g lactic acid6 0.01

Organic byproduct yield 0.11 g acetic acid per
g glucose6 0.01

0.34 g acetic acid per
g glucose6 0.004

0.86 g lactic acid per g
glucose6 0.01

NA

aThe consumer guild is capable of growth on glucose but at a very low rate (0.016 h21). The lactic acid producer accumulates minor amounts of acetic acid (,0.06 g/L) and
succinic acid (,0.12 g/L) in addition to lactic acid during stationary phase, which aligns with results reported in reference 48. WT, wild-type; ProdA, producer secreting
acetic acid; ProdL, producer secreting lactic acid; ConsA, consumer catabolizing acetic acid.

Environment Constrains Division of Labor Strategies mSystems

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00051-22 6

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00051-22


can be approximated by the relationship [Ei]/[Ej];1; this proxy has been applied with notable
successes in E. coli as well as other microbial species (52, 53).

The generalist, with its complete oxidationmetabolism, required the largest total proteome
investment of;97,000 amino acids although it had the smallest proteome investment per
ATP produced at 3,906 amino acids ATP21 (Fig. 2). In descending order based on total invest-
ment, ConsL had an investment cost of ;85,000 amino acids (7,471 amino acids ATP21),
ProdA required ;59,000 amino acids (15,856 amino acids ATP21), ConsA required ;44,000
amino acids (8,175 amino acids ATP21), and finally, ProdL required the smallest investment
of ;14,000 amino acids (6,831 amino acids ATP21). The pyruvate dehydrogenase complex
(42,096 amino acids per complex), which oxidizes pyruvate to acetyl-CoA, had a large influ-
ence on the investment cost for WT, ConsL, and ProdA (51, 52). The investment cost from
this enzyme was avoided by the ConsA and ProdL guilds. There was also a large investment
cost associated with the citric acid cycle due largely to the a-ketoglutarate dehydrogenase
complex and the electron transport chain enzymes (Table S1 and S2).

The different guilds have different core proteomes that catabolize different substrates
with different metabolic efficiencies complicating inter-guild comparisons. Therefore, the
proteome investment required for each guild was converted into ATP equivalents using
the guild-specific in silico models (54) (Table S4). The carbon mols (Cmols) of substrate
required for each guild to assemble the core proteome were calculated; this quantity of
substrate was then converted into an equivalent number of ATP using the guild-specific
Cmol substrate (mol ATP)21 yield. The proteome resource requirements were calculated as a
total investment of ATP equivalents to construct the proteome, and additionally, this invest-
ment was normalized to the number of ATP produced per core metabolism (Fig. 2). The WT
proteome had the most efficient ratio of proteome investment per ATP produced [99,890
ATP equivalents invested (ATP produced)21], followed by ProdL, ProdA, ConsL, and finally
ConsA which required a proteome investment equivalent of 234,899 ATP (ATP produced)21.

Experimental properties of organic acid exchanging consortia. Batch growth proper-
ties of the producer guilds were measured as monocultures and as cocultures with the con-
sumer guild. Glucose was the sole reduced carbon source in the modified M9 medium, and
four initial pH values were tested (6.0, 6.5, 7.0, and 7.5). The modified M9 medium contained
6.3 mM total phosphate to represent an environment with a low pH buffering capacity. WT
monocultures served as generalist controls.

WT monocultures produced the highest final biomass titer (mean = 0.316 0.01 g cell dry
weight [cdw] L21; n = 3) and displayed the highest specific growth rate at an initial pH of 7.0
(mean = 0.53 6 0.01 h21; n = 3; Fig. 3A and B). The cultures grown with an initial pH of 7.5
had the slowest specific growth rate (mean = 0.37 6 0.01 h21; n = 3; P ,, 0.05 compared
with pH 7.0 results; Fig. 3B). Medium pH decreased with biomass accumulation for all four ini-
tial pH values (Fig. 3C). The WT cultures accumulated acetic acid consistent with an E. coli over-
flow metabolism (Fig. 3D). Growth data and calculated rates for all conditions and guilds are
provided in Table S3.

Acetic acid-exchanging consortium displayed a push interactionmotif. Biomass titers
for the acetic acid-exchanging (AAE) consortium changed with initial medium pH (Fig. 4A).
The highest biomass titer occurred when the initial pH of the medium was 7.5
(mean = 0.12 6 0.00 g cdw L21; n = 3), whereas the highest specific growth rate occurred
when the initial pH of the medium was 7.0 (mean = 0.27 6 0.01 h21; n = 3; Fig. 4A and B).
The consortium growth rate was an aggregate rate comprised of the ProdA and ConsA
growth rates and was slower than the ProdA monoculture (Fig. 4B and Table 2). The culture
pH decreased with time in trends proportional to biomass production with a final pH range
of 4.1 to 4.5 (Fig. 4C). The AAE consortium accumulated 50% more biomass relative to ProdA
monocultures at initial pH values of 6.0 (mean = 0.08 6 0.01 g cdw L21 and mean =
0.056 0.00 g cdw L21, respectively; n = 3; P, 0.05) and 7.5 (mean = 0.126 0.00 g cdw L21

and mean = 0.09 6 0.01 g cdw L21, respectively; n = 3; P , 0.05), quantifying a benefit of
guild interactions within the tested environs (Fig. 4D).

