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The precise timeline of transcriptional regulation
reveals causation in mouse somitogenesis network
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Abstract

Background: In vertebrate development, the segmental pattern of the body axis is established as somites, masses
of mesoderm distributed along the two sides of the neural tube, are formed sequentially in the anterior-posterior
axis. This mechanism depends on waves of gene expression associated with the Notch, Fgf and Wnt pathways. The
underlying transcriptional regulation has been studied by whole-transcriptome mRNA profiling; however, interpretation
of the results is limited by poor resolution, noisy data, small sample size and by the absence of a wall clock to assign
exact time for recorded points.

Results: We present a method of Maximum Entropy deconvolution in both space and time and apply it to extract,
from microarray timecourse data, the full spatiotemporal expression profiles of genes involved in mouse somitogenesis.
For regulated genes, we have reconstructed the temporal profiles and determined the timing of expression peaks
along the somite cycle to a single-minute resolution. Our results also indicate the presence of a new class of genes
(including Raf1 and Hes7) with two peaks of activity in two distinct phases of the somite cycle. We demonstrate
that the timeline of gene expression precisely reflects their functions in the biochemical pathways and the direction
of causation in the regulatory networks.

Conclusions: By applying a novel framework for data analysis, we have shown a striking correspondence between
gene expression times and their interactions and regulations during somitogenesis. These results prove the key role
of finely tuned transcriptional regulation in the process. The presented method can be readily applied to studying
somite formation in other datasets and species, and to other spatiotemporal processes.

Keywords: Somitogenesis, Transcriptional regulation, Maximum Entropy deconvolution
Background
The mechanism of segmentation of the vertebrate em-
bryo depends on waves of gene expression progressing
through the presomitic mesoderm (PSM) along the antero-
posterior axis of the body [1] and involves regulation of
genes from the Notch, Fgf and Wnt pathways [2,3]. Pertur-
bations of this process cause congenital vertebral malfor-
mations (CVMs) [4,5], however, in many cases their
mechanism is not known, although impressive amounts
of experimental profiles including whole-genome expres-
sion data have been collected [1-3,6-8]. According to the
“clock-and-wavefront” model [9], the periodicity of somi-
togenesis is governed by a molecular oscillator that drives
waves of gene expression caudal-rostrally through the
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PSM. The evidence for cycling genes was first observed
in the chick PSM [10] where c-hairy1 displays dynamic
wave of mRNA expression caudal-rostrally and has been
subsequently extended to other species as zebrafish
[11-13] and mouse [1,14]. Mice carrying mutations in
genes encoding ligands, receptors or downstream effec-
tors of the Notch pathways display severe segmentation
defects [14-16]. It is therefore believed that Notch
pathway is a crucial component of the vertebrate seg-
mentation mechanism. Indeed, known Notch cycling
genes in mammalian somitogenesis include: Hes1/7/5,
Hey1/3, Lfng, Nkd1, Nrarp, Maml3, Bcl9l [15]. Also the
Wnt signaling pathway is also rhythmically activated
in the PSM and reported cyclic genes from this path-
way include Axin2, Dact1, Dkk1, Sp5, Tnfrsf19, Myc,
Has2, Phlda1. It has been reported that inactivation
of Wnt inhibitors such as Dkk1, results in segmenta-
tion defects [13,15-18]. Other known cycling genes like
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Spry2/4, Dusp6, Shp2, Hspg2, Efna2, Bcl2l11 belong to
the Fgf family.
The details of the wave mechanism, the core pace-

maker as well as the hierarchy between the components
of Notch, Fgf and Wnt and other pathways involved re-
main largely unknown. Although all three pathways ap-
pear essential to proper functioning of the segmentation
clock, there is no consensus whether the central oscilla-
tor is directly driven by periodic activation of the Notch,
Wnt or Fgf pathways, or, conversely, are these pathways
regulated by an oscillator acting upstream of them (see
[19-21] and the excellent review in [22]). Analysis of
high-resolution gene expression profiles, including pre-
cise timing of gene expression may facilitate identifi-
cation of further components of the network, causal
relations between them as well as the transcriptional
regulatory elements associated with each gene thus im-
proving our understanding of the molecular mechanisms
involved in somite formation. The segmentation clock is
believed to be conserved between species; however some
of the genes and regulations involved vary between the
clades [13]. Therefore, comparison between the process
in different organisms may shed light on the evolution of
the process, and allow identification of the most con-
served, primordial aspects.
The activity of each of the three pathways is confined

to a specific phase of the somite cycle. Precisely timed
transcriptional regulation plays a role in processes out-
side development, e.g. cell division, metabolic oscillation,
biogenesis of organelles. Tight confinement of transcrip-
tion of genes to a specific time interval may be beneficial
for several reasons. First, it allows compartmentalization
in time and prevents interactions between incompatible
biochemical processes [23]. Second, by just-in-time tran-
scription, the organism does not need to store and main-
tain proteins when they are not used. Third, when the
order of gene transcription follows the order of recruit-
ment of subunits to a protein complex, proper assembly
of the complex is facilitated [24]. It is therefore natural
to postulate that in somitogenesis, the timing of gene ex-
pression will reflect the order in which the gene prod-
ucts enter their specific pathways. Because causation
cannot act backward in time, reconstructing the order of
events is an important step towards uncovering the
causal dependencies between the particular elements of
a biological network. Two traditional approaches to
extracting the timeline of expression from timecourse
experiments are: using the time of the highest measure-
ment and computing the phase of the best-fit single har-
monic wave. In the highest-peak method, the resolution
is inherently limited to that of the source data, which is
typically low due to the high cost of microarray experi-
ments. The method is sensitive to experimental error or
noise: just one bad measurement may result in drastically
altering the timing result. The phase of the main Fourier
mode [25] is more resistant to noise, without limiting the
resolution; however, this will produce accurate results only
if the data are well-approximated by a single sinusoid,
which is often not the case.
The nature of microarray data, where the sample may

