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Inferring quantity and qualities 
of superimposed reaction rates 
from single molecule survival time 
distributions
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Actions of molecular species, for example binding of transcription factors to chromatin, may comprise 
several superimposed reaction pathways. The number and the rate constants of such superimposed 
reactions can in principle be resolved by inverse Laplace transformation of the corresponding 
distribution of reaction lifetimes. However, current approaches to solve this transformation are 
challenged by photobleaching-prone fluorescence measurements of lifetime distributions. Here, we 
present a genuine rate identification method (GRID), which infers the quantity, rates and amplitudes 
of dissociation processes from fluorescence lifetime distributions using a dense grid of possible decay 
rates. In contrast to common multi-exponential analysis of lifetime distributions, GRID is able to 
distinguish between broad and narrow clusters of decay rates. We validate GRID by simulations and 
apply it to CDX2-chromatin interactions measured by live cell single molecule fluorescence microscopy. 
GRID reveals well-separated narrow decay rate clusters of CDX2, in part overlooked by multi-
exponential analysis. We discuss the amplitudes of the decay rate spectrum in terms of frequency of 
observed events and occupation probability of reaction states. We further demonstrate that a narrow 
decay rate cluster is compatible with a common model of TF sliding on DNA.

The actions of biomolecules are governed by thermal fluctuations and thus are intrinsically stochastic. 
Accordingly, interactions such as association and dissociation events of molecular species often follow Poissonian 
statistics with a constant probability per time, the rate constant, to occur. In this case, the experimentally acces-
sible lifetime of the reaction is exponentially distributed. Commonly, a biomolecule engages in several different 
types of interaction, with each interaction type having its own reaction rate. For example, a biomolecule might 
bind to different protein species, to multiple sites on DNA or RNA, or to different cellular compartments. In such 
a scenario, not all members of a biomolecular specie will undergo the same type of interaction at any time. Rather, 
each biomolecule will conduct one of the multiple possible types of interaction. If the measurement determining 
the reaction lifetimes cannot distinguish between the different types of interaction, the resulting lifetime dis-
tribution will be multi-exponential and include reaction rates from all superimposed Poisson processes. More 
precisely, the lifetime distribution is a Laplace transform of the spectrum of reaction rates inherent to the bio-
molecule (Fig. 1a). Retrieving the underlying spectrum of reaction rates consequently evokes an inverse Laplace 
transformation.

The inverse Laplace transformation is an ill-posed problem for the inversion of inherently noisy, discrete dis-
tributions and numerical solutions are often unstable1,2. Nevertheless, algorithms treating the Laplace transform 
using gradient methods and appropriate regularization have been successfully developed for noisy data in NMR3,4 
and protein folding5. An elegant method based on phase functions avoids fitting procedures and enables direct 
reconstruction of the rate spectrum of superimposed6 and sequential7 biological decay processes.

Lifetimes of biomolecular interactions are frequently measured by single-molecule fluorescence micros-
copy8–25. In such experiments, photobleaching of the fluorescent label adds a further decay path to the fluo-
rescence signal, in addition to the dissociation processes. In single-molecule tracking, photobleaching is 
indistinguishable from a successful dissociation26. This complex kinetic scenario cannot be solved by the phase 
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function method or current approaches of numerical inversion of the Laplace transform. Photobleaching in sur-
vival time distributions may for example be accounted for by comparison to immobile molecules such as histones 
H2B11,27, or, alternatively, the photobleaching rate constant can be directly inferred using different time-lapse 
conditions9,28.

An example of multiple superimposed reactions are transcription factor (TF) – chromatin interactions. TFs 
may be involved in a manifold of different binding reactions, such as binding to different specific or unspecific 
sequences on either free or nucleosomal DNA29, binding to RNA or to low-complexity domains30. To obtain the 
underlying reaction rates of TF – chromatin interactions, current analysis approaches avoid inverting the Laplace 
transform by describing the measured fluorescence survival time distributions with multi-exponential models 
with a fixed number of exponential functions but varying decay rates and amplitudes8,10,11,31. Such exponential 
fitting is robust but requires knowledge of the number of decay rates and thus is ill suited to resolve complex decay 
rate spectra with an unknown number of components.