The rate of acetic acid secretion by ProdA exceeded the rate of consumption by ConsA
(Fig. 4E), resulting in organic acid accumulation and a cellular interaction motif termed here
as a metabolite “push.” The presence of ConsA did not result in the complete consumption
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of secreted acetic acid due to low pH and high concentrations of acetic acid arresting guild
growth. The cellular ratio of the two guild members was measured as a function of initial pH
and cultivation time (Fig. 4F). The cellular ratio was approximately 1 ProdA:1 ConsA at the
cessation of growth regardless of the initial pH (mean = 1.106 0.27; n = 12).

Lactic acid-exchanging consortium displayed a pull interaction motif. Batch growth
of the lactic acid-exchanging (LAE) consortium produced the highest biomass titers when the
initial pH of the medium was 7.0 (mean = 0.486 0.02 g cdw L21; n = 3; Fig. 5A). The highest
specific growth rates occurred when the initial pH of the medium was 6.5 and 7.0
(mean = 0.216 0.01 h21 and mean = 0.226 0.01 h21, respectively; n = 3; P. 0.05; Fig. 5B).
Culture pH decreased continuously with time to a final endpoint of ;4, except for the LAE
consortium which had an initial pH of 7.5 (Fig. 5C). The pH of this culture initially decreased
to;5 before recovering to;6.8. This property was analyzed in more detail in later sections.
The LAE consortium had substantially higher biomass titers and biomass per glucose yields
compared to ProdL monocultures (Fig. 5D). In contrast to the AAE consortium, the LAE
consortium grew faster than the ProdL monoculture, likely due to the high ConsL specific
growth rate (Table 2).

The LAE consortium had balanced rates of lactic acid secretion and consumption, result-
ing in low accumulation of the organic acid (Fig. 5E). The consortial interaction template was
termed a metabolite “pull” mechanism because ConsL imported the organic acid at rates
comparable to the ProdL secretion rates. The secreted lactic acid was nearly exhausted by the
end of the growth phase; any remaining lactic acid was consumed during stationary phase.
Selective agar plating quantified the cellular ratios of the ProdL and ConsL guilds (Fig. 5F).
The producer ratio decreased during growth, reaching an average ratio of 5 ProdL:95 ConsL
by stationary phase (mean = 0.046 0.11; n = 9).

LAE consortium properties vary as a function of initial cell ratios. The properties
of the LAE consortium were studied for pH robustness and optimality of biomass titer.
Different initial cellular ratios of ProdL:ConsL were tested (1:1, 10:1, 100:1, and 1:2) using an ini-
tial medium pH of 7.0 and 7.5. For these experiments, ProdL was inoculated at the same con-
centration as the preceding 1:1 cell ratio experiments (Fig. 5), while the ConsL concentration

FIG 3 Wild-type culture (generalist guild) properties as a function of initial medium pH. (A) Biomass
accumulation with time as a function of initial medium pH. (B) Specific growth rate as a function of
initial medium pH. (C) pH as a function of time for cultures starting at different initial pH values. (D) Acetic
acid concentration as a function of time for cultures starting at different initial pH values. Fewer data points
are presented for acetic acid as metabolite samples were not measured at every sampling point to conserve
culture volume. Error bars represent the standard deviation (SD) of three biological replicates.
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was adjusted to achieve the desired cell ratios. This design resulted in a near constant
volumetric lactic acid production rate across the conditions, with the primary experimental
change being the ConsL cell concentration.

The consortium behavior was sensitive to the initial conditions. Biomass titers were highest
for an initial 1:1 guild ratio and an initial pH of 7.0 (mean = 0.48 6 0.02 g cdw L21; n = 3;
Fig. 6A); however, this condition did not exhibit a pH recovery trend. Different initial guild
ratios were required to induce the pH recovery trend when the initial pH was 7.0 (Fig. 6B).
Cultures with either higher or lower ProdL:ConsL cell ratios (100:1, 10:1, and 1:2) modu-
lated the pH trajectory after an early pH decrease, demonstrating a pH recovery phase cor-
responding to lactic acid consumption (Fig. 6B). Minimal, transient accumulation of lactic
acid was observed before its subsequent consumption (Fig. 6C). Small amounts of acetic
acid accumulated during the pH 7.5 experiments (Fig. 6E and Table S3). The consumer was
postulated to convert the lactic acid into acetic acid, which was then later consumed in a
diauxic manner. ConsL dominated the consortium by the end of batch growth for all tested
conditions (Fig. 6D).