contain subpopulations of cells in different states, or at
different stages of the cycle, has allowed introduction of
a new method, based on algebraic decomposition of the
profile into a series of profiles for each of the sub-
populations [26]. The measurement at a given time,
M(t), is considered to be a sum of measurements for differ-
ent samples: M(t) = a1M1(t) + a2M2(t) +… + akMk(t). For a
continuous family of sub-populations, that differ only by a
time shift, the sum takes the form of an integral: M(t) = ∫ E
(t − τ)h(τ)dτ, where E is the true underlying profile, and h
is the distribution of cycle phases among the cells in the
experimental sample. It has been shown [24] that as long
as the probability distribution of time-shifts h is known,
then by using a deconvolution algorithm based on prior
probability derived from maximum entropy principle, one
can solve this equation reconstructing the underlying
source signal E with a resolution even 10 times better than
that of the source data. The procedure automatically filters
out most of the noise in the data because it favors reg-
ulations consistent with the underlying model h. Here,
we report a version of the method tailored to processes
where the expression levels depend on both time and
spatial coordinates.
Over time, cells in every location along the PSM pass

through all phases of the somite cycle. Moreover, at any
given moment in time, cells in different positions along
the PSM will be in different phases of the cycle, as a
consequence of the fact that the gene expression wave
travels along the body axis. Therefore, the experimental
sample (containing cells from different locations) will
contain cells in different phases of the cycle, resulting in
an artificially blurred expression profile. The present,
spatiotemporal version of the deconvolution formalism
is designed to compensate for this effect and computa-
tionally reconstruct the original profile, free from experi-
mental artifacts. The fundamental difference between
the temporal and spatiotemporal deconvolution lies in
constructing the kernel (blur) function. In the time de-
convolution [24], the kernel h was constructed based on
the distribution of times, at which the cells enter the
cycle. In the present, spatiotemporal case, h is derived
from the known geometry of the embryo-sample system,
and the velocity of the expression wave.
Deconvolution in space and time thus allows recon-

structing the underlying expression profile. Knowing the
profile, we are able to determine the time of peak ex-
pression of a gene with the resolution of several minutes,
which is the time-scale at which the transcriptional
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regulation is optimized (at shorter timescales the time
spent on gene translation and posttranslational modifica-
tions may have an effect). We use the method to recon-
struct the spatiotemporal expression profiles in mouse
somitogenesis. Peaks in the profiles precisely indicate the
timing of gene regulation and their sequence reveals de-
tails of the finely-tuned regulatory network. As we shall
see, the time of gene expression is tightly related to the
time of activity of a gene’s product, even if further, post-
transcriptional and posttranslational steps of regulation
are required. We postulate that this prevalence of just-
in-time expression [24] allows the cell to economize
on storage and maintenance of proteins not being used at
a given time.

Results and discussion
We have developed and implemented a dedicated suite
of algorithms that assign the correct phase of the cycle
to each data point, characterize the dependence between
time, position and cycle phase, perform the deconvolu-
tion to reconstruct the full spatiotemporal profile, deter-
mine the phase of expression peak, and estimate the
accuracy and resolution of the resulting timing (see
Methods). The algorithms applied to the data of [2] and
independently to the data from [13] reveal and confirm
the intricate sequence of transcriptional events associ-
ated with the somite cycle, which is the main result of
the presented research.

Accurate cycle phase for collected data points
Previous analysis [2] has assumed evenly spaced em-
bryos along the clock cycle, which corresponds to an
approximately 7 minute difference between consecutive
time points in their data. Instead of using this crude as-
sumption, we use a three-step algorithm to infer the ac-
tual phase. First, we analyze the In-Situ Hybridization
(ISH) images of [2,13] to measure the position of the
highest density of the Lfng concentration. Next, the pos-
ition x is converted into an approximate phase φ using
the formula x = 0.978(φ+t)0.526 derived from a model of
wave propagation and its deceleration near the anterior
end of the PSM (see Methods). The phases are further
refined by Powell optimization [27] of periodicity scores
of six strongly regulated benchmark genes (Hes1, Hes5,
Hey1, Lfng, Axin2); see Methods.

Deconvolution algorithm
In somitogenesis gene expression studies, the mRNA
concentration is measured in a sample encompassing a
large fraction of the PSM. The sample contains cells in
different phases of the somite cycle (see Figure 1) and
consequently each measurement can be represented as
spatial convolution of the spatiotemporal profile at a given
moment in time. The complete spatiotemporal profile of
expression can be reconstructed if we assume that the ex-
pression E depends on the phase of the cycle, φ, which is
in turn a function of time and position along the AP axis
of the embryo. The reconstruction of the most likely
spatiotemporal profile uses a prior distribution derived
from the Maximum-Entropy principle and solves the
integral equation through multidimensional optimization
in the phase space (see Methods). Our implementation
has been successfully applied to the data of [2] and data
of [13] resulting in regular, high-resolution spatiotempo-
ral profiles.

Spatiotemporal profiles and peaks of regulated genes
We applied the spatiotemporal deconvolution algorithm
to the gene expression data of [2]. These published data
are genome-wide mRNA concentrations in the tails of
17 mouse embryos at different stages of the oscillation
generating a new somite. This dataset is based on the
Affymetrix GeneChip M0E430A microarray platform,
which covers a large number of transcripts regulated
during somitogenesis. Krol et al. [13] have subsequently
collected a second data series in a similar experiment;
here we will refer to it as “mouse-2”. We use the data of
[2] as the primary source of expression profiles, while
the deconvolved profiles from mouse-2 [13] serve as in-
dependent validation experiment. Figure 2 represents a
comparison between original and deconvolved profiles
using Hes1, Hes5, Afprp1 and Axin2 as examples. The
timing of most notable genes, including previously
known cyclic genes, is presented in Table 1 and their ex-
pression profiles are shown in Additional file 1: Figure S1.
All reported times are scaled assuming a 120-minute
somite cycle, and relative to the beginning of the cycle de-
fined as the moment when a new Lfng band appears at the
posterior end of the PSM. The accuracy of timing is
assessed for each individual gene using a Monte-Carlo
simulation (see Methods), the estimated median error of
peak detection is 3 minutes.
In the primary analysis of the results, we have consid-

ered only genes previously known to be involved in the
process and used a peak detection algorithm for proper
timing. The peaks of gene expression fall into two main
time intervals. The first interval contains mostly genes
from the Wnt pathway and their activities are limited to
the first 38 minutes of the process. Those Wnt genes
may be regulated by beta-catenin (~5 min: activated ap-
proximately 5 minutes after the beginning of the somite
cycle) and include Myc (~20 min), Axin2 (~20 min), Sp5
(~23 min), Dkk1 (~22 min), Has2 (~24 min), Tnfrsf19
(~20 min), Phlda1 (~30 min), and Dact1 (~31 min).
The second interval, approximately between the 50th

and 100th minutes of the cycle, marks the activity of the
Notch and Fgf pathways. Genes from the Notch pathway,
which are believed to be activated by Notch1, include



Figure 1 PSM of the mouse embryo. The sample used in microarray analysis (right posterior half of the embryo; dark blue) contains cells at
different phases of the somite cycle, which distorts the observed expression profile. The deconvolution algorithm is used for reconstructing the
true profile representing the oscillation of the gene at the tail E(x = 0,t), from the microarray measurements Mi. at the tail. The measured profile Mi

is broadened due to the large volume of the sampled region.