Here, we tackle the problem of inverting the Laplace transform for fluorescence survival time distributions 
obtained by single molecule tracking subject to photobleaching. We are able to robustly infer reaction rate spec-
tra by reducing the number of nonlinear parameters and by introducing specialized regularizations in a corre-
sponding gradient-based optimization problem. To reduce free parameters, we apply a grid of invariable decay 
rates with fixed spacing but variable positive amplitudes to describe fluorescence survival time distributions. We 
validate our genuine rate identification (GRID) method by simulations and show that GRID enables inferring 
complex reaction rate spectra even if several decay rates are present. The analysis is robust for different pho-
tobleaching rates and different distributions of amplitudes. Both narrow and broad clusters of decay rates can 
be resolved. We apply GRID to analyse the fluorescence survival time distributions of dissociation events of the 
transcription factor CDX2 recorded in live cells. GRID extends the information obtained by multi-exponential 
fitting approaches on the number of decay rates present and the width of decay rate clusters. We discuss different 
interpretations of the decay rate spectrum. Moreover, using a model of TF sliding on DNA, we estimate the width 
of a decay rate cluster due to unbinding from multiple DNA sequences with similar binding energies. In addition, 
we discuss the limitations of GRID.

Results
Analysing superimposed reactions by GRID.  We considered several parallel reactions each following 
Poissonian statistics with distinct dissociation rates giving rise to exponentially distributed lifetimes (Fig. 1a). 
We further considered measurements of reaction lifetimes by single molecule fluorescence microscopy using 
fluorescent labels subject to photobleaching. The corresponding survival time distribution is a superposition 
of exponential functions weighted by the relative occurrence of each process and enveloped by the decay of flu-
orescent labels (Fig. 1a, Methods, Eq. 2). Since the photobleaching rate adds to every dissociation rate, the rate 
spectrum obtained by an inverse Laplace transformation would be shifted by the value of the photobleaching 
rate, thereby impeding this approach without considering photobleaching. To correct for photobleaching, we 
performed time-lapse measurements, where each time-lapse condition is characterized by a sequence of short 
illuminations separated by a dark period of varying duration, that differently alters the photobleaching rate while 
leaving the dissociation rates unaltered (Methods)9. This measurement scheme enabled us to separate the pho-
tobleaching rate and dissociation rates in a global optimization process with an inverse Laplace transformation 
for each time-lapse condition.

We reduced the number of non-linear parameters in a minimization problem solving the inverse Laplace 
transformation by introducing a grid of densely spaced invariable decay rates with variable amplitudes (Fig. 1b 
and Methods). We further designed a cost function restricting the amplitudes to positive values for physical 

Figure 1.  Working principle of GRID. (a) Sketch of a TF exhibiting three distinct dissociation processes from 
chromatin (upper panel). The resulting survival time distribution is a superposition of the survival times of 
all three processes (lower panel). (b) Sketch of a decay rate spectrum (black solid line) underlying a complex 
survival time distribution. In common multi-exponential analysis, the number of decay rates has to be guessed 
and their values and amplitudes are varied (red dashed lines). In contrast, GRID only varies the amplitudes of a 
grid of decay rates (blue solid lines). Degrees of freedom are indicated by arrows.
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reasons. The cost function also accounted for the limited time resolution of fast dissociation rates due to the inte-
gration time of the camera, or to the criterion we used to define bound molecules, respectively. We refer to this 
regularization as mean decay regularization (MDR) (Methods). If the regularization is omitted, fast decay rates 
are used to account for noise in the first data points of the time-lapse records without compromising overall qual-
ity of the fit, since fast dissociation rates introduce negligible error at large times. The cost function can accommo-
date any number of time-lapse conditions in single molecule fluorescence measurements. We used the gradient 
method implemented in the Matlab R2017a fmincon function to solve the minimization problem corresponding 
to the inverse Laplace transform (Methods).