Due to the slow growth rate during the pH recovery phase, the LAE consortium experi-
ments lasted up to two weeks. Abiotic controls quantified the role of evaporation on

FIG 4 Acetic acid exchanging (AAE) consortium as a function of initial pH. (A) Consortium biomass
concentration with time for four different initial pH values. (B) Consortium specific growth rate as a function
of initial medium pH. (C) Medium pH with time as a function of initial medium pH. (D) Comparison of AAE
consortium to acetic acid producer (ProdA) monoculture as a function of initial pH. (E) Acetic acid
concentration with time as a function of initial medium pH. (F) Cell fraction of ProdA guild to ConsA
guild with time as a function of initial medium pH. Fewer data points are presented for acetic acid and
cell fraction as samples were not measured at every sampling point to conserve culture volume. Data
are mean of three biological replicates with error bars representing standard deviation (SD).
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medium volume and changes in pH (Table S4). Evaporation accounted for less than a 10%
change in liquid volume and did not result in a change to the medium pH.

Consortium performance was a function of environmental context. The synthetic
consortia properties were compared to the WT generalist to quantify advantages and disad-
vantages of the different metabolite exchange templates (Fig. 7). Six metrics of performance
were quantified: (i) final biomass titer, (ii) total glucose catabolized, (iii) biomass produced
per glucose consumed, (iv) biomass produced per H1 accumulated, (v) accumulation
of by-products, and (vi) specific growth rate.

The AAE consortium did not outperform the WT generalist in any considered performance
metric, although the biomass per glucose yields of the AAE consortium and generalist were
equivalent when the initial medium pH was 7.0 or 7.5.

The LAE consortium outperformed the WT generalist at four of the six performance metrics
for a starting pH of 7.0. The LAE consortium produced 55% more total biomass (mean =
0.48 6 0.02 g cdw L21 and mean = 0.31 6 0.01 g cdw L21, respectively; n = 3; P ,, 0.05),
consumed 86% more glucose (mean = 5.38 6 0.8 mmol and mean = 2.89 6 0.35 mmol,

FIG 5 Lactic acid exchanging (LAE) consortium as a function of initial pH. (A) Consortium biomass
concentration with time for four different initial pH values. Note the upper time axis for the culture
with an initial pH of 7.5. (B) Consortium specific growth rate as a function of initial medium pH. (C) pH with
time as a function of initial medium pH. (D) Comparison of LAE consortium to lactic acid producer (ProdL)
monoculture as a function of initial pH. (E) Lactic acid concentration with time as a function of initial medium
pH. (F) Cell fraction of ProdL guild to ConsL guild with time as a function of initial medium pH. Fewer data
points are represented for lactic acid and cell fraction as samples were not measured at every sampling point
to conserve culture volume. Data are mean of three biological replicates with error bars representing standard
deviation (SD).
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respectively; n = 3; P, 0.05), and produced 51%more biomass per H1 secreted compared
to the WT generalist [mean = 2.16 6 0.02 g cdw (mol H1)21 and 1.43 6 0.06 g cdw (mol
H1)21, respectively; n = 3; P ,, 0.05; Fig. 7A to C]. Additionally, the LAE consortium had
minimal by-products at stationary phase whereas the WT culture accumulated ;2.5 mM
acetic acid. The LAE consortium and WT cultures had comparable biomass per glucose
yields (Fig. 7D); however, the WT generalist grew faster (mean = 0.53 6 0.01 h21 versus
mean = 0.226 0.01 h21; n = 3; P ,, 0.05) than the LAE consortium (Fig. 3B and Fig. 5B).

The performance of the LAE consortium was also compared to the WT generalist when
grown in M9 medium with a conventional 64 mM phosphate buffer (55) and an initial pH of
7.0. Increasing the pH buffering capacity kept the medium pH $ 6.2 for the WT cultures
and $ 6.8 for the LAE cultures, which reduced the fitness cost of accumulating organic acids.
The pH buffered environment altered the competitive properties of the LAE consortium relative
to the WT generalist (Fig. 8). The WT generalist had superior properties in five of the six per-
formance metrics [biomass titer: mean = 1.876 0.12 g cdw L21 versus 0.556 0.04 g cdw L21;
glucose consumed: mean = 6.496 0.86 mmol versus 3.926 0.09 mmol, biomass per glucose
yield: mean = 0.426 0.07 g cdw (g glucose)21 versus 0.186 0.06 g cdw (g glucose)21; biomass
per proton yield: mean = 18.926 0.52 g cdw (mol H1)21 versus 7.346 3.49 g cdw (mol H1)21;
growth rate: mean = 0.65 6 0.00 h21 versus 0.23 6 0.02 h21; n = 3; P , 0.05 for all