Fongang and Kudlicki BMC Developmental Biology 2013, 13:42 Page 4 of 14
http://www.biomedcentral.com/1471-213X/13/42
Nrarp (~65 min), Nkd1 (~64 min), Hey1 (~64 min),
Hes7 (~71 min), Hes5 (~80 min), Lfng (~76 min) and
Hes1 (~88 min). Examples from the Fgf pathway include
Spry2 (~82 min), Egr1 (~88 min), Hspg2 (~94 min), Dusp1
(~100 min), Bcl2l11 (~101 min) and Shp2 (~80 min). The
separation between the two main phases confirms previous
results suggesting that Notch and Fgf-related cyclic genes
oscillate mostly in opposite phase to Wnt [2,13,28-30].
Moreover, genes in the Notch pathway are regulated
before the Fgf pathway, suggesting that Notch may
be acting upstream of Fgf. This difference is statistically sig-
nificant at p = 0.0364 (t-test) for peaks of the Notch genes
(including Notch1) preceding the Fgf genes. This global
picture remains unchanged when the expression times are
derived from deconvolving the profiles from the Mouse-2
dataset (the peak times of previously reported cyclic genes
Figure 2 Original measurements (left) and deconvolved (right) profile
Arfrp1 shows distinct expression peaks in opposite phases of the somite cy
of the PSM, while the reconstructed, deconvolved profile represents the gene
associated with Wnt, Notch and Fgf pathways are listed in
Additional file 2: Table S1).

Peak times follow causation in regulatory networks
Knowing the directionality (or causality) of interactions is
crucial for understanding of molecular and regulatory
mechanisms underlying a biological process. Spatiotempo-
ral waves imply strict correspondence between time and
position, and reversing order of events within a cycle is
equivalent to reversing direction of traveling wave. In somi-
togenesis, it is almost impossible to reverse the direction
of the wave through microsurgical manipulation, which
proves that the paraxial mesoderm cells are endowed with
the information for periodicity and directionality very early
as they emerge after gastrulation [29,31]. Here, we inferred
the probable directions of causal interactions between
s for Hes1, Axin2, Hes5 and Arfrp1. The bimodal expression profile of
cle. The measurements are taken as the average of the posterior half
expression at the embryo’s tail, hence the overall shift in expression times.



Table 1 Timing of the most notable cyclic genes with one
peak of expression per cycle

Probeset Gene Time (min) LS p-value

1420360_at Dkk1 22 ± 2 0.00017

1427600_at Tnfrsf19 26 ± 2 0.00022

1436845_at Axin2 20 ± 2 0.00040

1418102_at Hes1 88 ± 3 0.00086

1417937_at Dact1 31 ± 3 0.00097

1422914_at Sp5 23 ± 2 0.00114

1430111_a_at Bcat1 50 ± 6 0.00122

1424942_a_at Myc 20 ± 2 0.00185

1417065_at Egr1 88 ± 5 0.00201

1456010_x_at Hes5 80 ± 3 0.00226

1425895_a_at Id1 82 ± 4 0.00236

1437666_x_at Ubc 19 ± 1 0.00248

1416029_at Klf10 97 ± 6 0.00279

1454904_at Mtm1 80 ± 2 0.00310

1415999_at Hey1 64 ± 4 0.00325

1436584_at Spry2 82 ± 4 0.00510

1417985_at Nrarp 65 ± 3 0.00529

1416895_at Efna1 80 ± 6 0.00629

1456005_a_at Bcl2l11 101 ± 3 0.00697

1449169_at Has2 24 ± 3 0.00952

1418835_at Phlda1 30 ± 2 0.01106

1419180_at Bcl9l 98 ± 8 0.01111

1416039_x_at Cyr61 28 ± 2 0.02952

1448985_at Dusp22 7 ± 1 0.01998

1420643_at Lfng 76 ± 1 0.02458

Times in minutes are scaled to a 120-minute somite cycle.
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genes based on the premise, that a gene that is active at a
given moment in time can activate genes used shortly
afterwards, but can never influence genes activated before-
hand. Given the cyclic nature of somitogenesis, we con-
sider two genes as expressed one after another if their
expression peaks appear within 45-minutes from one an-
other. We have built a network of directionality based on
expression timing and previously reported causal interac-
tions [1-3,7,13,19,22,29,31-33] between genes related to the
Wnt, Notch and Fgf pathways. The timing, statistical error
and directions of causation are presented in Figure 3.
Where directionality could be inferred from data, we found
approximately 87% agreement (Figure 3: solid green arcs)
between timing and previously reported causation, while
only 13% are in the opposite order (Figure 3: solid red
arcs). Approximately 14% of the gene interactions involved
genes in opposite phases, defined by separation of over
45 minutes, for which causation could not be inferred (red
dotted arcs in Figure 3).
The timing and directionality network establishes the
hierarchy between Wnt, Notch and Fgf signaling. The
data indicate that Wnt signaling is acting upstream of
Notch signaling. This Wnt-Notch directionality rule holds
strictly for any regulation that may exist. This result con-
firm previous experiments showing that Notch signaling
oscillations depend on the intact and appropriate Wnt sig-
naling and suggest that the Wnt signaling may be central
to the segmentation clock mechanism [33]. Although it is
clear that Notch and Fgf signaling oscillate nearly in phase,
the hierarchy between those pathways has remained an
open question. Our results strongly suggest that Notch
signaling is acting upstream of Fgf. We also found that the
Fgf inhibitor, Raf1, is a bimodal gene with expression
peaks at approximately 23 min and 91 min of the somite
cycle suggesting also an Fgf signaling activity just at the
beginning of the somite cycle. Assuming that the second-
ary peak of Raf1 is responsible for the Raf1-Dusp6 inter-
action, the coincidence between causation and timing
order will grow from 87% to 92%. Also, the timing of Egr1
has a relatively large uncertainty, and if we disregard its
regulation by Raf1, the rate of agreement between timing
and previously reported causation will reach 96%. In this
analysis, we used all pairs of genes, with peaks separated
by any interval smaller than 45 minutes. It can be argued,
that causation in an exclusively transcriptional network
requires a minimum time delay between two peaks of ex-
pression to of at least 10 – 20 minutes. Taking this into
account, and restricting the analysis to 12 min, which is
reasonably sufficient for transcription and regulation, the
rate of agreement is even higher and reaches 95%. Note,
however, that a direct transcriptional regulation between
two genes is not required for just-in-time expression. It is
possible, that both genes are regulated by a third process
that has been evolutionary optimized to express them in a
temporal sequence with a shorter interval.
For validation purposes, we analyzed the relation be-

tween causation and expression times according to the
mouse-2 dataset. A comparison is represented in the
Additional file 3: Figure S2 between the expression pro-
files from the data of Dequeant et al. (referred to as
“mouse-1” in the picture) and mouse-2, using Hes1,
Dkk1, Axin2 as examples of genes with one peak of ex-
pression and Arfrp1, Cnn3, Tmem30 as examples of
genes with two peaks of expression. More generally, the
rate of agreement between relative timing of causally
connected genes in mouse-1 and mouse-2 is 95%. The
agreement between mouse-2 and previously reported
causation is 89%.

The early activation of Ctnnb1 and the modulation of Fgf8
β-catenin (Ctnnb1) is a transcriptional activator that regu-
lates embryonic development as part of the Wnt pathway
and also plays a major role in the activation of genes in



Figure 3 Gene regulation during mouse somitogenesis. Position of a gene symbol on the plot reflects time of peak expression (angle;
clockwise) and the mean expression level (genes with high expression level are closer to the center). Arrows represent the known causation
(green arrows connect genes in the causation direction matching those found in the literature and red arrows are in the reverse causation order.
Dot links are between genes too distant to indicate direction of causation). Solid black arcs represent the estimated timing accuracy for each
gene. Causation directions are compiled from literature [1-10]. Genes are color-coded according to their known pathway association with green for
Notch, magenta for Fgf, purple for Wnt; in addition, dashed strokes are used for genes previously not reported as cyclic.
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this pathway. It is also known that Wnt is upstream of all
signaling pathways known to oscillate in the mouse PSM
[19]. In the cytoplasm, β-catenin is an essential compo-
nent of the Wnt signaling pathway and is required
for its function [34]. Wnt activation in cells results in
stabilization of cytoplasmic beta-catenin, forming a feed-
back loop [15,34]. β-catenin also serves an important
function in the nucleus. The nuclear beta-catenin inter-
acts with TCF/LEF proteins forming a transcription
factor, which in turn activates the expression of the
Wnt genes [35,36], which is consistent with the peak of
β-catenin preceding the genes from the Wnt pathway
with a temporal delay allowing for the transcription
and translation of these genes. Aulehla et al. [37] have
also shown that Wnt-signaling is dependent on a nuclear
β-catenin protein gradient in the posterior PSM.
Those observations are all verified in our model in

terms of causation as ctnnb1 (~5 min) is activated early
in the process and according to the timing, it activates
successively Myc (~20 min), Axin2 (~20 min), Dkk1
(~22 min), Sp5 (~23 min), Has2 (~24 min), Tnfrsf19
(~20 min), Phlda1 (~30 min), and Dact1 (~31 min). It
has been shown [37] that somitogenesis is not disrupted
by constitutive stabilization of β-catenin in an embryo.
This observation does not however conflict with the ob-
served peak of expression. Most likely, while the pres-
ence of β-catenin is essential at a specific phase of the
somite cycle, its absence in other phases is not required –
and the observed pattern is an effect of evolutionary
optimization or redundancy built into the system.
For many Fgf genes, both a spatial gradient [38,39]

and an oscillatory behavior have been observed. This
dual nature is not understood [30]. The overall gradient
and its function in creating the determination front sug-
gests that Fgf acts upstream of Wnt and Notch, which
also agrees with the cyclic nature of the process. Fgf8 is
a gene from the Fgf family with multiple roles in devel-
opment, including determination of the anteroposterior
body axis, gastrulation, limb development as well as pat-
tering of the face and the midbrain/hindbrain region
[40-42]. The results of our analysis show modulation
of the Fgf8 transcript (see profile in Additional file 4:
Figure S9), which is surprising, because in the experi-
ments of [43] no production of new Fgf8 mRNA was ob-
served in the PSM. It is possible that the observed profile
of Fgf8 is a consequence of modulated degradation of
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Fgf8 mRNA. Although the modulation may not be strictly
transcriptional, it may still play a role in optimization of
the somite formation process. Our timing results show
an expression peak of Fgf8 which is later than the peaks
of other Fgf genes, and is nearly synchronous with the
Wnt pathway. Fgf8 being active later than other genes in
the pathway also agrees with Wahl et al. [30], who show
that the expression of Fgf8 depends of Fgfr1, and suggest
that Fgfr1 may directly influence the Wnt and Notch
pathways. The relationship between Fgf8 and other mem-
bers of the Fgf signaling pathway may be also related
to the existence of a second peak for the Fgf signaling
inhibitor, Raf1.

Expression of Notch1 precedes Notch-related cyclic genes
The activity of the Notch-related cyclic genes depends
on Notch1, whose periodic activation can be visualized
via the rhythmic production of the Notch Intracellular
Domain (NICD). It is believed that after nuclear transloca-
tion, NICD activates transcription of target Notch related
genes. The process of somite formation was found to be
delayed and disorganized in Notch1 mutant embryos [44],
suggesting that this gene should coordinate the process or
at least the Notch signaling. Consequently, we should ex-
pect activation of Notch1 before all Notch-related cyclic
genes and that is actually the case, as shown in Figure 3.
Notch1 is expressed approximately 53 min after the be-

ginning of the somite cycle and then activates successively
Nkd1 (~64 min), Hey1 (~64 min), Nrarp (~65 min), Hes7
(~71 min), Lfng (~76 min), Hes5 (~80 min) Hes1 (~88 min)
and Bcl9l (~97 min). Analysis of the Mouse 2 dataset con-
firms these findings; Notch1 peaks at 50 min and its targets
between 53 and 90 minutes.