FIG 6 Lactic acid exchanging (LAE) consortium as a function of different initial guild ratios. (A) Consortium
biomass concentration with time for different initial guild cell ratios. (B) Medium pH with time as a function
of different initial guild cell ratios. (C) Lactic acid concentration with time for different initial guild cell ratios.
(D) Cell fraction of ProdL guild to ConsL guild with time as a function of initial cellular ratios. (E) Acetic acid
concentration with time as a function of initial guild ratios. Data are mean of three biological replicates
with error bars representing standard deviation (SD).
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comparisons; the LAE consortium had no measurable by-product accumulation at stationary
phase], highlighting the environmental context-dependent nature of competitive microbial
interactions and optimal consortia design principles.

Dynamic models predict consortia performance as a function of environment and
interaction strategy.Ordinary differential equation (ODE) models were developed to inte-
grate the experimental data and to test the proposed consortia hypotheses, namely, the role
of environmental pH buffering and the role of push versus pull interaction motifs on consortia
performance. The ODEmodels consisted of mass balances on biomass for each guild member,
glucose, organic acid, and free protons (pH) and used the growth parameters and the organic
acid inhibition equations developed here (Fig. S1 and S3 and Table S3, MATLAB code found at
https://github.com/rosspcarlson/becketal-syntheticconsortia). The ODE models were used to
generate additional data in support of the proposed division of labor hypotheses. The
ODE models were not used to explicitly fit the experimental data because the reported inhibi-
tion equations (Table 1 and Fig. S1) were evaluated using wild-type cultures. The synthetic
consortia were comprised of strains with numerous gene deletions that could result in

FIG 7 Summary of performance metrics for organic acid exchanging consortia compared to producer monocultures and wild-type
monocultures. (A) Total glucose consumed during batch growth. (B) Biomass (g cdw) produced per mole H1 accumulated in medium. (C)
Final biomass concentration (g cdw L21) at stationary phase. (D) Biomass yield on glucose [g cdw (g glucose)21]; cdw, cell dry weight.
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pleiotropic effects due to altered metabolisms, redox state, and cellular energy state. For exam-
ple, the consumer strain was tested for sensitivity to acetic acid and found to be more sensi-
tive than the wild-type likely due to the gene deletions (supplemental data set at https://
github.com/rosspcarlson/becketal-syntheticconsortia).

Results from the ODE models supported the hypothesis of environmental context influ-
encing the benefits of division of labor (Fig. 9). At low pH buffering capacity, the organic
acid exchanging consortia was predicted to have higher biomass productivity and higher
glucose conversion than the wild-type culture (Fig. 9A1 to A4). This is consistent with experi-
mental data (Fig. 7). However, when the pH buffering capacity increased, the model predicted
the wild-type culture would grow faster and produce more biomass than the cross-feeding
consortia (Fig. 9B1 to B4). Again, the ODE models captured these behaviors and supported
the proposed hypothesis (Fig. 8). ODE parameter sets and additional model simulations can
be found in Fig. S3.

Results from ODE models also supported the push versus pull cross-feeding hypothesis
(Fig. 10 and Fig. S3). Organic acids are inhibitory at elevated concentrations, and the models
predicted if the rates of organic acid production and consumption are not balanced, organic
acids accumulate to inhibitory levels leading to lower consortium performance (Fig. 10). This
is consistent with the push behavior of the AAE consortium and the pull behavior of the
LAE consortium (Fig. 4, 5, and 7). Modeling different rates of organic acid production and

FIG 8 Performance metrics for lactic acid exchanging (LAE) consortium compared to wild type generalist in unbuffered and
highly buffered M9 medium. (A) Total glucose consumed during batch growth. (B) Biomass (g cdw) produced per mole H1

accumulated in medium. (C) Final biomass concentration (g cdw L21) at stationary phase. (D) Biomass yield on glucose [g cdw
(pg glucose)21].
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consumption can be accomplished by varying growth rates and relevant growth yields. The
results presented in the main text were obtained by changing the amount of acetic acid
secreted per gram of producer biomass while holding all other parameters, including producer
and consumer growth rates, constant. Additional simulations in the supplemental material
changed lactic acid secretion rates by changing the producer growth rate (Fig. S3).
Simulations demonstrated that both AAE and LAE consortia could result in push or pull inter-
actions with qualitatively similar performance metrics like glucose conversion or biomass titers.
However, the different inhibitory properties of the organic acids influenced the required rate
of secretion or rate of consumption (Fig. S3).