Hes7 displays two peaks of expression
The role of the Hes7 gene, and its zebrafish homologs
Her1 and Her7, has been extensively studied in the
recent years. The primary function of Hes7 in somito-
genesis is related to its interaction with the Notch
modulator Lfng [45-48], which results in a wave of Hes7
activity in phase with genes from the Notch pathway. In
the analysis of the deconvolved data, we have observed
two peaks of expression of Hes7 (see panel on page 4 of
Additional file 4: Figure S9). The first peak at 71 min
after the beginning of the somite cycle is consistent with
the Notch signaling activity and the Hairy and enhancer
of split Family (Hes1/5/7), and is exactly in phase with
Lfng. Niwa et al. [49] have discovered a secondary func-
tion of Hes7, related to its initiation by the FGF pathway.
Lfng knockout experiments suggest that these two path-
ways are largely independent from one another. This
function is more consistent with the second peak of ex-
pression of Hes7, at 13 min after the beginning of the so-
mite cycle. The bimodal expression pattern of Hes7 is
confirmed by the mouse-2 dataset, where the same pat-
tern is observed consisting of two peaks, one following
FGF and one in late Notch phase.

Raf1, an Fgf-related cyclic genes activator is bimodal
The timing of most known cyclic genes during mouse
somitogenesis suggests the following relationship be-
tween signaling pathways: Wnt acts upstream of Notch,
which in turns acts upstream of Fgf. On the other hand,
activities of some Fgf signaling have been found to take
place at the beginning of the process. Moreover, several
results (see [50] for review) have suggested that cells in
the posterior-most tissues are maintained undifferenti-
ated by a high level of FGF signaling and activate their
differentiation program only when they reach the appro-
priate threshold of FGF activity. Although those observa-
tions can be related to the gradient of Fgf8 creating the
asymmetry along the rostral-caudal axis of the PSM, an-
other explanation may come from the bimodal behavior
of Raf1. Indeed, Raf1 (v-raf-leukemia viral oncogene 1),
which is known to regulate indirectly members of the
Fgf signaling pathway, was found to have two peaks of
expression. The first expression peak of Raf1, which
happens 23 min after the beginning of the somite cycle,
can explain the regulation with some genes like Tbxl6
(~31 min) and Fgf8 (~17 min), while the second peak,
91 min after the beginning of the somite, is closer to the
known Fgf cyclic genes.

Other bimodal genes
Analysis of the timing of gene expression during mouse
somitogenesis indicates that genes with multiple expres-
sion peaks may be involved. Indeed, the dual peaks of
expression of genes like Hes7 and Raf1 is obvious and
may explain their role in the process.
In most studies on somitogenesis, attention is paid to

genes with oscillation periods matching that of somite
formation. Although this is the most appropriate way to
support the idea of the “clock and wavefront” model,
studying genes with multiperiodicity or multifrequency
can help understand some concepts behind the process.
Indeed, a transcript with 60-minutes period is also peri-
odic within a 120 minutes process, but the 60-minutes
periodicity will not produce a Fourier peak a 120 minutes
and such transcripts are often missed.
Genes oscillating at different harmonic modes have

been previously observed in cyclic processes. A promin-
ent example is the cyclin-dependent kinase CDC28 with
two peaks during the mitotic cycle [24]. Examples in de-
velopment include the recently reported two-segment
periodicity in insect segmentation clock [51]: in the
beetle Tribolium casteneum, a short germ-band insect,
the segmentation gene odd-skipped (Tc-odd) oscillates
with a two-segment periodicity, which shows that a



Table 2 Timing of the most notable cyclic genes with two
peaks of expression per cycle

Probeset Gene T1 (min) T2 (min) LS p-value

1425508_s_at Arfrp1 37 ± 4 96 ± 3 0.00231

1417405_at Stard3 28 ± 3 91 ± 4 0.00261

1416446_at Tmem30a 37 ± 3 101 ± 2 0.00286

1426017_a_at 0610011L14Rik 31 ± 2 95 ± 4 0.00387

1426359_at Zc3h11a 28 ± 2 86 ± 5 0.00392

1456380_x_at Cnn3 29 ± 1 84 ± 3 0.00555

1417108_at Klc4 34 ± 3 86 ± 8 0.00695

1448478_at Med20 29 ± 2 89 ± 1 0.00717

1426524_at Gnpda2 28 ± 1 83 ± 3 0.00748

1450953_at Ciao1 32 ± 3 89 ± 4 0.00798

1448155_at Pdcd6ip 41 ± 3 96 ± 3 0.00799

1418017_at Pum2 35 ± 2 103 ± 1 0.00808

1452053_a_at Tmem33 45 ± 3 100 ± 5 0.00823

1451243_at Rnpep 31 ± 3 92 ± 2 0.00828

1448762_at Rad17 37 ± 4 98 ± 4 0.00872

1427356_at Fam89a 37 ± 3 100 ± 2 0.00883

1423286_at Cbln1 17 ± 1 77 ± 5 0.00942

1460718_s_at Mtch1 29 ± 1 87 ± 9 0.00947

1452560_a_at Nfya 24 ± 2 88 ± 5 0.00985

1448389_at Wdr5 89 ± 3 28 ± 3 0.0101

Times in minutes are provided for both peaks (T1 for the first and T2 for the
second) and scaled to a 120-minute somite cycle.
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multi-periodicity or half periodicity may occur during
segmentation processes.
The bimodality of Hes7 and Raf1 suggests that other

bimodal genes could be involved in the mouse somito-
genesis. We used the previous LS algorithm with double
frequency to find those genes whose period is half of
that of somite formation. We detected 247 probe sets
with a bimodal signal by setting the p-value, statistical
significance level of testing the null hypothesis that a
double peak in LS periodogram is due to chance, at 0.05.
After deconvolution, peak detection, error estimation
and visual check of individual profiles, we ranked the
genes according to the regularity of their profiles. The
complete set of genes (173) found to be statistically signifi-
cant with a regularly smooth profile is presented in the
Additional file 5: Table S2 and the supporting website at
http://moment.utmb.edu/somites. This set contains genes
previously associated with Wnt (Ccnd3, Csnk2a1), Notch
(Cbln1, Csnk2a1) and Fgf (Pik3ca, Fgf13, Mapk14) path-
ways. The positions of peaks of the 173 bimodal genes
along the somite cycle are shown in Additional file 6:
Figure S3. A majority of these genes have one peak of ex-
pression in the late Wnt phase and the other one in the
late Notch/Fgf phase.
Table 2 contains the 20 most significant bimodal

genes; their expression profile and timing are shown in
Additional file 7: Figure S4 and Additional file 8: Figure S5
respectively. To our knowledge, none of these genes have
been previously reported to have any critical function
during mouse somitogenesis. Arfrp1, the gene with the
most regular bimodal profile (see Figure 2 and panels a
and c of Additional file 3: Figure S2), has been reported to
play a major role in such processes during early gastrula-
tion as adhesion-dependent morphogenesis, cytoskeletal
reorganization, and/or development of cell polarity and its
deletion in mice results in embryonic lethality [52].
It should be noted that the bimodality is confirmed by
the deconvolved data of [13] as seen in Additional file 3:
Figure S2. We expect that the discovered bimodal profiles
will lead to constructing more accurate models of somito-
genesis and to finding new functions of the genes involved.

Conclusions
We have developed a variant of the maximum entropy
deconvolution formalism that can describe spatiotempo-
rally variable processes. Our algorithm, supplemented with
a customized method for data preprocessing, allowed the
successful reconstruction of transcriptional events during
mouse somitogenesis with a high accuracy and an unpre-
cedented temporal resolution. The results demonstrate
that the genes involved in the process are transcribed
precisely when their products are needed, and that the
timeline of gene expression agrees with the direction of
causation in the regulatory network of somitogenesis. This
strongly suggests that the temporal structure of the seg-
mentation process is fully reflected by the timeline of tran-
scriptional activity. The agreement holds even for genes
with demonstrated posttranscriptional or posttranslational
modifications, (e.g. beta-catenin). A plausible explanation
of such highly prevalent just-in-time expression is through
the evolutionary pressure towards economizing on
resources in the living cells – in predictable temporal
processes a cell will conserve energy and amino acid com-
ponents if a gene product is made just before it is needed,
as opposed to long-time storage and maintenance of pro-
teins. The deconvolution acting as a noise filter has re-
vealed prominent peaks in the temporal profiles of many
genes previously not annotated as cyclic (as beta-catenin),
and for a number of transcripts two phases of activity have
been identified per somite cycle (including Raf1 and
Hes7). Our findings are confirmed by applying the algo-
rithms to a second independent dataset. Although some
differences exist between these two datasets, the ordering
of causally-related genes is almost universally conserved.
The timeline of expression peaks will serve as a bench-

mark for newly identified causal interactions in somito-
genesis, as well as a tool to generate and test further
hypotheses concerning the regulatory network involved.

http://moment.utmb.edu/somites
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Our results demonstrate the utility of high-resolution
timing of gene expression in deciphering the regulations
in transcriptional networks in general.
The statistical and computational methods developed

in this work are readily applicable to interpret the results
of further gene expression studies of somitogenesis in
mouse and other species as well as to other developmen-
tal processes.

Methods
Positioning of embryos along the clock cycle
In the somitogenesis study each data point comes from
a different embryo and no accurate wall-clock is present,
so information about the phase of the somitogenesis
cycle may be derived only from the embryo itself.
Dequeant et al. have derived the order of embryos in the
cycle using in situ hybridization of Lunatic fringe glyco-
syltransferase (Lfng) in the contralateral half embryo (see
Figure 1) for the 17 data points; this dataset will be re-
ferred to as “mouse-1”. In the study by Krol et al. [13], a
similar procedure, using Affymetrix GeneChip Mouse
Genome 430 2.0; an updated version of the microarray
platform, has produced a sequence of 20 data points -
referred to as “mouse-2”. We use the data of Dequeant
et al. as the primary set. The expression profiles from
Krol et al. are used for validation of the inferred timeline
of gene activation during somitogenesis.
To estimate the actual positions of embryos along the

2 h clock cycle, we used the set of 6 known cyclic genes
(Hes1, Hes5, Hey1, Lfng, Axin2 and Nkd1) from
Dequeant et al. [2]. The aim is to assign times to mea-
surements such that the expression profiles of these 6
genes are the most periodic, as measured by the ampli-
tude of the best-fit harmonic wave. Specifically, we start
from an evenly spaced time distribution, with approxi-
mately 7 and 7.5 minute interval between two consecutive
points in the mouse-1 and mouse-2 dataset respectively.
We vary the time ti associated with each embryo by adding
a small value εi to ti in order to maximize the Lomb-
Scargle (LS) [53] periodicity scores of the six cyclic genes.
The LS periodogram is a common tool in the frequency

analysis of unequally spaced data. Let (ti, xi), i = 1…n,
been the time point distribution representing for ex-
ample the expression values xi of a gene g at different
time ti, then the LS periodogram for a single frequency ω
is defined by

Pg ωð Þ ¼ 1
2σ2

"
A
Xn
j¼1

xj−�x
� �

cos ωtj−τ
� � !2

þB
Xn
j¼1

xj−�x
� �

sin ωtj−τ
� � !2#

ð1Þ
Where A ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
j¼1 xj−�x
� �

cos ωtj−τ
� �2q

, B ¼ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
j¼1 xj−�x
� �

sin ωtj−τ
� �2q

, σ 2 is the sample variance, �x is

the mean of x , τ is defined by tan 2ωτð Þ ¼ ∑n
j¼1 sin 2ωtj

� �
=

∑n
j¼1 cos 2ωtj

� �
and n, the total number of time points is 17

for mouse-1 and 16 for mouse-2.
The null distribution of the LS periodogram zg = Pg(ω)

at frequency ω is computed using the Fisher rule F(zg) =
(1 − zg/n)

n−1 [54]. A periodic gene expression is obtained
by testing the null hypothesis, pg = 1 − (1 − zg/n)

n−1 , that
the gene is non-periodic versus the alternative that it is
periodic. For the set of known cycling genes described
above, their combined periodicity significance (equation 2)
is minimized with an additional given penalty λ for large
deviations. Combining the periodogram with the penalty
results in the following target function T:

T ε1…εnð Þ ¼
X6
g¼1

log 1− 1−zg=n
� �n−1� �� �

þ λ
Xn
j¼1

ε2j ð2Þ

The Powell optimization method [27] is applied to the
target function to optimize the values of εi. Figure 4
gives an illustration how the amplitude of λ may affect
the final result: High values of λ will overemphasize the
regulation leading to the reconstruction of the original
points while too small values will overweight the goodness-
of-fit component leading to a poor regulation. We found
that for the mouse-1 dataset, λ =10.2 results in adequate
balance between the periodicity and penalty components.
For mouse-2, we used λ =23.7; the difference can be attrib-
uted to different noise levels and different numbers of data
points in the two datasets.