FIG 9 Dynamic modeling of cross-feeding consortium and wild-type culture performance as a
function of environment. (A1 to A4) Quantification of culture performance at low environmental pH
buffering capacity (6.3 mM phosphate buffer). (B1 to B4) Quantification of culture performance at
higher environmental pH buffering capacity (64 mM phosphate buffer). The cross-feeding consortium
outperformed the wild-type culture under the environmental context of low pH buffering capacity,
while the wild-type culture grew faster and produced more biomass under the environmental
context of higher pH buffering. Models and parameters can be found in Fig. S3 and on github.
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DISCUSSION

Two synthetic E. coli consortia were constructed to test principles governing microbial
interactions. The consortia were designed to catabolize glucose and unidirectionally exchange
either acetic or lactic acid. Collectively, each consortium had the same genomic potential as
wild-type E. coli K-12 since the genes deleted in one guild were present in the other guild.
However, the two consortia displayed very different growth properties based on the partition-
ing of key genes. The LAE consortium, displaying a pull metabolite exchange motif, outper-
formed the WT based on four of six considered performance metrics, including the production
of 55% more total biomass (mean = 0.486 0.02 g cdw L21 and mean = 0.316 0.01 g cdw
L21, respectively; n = 3; P ,, 0.05), the consumption of 86% more glucose (mean =
5.38 6 0.8 mmol and mean = 2.89 6 0.35 mmol, respectively; n = 3; P , 0.05), and the
production of 51% more biomass per H1 secreted compared to the WT [mean = 2.166 0.02
g (mol H1)21 and 1.43 6 0.06 g (mol H1)21, respectively, n = 3, P ,, 0.05; Fig. 7A to C].
Additionally, the LAE consortium consumed all reduced by-products by stationary phase,
while the WT accumulated substantial acetic acid (Fig. 3, 5, and 7). These performance
advantages came with the trade-off of a lower growth rate.

Synthetic consortia with defined components provide the basis for testing hypotheses
and extracting design principles for community interactions. The first design principle cen-
tral to the enhanced consortium properties observed in this study was the relationship
between the relative rates of secretion and uptake of exchanged metabolites, e.g., push ver-
sus pull interaction motifs (56). The pull interaction motif used by the LAE consortium was
sufficient to prevent substantial accumulation of the inhibitory metabolite, which created a
benefit for both the consumer and producer. The balance of organic acid production and
consumption in the LAE consortium modulated the environmental pH, which delayed the
growth-arresting effects of accumulated organic acid and low pH experienced by the WT.
A second consortial design rule gleaned from this study illustrated that no metabolite
exchange is without cost for the producer; there are opportunity costs associated with
uncaptured energy and often by-product inhibition (57) (Fig. 1 and 2). However, the oppor-
tunity cost for the producer guild can be off set through increased flux of glucose if consor-
tial interactions can ameliorate the increase in organic acid secretion. The ProdL guild had a

FIG 10 Dynamic modeling of consortia interactions using push or pull mechanisms. The rate of organic
acid production was varied from low (pull interaction, light orange lines) to high (push interaction, dark
orange lines). Parameter values were selected based on the range of experimentally measured values. Push
interactions reduced consortium performance including biomass accumulation and glucose conversion while
pull interactions increased consortium performance by keeping acetic acid concentrations low. Models and
parameters can be found in Fig. S3 and on github.
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higher opportunity cost [24 mol ATP (mol glucose)21] than the ProdA guild [22 mol ATP
(mol glucose)21]. but the LAE consortium outperformed the AAE consortium due largely to
the metabolite pull mechanism.

A third design principle demonstrates that environmental context such as buffering
capacity dictates which metabolite exchange strategy, if any, will result in a competitive
advantage for participants (58). Low buffering capacity is common in natural environments
(29–32). The LAE consortium exhibited many enhanced performance metrics relative to the
WT under low buffering conditions. Consistent with the thought experiment of the Darwinian
Demon, which states it is not possible to optimize all fitness behaviors simultaneously (59), the
LAE consortium had a reduced growth rate compared to the WT. Fast growth rates are major
drivers of fitness in well-mixed, spatially homogenous laboratory environments where cultures
are often supplied with abundant nutrients. In nutrient-poor environments, growth rates are
reduced and the benefits of enhanced substrate depletion, enhanced biomass accumulation,
and reduced H1 production are likely important fitness metrics. The current study demon-
strates that changing the buffering capacity changes the fitness of different phenotypes. The
WT outperformed the LAE consortium when a conventional phosphate buffering capacity (64
versus 6.3 mM) was used (55). Enhanced buffering capacities also altered the consortia per-
formance afforded by acetic acid exchange. A previous study measured a 15% enhancement
in biomass productivity in an alternative acetic acid-exchanging E. coli consortium (46). The
acetic acid producing strain in that study secreted approximately 10% of the glucose carbon
as acetic acid compared to 30% to 50% in the current study. Tuning the secretion rate of the
organic acid to match the consumption rate in the consumer is an important design parame-
ter, as demonstrated in Fig. 10. These rates could be optimized in future studies using genetic
engineering or adaptive evolution approaches.

Nutrient limitation is a common environmental challenge (60). Overflow phenotypes,
where reduced by-products are secreted in the presence of external electron acceptors,
can be competitive acclimations to nutrient limitation (51). As demonstrated in Fig. 2, abridged
central metabolism pathways require fewer resources to construct but only partially oxidize
substrates, highlighting the trade-off between metabolic pathway investment into proteins
and the opportunity cost quantified by carbon source oxidation efficiency. WT E. coli secretes
different organic acids, including acetic and lactic acids, in different quantities as a function
of different nutrient limitations and degrees of nutrient stress (47). The secretion of reduced
by-products in chemostats can lead to the evolution of cross-feeding populations with
higher biomass titers (4) likely due to a combination of factors highlighted here, including
more biomass per H1 as well as the nonlinear relationship between enzyme velocity and
the total required resource investment (enzymes and metabolites) to achieve that velocity
(24, 45, 61, 62). This biomass yield benefit can potentially be realized in consortia without
spatial segregation of populations (55).

The growth of each culture was arrested at a pH of 4.1 to 4.5 regardless of the initial pH.
The pH decrease was primarily the result of two processes: organic acid secretion followed by
H1 dissociation and the consumption of ammonium for biomass synthesis, which released an
H1 when the nitrogen source was incorporated into biosynthetic molecules as ammonia.
Thus, biomass production itself contributed to reaching the critical pH threshold. The WT
drove the pH to the critical level via a combination of biomass production and acetic acid
secretion. The LAE consortium, however, did not accumulate substantial organic by-products,
allowing more biomass to be produced before reaching the critical pH threshold.

Exchange of organic acids in microbial consortia can also be analyzed from the perspec-
tive of other ecological principles that are typically applied at the macroscale. For example,
the resource ratio theory suggests that two populations can cooperate to improve overall ef-
ficiency of resource usage. As an alternative to the competitive exclusion principle, it has
been proposed that cooperating populations can exchange resources that they are each
more efficient at utilizing and thereby more effectively deplete total resources (63). The two
synthetic consortia effectively partitioned glucose and O2 between two different popula-
tions. The ProdL guild was constructed by deleting the primary respiration chain enzymes
including the O2 cytochromes (50). ConsL required the external electron acceptor O2 for the
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complete oxidation of the organic acid. The lactic acid exchanged between the consortium
members drove the glucose concentration lower than the WT generalist (Fig. 7); while not
measured directly, it is proposed that the high biomass concentration in the LAE consortium
drove the O2 levels lower than the WT cultures. This performance would potentially classify the
LAE consortium as a “super-competitor unit” as defined by de Mazancourt and Schwartz (63).

Conclusion. The presented work used synthetic consortia to test hypotheses governing
microbial interactions mediated by push or pull metabolite exchange, quantified the inhibi-
tory properties of the exchanged metabolites, calculated the opportunity costs associated
with different phenotypes, and demonstrated the powerful role of environmental context on
consortia performance. Ultimately, environment constrains whether division of labor strategies
can enhance or decrease the fitness of participants.

MATERIALS ANDMETHODS
Culturing media. Two different variations of M9 media were used. Conventional M9 medium for

characterizing strain growth (64) contained 6 g L21 Na2HPO4 (42 mM), 3 g L21 KH2PO4 (22 mM), 1 g L21 NH4Cl,
and 0.5 g L21 NaCl. After autoclaving, 1 mL L21 1 M MgSO4�7H2O solution was added along with 1 mL L21 trace
metals solution, containing (per L): 0.73 g CaCl2�2H2O, 0.10 g MnCl2�4H2O, 0.17 g ZnCl2, 0.043 g CuCl2�2H2O, 0.06
g CoCl2�6H2O, 0.06 g Na2MoO4�2H2O, and 0.24 g FeCl3�6H2O. Carbon source (glucose, sodium acetate, or sodium
lactate) was added to achieve the desired concentration from a filter sterilized stock solution. The pH of the me-
dium was adjusted, if necessary, with HCl or NaOH, and the medium was then filter sterilized. For experiments
investigating pH effect, conventional M9 medium was modified to ensure carbon limitation at 5 g L21 glucose
by increasing nitrogen, iron, and sulfate content. Modified M9 medium contained 2.5 g L21 NH4Cl, 1.5 mL L21

1 M MgSO4�7H2O, and an additional 2.4 mg L21 FeCl3�6H2O. Low phosphate modified M9medium contained 0.9
g L21 Na2HPO4 (6.3 mM) and no KH2PO4.