Spatiotemporal maximum entropy deconvolution
Because of relatively large spatial dimensions of the sam-
ple, it will contain cells in different stages of the cycle,
which will affect on the observed temporal changes in gene
expression. To correct for this effect, we first model the de-
pendence between the position of the Lfng band x, the time
t and phase φ as

ϕ x; tð Þ ¼ x
1−d

� �α
−t ð3Þ

where the parameters α and d describe the wave deceler-
ation and geometry of the system. The cycle phases φi

are random when the embryos are sacrificed. Therefore,
a correct transformation between x and φ is expected to
yield cycle phases consistent with a random, flat distribu-
tion. To ensure this, we require that the moments of the
actual distribution of timepoints will be the same as
in a random distribution. To this end, we choose such
values of α and d, for which the first two moments of
the distribution of the phases φ are the same as the



Figure 4 Optimization of positioning of experiments along the somite cycle. Bottom panel: The temporal profiles of Hes1 and Axin2 plotted
against original (solid lines) and optimized time points (dotted lines). Top panel: The result depends on the choice of the amount of allowed
variation during optimization of timepoints (see Methods). The allowed variation depends on the value of weight penalty λ in Eq. 2. Higher
values of λ will overemphasize the regulation leading to the reconstruction of the original points while too small values will overweight the
goodness-of-fit component leading to a poor regulation. The value 10.2 (in the mouse-1 dataset) was found to be a good consensus, giving high
periodicity scores without sacrificing the global properties of the profiles.
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moments of a flat distribution: < ϕ > = 1/2 for the first
moment and < (ϕ − 1/2)2 > = 1/12 for the second mo-
ment. These two constraints uniquely determine the
values of the geometry parameters as d = 0.022 (PSM unit
length) and α = 1.900 when t = 0.0. Figure 5 represents
the phase of gene expression along the PSM: The waves
are moving faster for small values of x (most posterior
part of the PSM), and slow down for larger values of x.
The values of x used in this calculation are obtained by
analyzing the in-situ micrographs of [2] to identify the
position of maximum intensity of the Lfng band.
Figure 5 The relation between the phase of gene expression and pos
of x (most posterior part of the PSM), and slow down as the wave progress
time-points, corresponding to different phases of the somite cycle.
The observed spatiotemporal patterns M of gene ex-
pression in the PSM result from convolution of the pri-
mary oscillation E with a geometry-dependent kernel
function h (Figure 1). In the phase space, the observed
spatiotemporal pattern is given by:

M ϕð Þ ¼ ∫E ϕð Þh ϕð Þdϕ ð4Þ

Experimentally, the samples are collected from the
posterior half right side of the PSM, approximately be-
tween positions xp = 0.05 and xa = 0.5 (PSM length unit),
ition along the PSM. The waves start as moving fast for small values
es toward larger values of x. The three snapshots depict a sequence of
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and the measurements M correspond to integration over
this interval. For a time point ti, the observed spatiotem-
poral pattern M(ti) is given by

M tið Þ ¼ ∫xaxpE x; tið Þdx ¼ ∫ϕ
i
a

ϕi
p
E ϕ x; tið Þð Þ dx

dϕ
dϕ ð5Þ

Here dx
dϕ ¼ 1−d

α ϕ þ tð Þ1α−1
The convolution kernel as function of phase is given by:

h ϕ; tð Þ ¼ 1−dð Þ=αð Þ ϕ þ tð Þ1α−1 for ϕi
p < ϕ < ϕi

a and 0

elsewhere: The temporal gene expression profile, E φ(x,ti)),
is represented by values of mRNA concentrations, aj,
at 100 points evenly spaced in time: aj = E(φ = j/100),
for j = 1..100. The expression value at φ = 0 is repre-
sented by a100. The likelihood of observing a particular
temporal profile M from a given true profile E at the tail
of the embryo (which is also characteristic of any typical
single-cell in the PSM) is based on the least squares
principle: prob(M | E) ≈ exp(−x2/2), where

χ2 ¼
Xn
i¼1

M tið Þ−
X100
j¼1

ajh ϕ j; ti
� �( )2

We employ a Bayesian approach and to calculate the
probability of a profile, we combine this likelihood with
a prior probability for the original profile E, which is
chosen based on the maximum entropy principle.
The maximum entropy prior is chosen as one cor-

rectly describing a distribution of a variable that is non-
negative and additive, and for which no additional prior
information (prior to experimental data) is available [55].
The use of maximum entropy prior is justified even if
periodicity of a profile is presumed, because periodic
processes are possible (and observed in biology) with any
shape and distribution, not necessarily sinusoidal. The
most probable solution for the profile – represented by the
parameters {aj} is the one maximizing prob(M | E) while
keeping the posterior probability normalized to 1. Under
the maximum entropy prior, the final target function has

the form T a1;…; a100ð Þ ¼ ω
A

X100
j¼1

aj log ai=Að Þ þ 1
2
χ2,

where A ¼
X100
j¼1

aj . We find the optimal values of aj by

minimizing T using conjugate gradient method.
The result depends on the choice of ω, which can be

viewed as Lagrange multiplier. The parameter ω mea-
sures regularization introduced into the least square
minimization through the entropy condition. There is
no consensus for the choice of ω [56]. Too small a value
of ω will over-weight the goodness-of-fit component,
thus favoring high-frequency solutions, which are poorly
regularized. On the other hand, too high a value of ω
will overemphasize the entropy regularization, which will
result in under-reconstruction of the high-frequency
components of the profile (artificially flat profile). The
optimal value of the entropy weight ω is established based
on numerical experiments.