Strains.Mutant strains were derived from E. coli str. K-12 substr. MG1655. The wild-type strain served
as the metabolic generalist for comparison with the mutant specialist strains.

(i) Producer guild strains. The lactate producer strain E. coli str. ECOM4LA was obtained from the
Pålsson group (50). The strain was designed to prevent O2 uptake through deletions of three terminal oxidases
(cbdAB, cydAB, and cyoABCD), as well as deletion of the quinol monooxygenase ygiN; O2 consumption was
reduced;60-fold and considered negligible. The strain was received in a frozen glycerol stock. Growth of the ini-
tial stock was slow, possibly due to freeze-thaw cycles. Thus, the stock was serially passaged by transferring dur-
ing exponential growth phase to fresh conventional M9 media containing 4 g L21 glucose. Samples were tested
for growth rate periodically, and serial passaging was continued until growth rate plateaued (;120 generations).

The acetate producer E. coli str. 409 was constructed from E. coli str. 307G100 (DaceA, DldhA, DfrdA), which
was designed in a previous study (46). This strain was acclimated to its altered genotype via chemostat growth
for 100 generations. An additional deletion (atpF) was added to E. coli str. 307G100 using P1 viral transduction
with the KEIO mutant library according to reference 39. E. coli str. 409 was designed to function similarly to the
homoacetate producing strain reported in Causey et al. (48). The atpF gene deletion was confirmed with PCR
(forward primer 59-GTTATGGGTCTGGTGGATGC-39 and reverse primer 59-CGAACACCAAAGTGTAGAACGC-39).

(ii) Consumer guild strain. The consumer strain E. coli str. 403 was previously constructed (46) to
prevent glucose consumption by blocking the glucose phosphotransferase uptake system and phospho-
rylation of glucose via ptsG, ptsM, glk, and gcd deletions. This strain does not grow readily on glucose as
the sole carbon source but is able to metabolize glucose at a slow base rate (0.016 h21), whereas lactate
and acetate are readily consumed in the presence of O2. The strain was acclimated to the gene deletions
via growth in a chemostat for;100 generations, as described previously (46).

Batch culturing. All cultures were grown at 37°C in a shaking incubator at 150 rpm. Frozen stock
vials prepared from the same culture were used for all experiments. E. coliMG1655 and producer strain inocula
were grown with 5 g L21 glucose as the carbon source, and consumer strain inocula were grown with either 1
g L21 sodium acetate or 2.8 g L21 sodium lactate. Disposable test tubes containing 5 mL modified M9, pH 7.0,
were inoculated from frozen stock and incubated until optical density at 600 nm (OD600) reached 0.2 to 0.4.
Cultures were transferred into 25 mL modified M9, pH 7.0, in 250-mL borosilicate glass baffled shake flasks to
an initial OD600 ;0.010 and grown until OD600 reached 0.2 to 0.4. Sufficient culture for inoculation was ali-
quoted into 15-mL Falcon tubes and pelleted at 4,000 rpm for 10 min at 20°C. Cells were washed in an equal
volume of low phosphate modified M9 containing 5 g L21 glucose to remove metabolic by-products and
excess phosphate and were pelleted again. One-hundred-milliliter experimental batch cultures of low phos-
phate-modified M9 containing 5 g L21 glucose were inoculated to an initial OD600 ;0.020. Five-hundred-milliliter
borosilicate glass baffled shake flasks with silicone sponge closures were used to allow gas exchange with mini-
mal evaporation. Consortia were inoculated to an initial OD600 ;0.020 of producer and consumer each (to pro-
vide the same density of primary glucose-consuming strain in all conditions).

Flasks were sampled aseptically approximately every doubling time; total culture volume was not reduced
more than 20% by the end of the experiment. OD600 and pH were measured, and culture supernatant was fro-
zen at 220°C for subsequent metabolite analysis. For consortia experiments, samples were also analyzed for
producer and consumer populations. Samples were serially diluted 1:10 in phosphate-buffered saline (PBS;
42.5 mg L21 KH2PO4 and 405.5 mg L21 MgCl2�6H2O) and drop plated (10 10-mL drops) on selective conven-
tional M9 agar after the method of reference 65. Selective plates contained 15 g L21 Noble agar (Affymetrix) to
eliminate bacterial growth on carbon source contaminants available in the agar. The consumer was selected
with either 1 g L21 sodium lactate or 1 g L21 sodium acetate, and the producer was selected with 1 g L21
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glucose. In the lactate consortia experiments, both consumer and producer were found capable of growth on
glucose agar plates due to the slower relative growth rate of the producer and the high yield of lactate.
Therefore, the producer proportion of the population was estimated by subtracting the consumer counts on
lactate agar from the total population (producer and consumer) counts on glucose agar. Experiments were
performed with triplicate flasks for each condition along with an uninoculated control flask carried through
the entire inoculation and sampling procedure. For all experimental measurements described, data were tested
for normality using the Shapiro-Wilk test and significance between treatments was determined with Student’s
t test (two sample t test assuming unequal variance).

Experimental data used in the article are available in the supplemental data set available at https://
github.com/rosspcarlson/becketal-syntheticconsortia.

Dry weight and CFU correlations. Correlation of OD600 to cell dry weight (cdw) was determined for
the producer and consumer strains separately. Producer strains were grown in conventional M9 containing 4 g
L21 glucose, and the consumer strain was grown in conventional M9 containing 2.8 g L21 lactate. Exponentially
growing cultures were harvested on ice, pelleted at 4,000 rpm for 20 min at 4°C in 50-mL Falcon tubes, resus-
pended in an equal volume of carbon-free M9 to minimize lysis of cells, and pelleted again. The cultures were
combined and concentrated into one tube, and a series of 12 dilutions ranging from OD600 0.25 to 2.5 was made
using carbon-free M9 as the diluent. OD600 of each dilution was measured and recorded, and 5 mL of each dilu-
tion was aliquoted into a predried and preweighed aluminum pan. Three aluminum pans contained 5 mL car-
bon-free M9 as a media control. Pans were placed in a drying oven at 80°C for 24 h and weighed. Samples were
dried for an additional 24 h and weighed again to ensure that samples were completely dry. Biomass concentra-
tion was calculated from the difference in mass. Correlation curves were constructed by setting the mass
of the media control as zero and adjusting the sample masses accordingly. The cell dry weight correlation for
E. coliMG1655 was obtained from reference 66.

Colony-forming unit (CFU) to OD600 correlation curves were constructed in a similar manner. Exponentially
growing cultures were harvested and a series of eight dilutions was made, ranging from OD600 0.010 to 0.275 for
E. coli str. ECOM4LA and 0.010 to 1.1 for E. coli str. 403. OD600 was measured and recorded, and each dilution was
serially diluted 1:10 in PBS and drop plated on LB agar (65). Plates were incubated overnight, counts from appro-
priate dilutions (3 to 30 colonies within a drop) were recorded, and values (CFU mL21) were calculated.

Metabolite analysis. Glucose consumption and organic acid secretion were monitored via high-per-
formance liquid chromatography (HPLC). An Agilent 1200 HPLC instrument was used with filtered (0.22 mm)
5 mM sulfuric acid as the mobile phase. Samples were stored in a chilled (4°C) autosampler during the run,
and 20-mL sample injections were run on a Bio-Rad HPX-87H column operated at 45°C. Glucose was detected
with refractive index detector with heater set at 40°C, and concentrations were normalized by fucose. Organic
acids acetate and lactate were detected with variable wavelength detector. Cells were pelleted from samples
and supernatant was frozen at 220°C until analysis, before which samples were filtered (0.45 mm) and pre-
pared 1:1 (vol/vol) with 2� mobile phase containing fucose as an internal standard. Concentrations were quan-
tified using calibration curves with limit of detection at 0.1 mM. Formate and succinate standards were also
measured, but significant levels were not detected in the samples.

Kinetic expression modeling. A compendium of possible kinetic expressions to describe the inhibi-
tion effect of organic acids was identified (44) and examined against the lactate and acetate inhibition
data both with and without glucose. Additionally, dual substrate models were explored to improve
model fit for data with both glucose and lactate present in the medium (67), given the observation of
co-consumption of the two compounds. Equations and parameters were defined in Python, and the
data were fit using the Levenberg-Marquardt algorithm in the SciPy library (scipy.org). Goodness-of-fit
was assessed visually, with the chi-square test function in SciPy, and via R2 metrics. The Python fitting
routines used are available at https://github.com/rosspcarlson/becketal-syntheticconsortia.git.

To model the dynamics of consortia growth compared to producer and generalist monocultures, a set of or-
dinary differential equations describing growth, substrate and product concentrations, and pH (based on acidifi-
cation by organic acid by-products and using a yield to compensate for protons contributed by consumption of
ammonium) was developed based on Monod kinetics. The ode45 solver in MATLAB was used to simulate batch
growth. The model files and parameter set used are included in Fig. S3, and the MATLAB code is available at
https://github.com/rosspcarlson/becketal-syntheticconsortia.

Metabolic modeling. A published E. coli central metabolism model was used to quantify the meta-
bolic efficiencies of the guilds (51, 52). Distinct guild models were created by inactivating the appropriate
reactions. The in silicomodel was decomposed into elementary flux modes using CellNetAnalyzer v.2018.1
(68), and individual elementary flux modes were identified using Excel and the noted optimization criteria.
The in silicomodel can be found in Table S1 and S2.
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