Microarray data and periodicity detection
As primary set, we used the data of [2], retrieved from
the ArrayExpress database under accession E-TABM-163.
The 17 time points correspond to embryos harvested ap-
proximately 9 days post-coitus (ranging between 19 and
23 somites), and mRNA concentrations in the right poster-
ior half of the PSM are measured using the Affymetrix
GeneChip M0E430A microarray. Following [2], we only
used probe sets with maximum signal over than 80 and a
peak-to-trough ratio of 1.7 or higher (5822 probe sets).
Fourier amplitudes were computed as in [53], 276 probe-
sets passed the p-value threshold of 0.05 [54]. We indi-
vidually inspected the regularity of each temporal profile.
The resulting set contains genes with a regular peak suit-
able for timing with a good resolution and includes about
95% of previously known cyclic genes. Indeed, from the
set of 22 most cyclic genes proposed by Dequeant et al. in
[2], only 2 genes (Shp2 and Nkd1) are not present in the
remaining set, due to their low signals.
The dataset of [13], which was used for independ-

ently validating our results has been retrieved from the
ArrayExpress database under accession E-MTAB-406.
This collection of profiles set (referred to as mouse-2)
contains 20 mouse embryos analyzed using the same
protocol as in Dequeant et al. Only 16 out of 20 embryos
were selected by the authors to cover the 2 h clock cycle.
The data were filtered by the percentage of p-calls (only
probesets called present by the detection call for at least
2/3 of the samples of the microarray series were retained),
minimum signal intensity (probesets with minimum signal
less than 29 were removed) and peak-to-trough (only pro-
besets with a ratio of 1.5 were selected). This filtering re-
duced the dataset by 43% and for the remaining 194318
probesets, we have repeated the procedures described in
the sections above to extract the individual profiles, esti-
mate the timing as well as its resolution. In the affymetrix
platform, several probesets may be available for one gene.
Whenever such probesets displayed diverging expres-
sion profiles, we matched the probesets between the
MOE430A and 430–2.0 – based experiments based on
profile similarity. Moreover, Nkd1, Shp2, Lfng despite their
low signals or low p-calls were included in the results as
they are known to be involved in mouse somitogenesis.
The position of peaks for those genes along the 2 h somite
cycle is shown in Additional file 9: Figure S6.
The list of genes involved in the mouse somitogenesis

has been derived and refined in several studies using a
number of approaches [1,2,13,28,31,57-60], however the
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poor S/N ratio may be the source of both false positive
and false negative detections. As in [24,61], we follow the
observation that truly regulated transcripts will exhibit an
observed expression profile that is not only periodic but
also has the characteristics of a convolved signal. Using
this additional information, we postulate the presence
of previously undetected genes that are transcriptionally
regulated during somitogenesis. The full list of genes
Additional file 5: Table S2 for genes with two peaks of ex-
pression and Additional file 10: Table S3 for genes with
one peak of expression is shown in the supplementary
material and can also be downloaded from the sup-
porting website. Each list contains the probe set ID,
the gene symbol, the timing, the precision and the LS
p-value. The expression profiles of those genes are also
shown in the Additional file 11: Figure S7 (genes with
two peaks of expression) and Additional file 12: Figure S8
(genes with one peak of expression). Additional file 4:
Figure S9 represents the expression profiles of common
genes discussed in the text. Additionally, we provide
an online tool to plot and/or download the profile and
timing for each gene, available at http://moment.utmb.
edu/somites.
Peak detection and stability
To find the peaks of the profiles, we search for maxima of
the deconvolved expression profile. of course, the decon-
volved profiles can have multiple local maxima, only some
of which correspond to actual significant peaks in gene ex-
pression. To identify significant peaks, we design a heuris-
tic score, taking into account the integral under the peak
and the peak's full width at half magnitude. To estimate
the accuracy of the timing for each individual gene, we
have created a large number of synthetic datasets (100 arti-
ficial profiles for every gene) by adding to the actual data,
sources of noise typically found in microarray experiments,
the amplitude of noise set to 0.4 of the expression level.
For each gene, the simulated profiles were deconvolved
and peaks identified. The accuracy (resolution) of the gene
timing was computed the root mean square deviation of
timing results (peak position) of the synthetic profiles.
Supporting website
The presented data are also available from the support-
ing website.
http://moment.utmb.edu/somites.
Additional files

Additional file 1: Figure S1. Profiles of the main genes used in the text
and known as Wnt, Notch or Fgf cyclic genes for mouse somitogenesis. The
figure presents the individual profiles the well-known cyclic genes compiled
as well new candidate cyclic genes.
Additional file 2: Table S1. Timing of genes known to be associated
with Fgf, Wnt and Notch pathways in the data set mouse2.

Additional file 3: Figure S2. Expression profiles are conserved between
mouse-1 and mouse-2 datasets. In the figure, we compare the expression
profiles between mouse-1 (Dequeant et al.) and mouse-2 (Krol et al.)
using Hes1, Dkk1, Axin2 as examples of genes with one peak of expression
(b,d) and Arfrp1,Tmem30a, Cnn3 as example of genes with two peaks of
expression (a,c).

Additional file 4: Figure S9. Expression profiles for genes discussed in
the text. The figure represents the expression profiles of common genes
discussed in the text.

Additional file 5: Table S2. The list of genes with two peaks of
expression. The timing of genes found with two peaks of expression,
ranked according to their LS p-value and the regularity of the profile.
Times in minutes assume a 2 h periodicity for every transcript and errors
are computed by adding to the original transcript source of noise typically
found in microarray experiments.

Additional file 6: Figure S3. Timing of genes with two peaks of
expression. The positions of peaks of 173 bimodal genes along the 2 h
somite cycle are shown. Most of those genes have one peak of
expression in the Wnt phase and the other one in the Notch/Fgf phase.

Additional file 7: Figure S4. Profiles of the top 20 genes with two
peaks of expression.

Additional file 8: Figure S5. Timing of the top 20 genes with two
peaks of expression.

Additional file 9: Figure S6. Timing of genes with one peak of
expression. The positions of peaks of 159 genes along the 2 h somite
cycle are shown.

Additional file 10: Table S3. The list of genes with one peak of
expression. The timing of genes found with one peak of expression,
ranked according to their LS p-value and the regularity of their profile.
Times in minutes assume a 2 h periodicity for every transcript and errors
are computed by adding to the original transcript source of noise typically
found in microarray experiments (see text).

Additional file 11: Figure S7. Individual profile for every gene listed in
the Additional file 5: Table S2. For every gene in the Additional file 5:
Table S2, the deconvolved expression is displayed.

Additional file 12: Figure S8. Individual profile for every gene listed in
the Additional file 2: Table S1. For every gene in the Additional file 2:
Table S1, the deconvolved expression is displayed.
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