We validated our approach, GRID, using simulated survival time distributions. We simulated distributions as 
would be obtained by single molecule fluorescence measurements with up to 10 time-lapse conditions spanning 
a range of 0 s dark time up to 31.57 s dark time between two adjacent images, acquired using 50 ms exposure 
time and synchronous illumination. We simulated 10,000 recorded reaction events per condition (if not stated 
otherwise), a photobleaching rate constant k = 1 s−1, similar to experimental values for organic dyes11,18 and con-
sidered noise intrinsic to Poisson processes (Methods and Supplementary Table 1). To test the performance of 
GRID, we compared different cost functions and varied several qualities of the rate spectra including the quantity 
of well-separated superimposed rates, rate values and amplitudes and the width of densely spaced rate clusters.

First, we compared the performance of the MDR in our cost function with respect to generic regularizations 
such as the L2-norm32 and the L4-norm of the fitted parameters and a more specific norm that weights fitting 
parameters with the hyperbolic cosine (Methods). We simulated survival time distributions (1,000 events per 
time-lapse condition) with two superimposed reactions with rates of 0.1 s−1 and 5 s−1 (Fig. 2a and Supplementary 
Table 1). While all alternative regularizations showed artificial broadening of rate distributions, our MDR suc-
cessfully reproduced the ground truth rate spectrum (Fig. 2a,b). We thus retained our cost function for the 
remainder of the study.

Second, we simulated survival time distributions (100,000 events per time-lapse condition) with an increas-
ing number of superimposed reactions with rates between 0.01 s−1 and 10 s−1, separated by at least a factor of 4 
(Supplementary Table 1). Within this range and spacing, GRID reliably identified up to six distinct reaction rates 
(Fig. 2c). We note that the color code in Fig. 2 is logarithmically spaced and false positive rate detections comprise 
less than a few percent of the total spectral mass. These false positive rates occur stochastically and might be due 
to noise in the simulated distributions.

Third, we investigated whether the spacing of rates influenced the performance of GRID. We simulated sur-
vival time distributions with a fast dissociation rate fixed at 5 s−1 and varied a slow dissociation rate between 
10−2 s−1 and 4 s−1 (Fig. 2d and Supplementary Table 1). GRID inferred rate values reliably up to a separation by a 
factor of ~2, comparable to a two-exponential fit and consistent with the resolution limit of exponential analysis33. 
Analogously, we varied the fast dissociation rate between 10−2 s−1 and 10 s−1 while keeping the slow dissociation 
rate constant at 5.4·10−3 s−1 (Supplementary Fig. 1). Again, the values of both rates were accurately determined 
up to a separation by a factor of ~2, and comparable to a fit with a double-exponential model. To estimate the 
influence of the number of simulated reaction events on the accuracy of the inferred rate spectra for the case of 
two simulated dissociation rates with variable spacing, we quantified the overlap of ground truth spectra and 
GRID inferred spectra by calculating the scalar product of both in 100 independent simulations, and varied the 
number of simulated reaction events between 100 and 10,000 per time-lapse condition (Fig. 2d and Methods). In 
line with34, the closer the reaction rates, the more reaction events need to be observed to resolve them.

Fourth, we examined the effect of the photobleaching rate constant on the rate spectrum inferred by GRID. 
We simulated survival time distributions (20,000 events per time-lapse condition) with several inhomogenously 
spaced dissociation rates between 6·10−3 s−1 and 6 s−1 and increasing amplitude on the basis of experimental val-
ues (see below) (Fig. 2e and Supplementary Table 1). Below a photobleaching rate of 2.4 s−1, GRID fully recovered 
the rate spectrum. Above this value, slow dissociation rates below 0.1 s−1 were not accurately recovered any more.

Fifth, we examined the response of GRID to the amplitudes of reaction rates. We simulated survival time dis-
tributions with two rates of 0.035 s−1 and 2.44 s−1 and varied their amplitudes from 0% to 100% (Supplementary 
Fig. 1b). GRID well recovered both rates and their amplitudes. We further varied the amplitudes in our simulation 
on the basis of an experimental rate spectrum (see below) (Fig. 2f and Supplementary Table 1). As long as fast 
dissociation rates comprise more than 50% of the spectral mass, the rate spectrum can be well recovered. This is 
similar to previous observations using multi-exponential models9,34.

Sixth, we tested to which extend GRID was able to resolve rate spectra of more complex shape. Thus, we simu-
lated survival time distributions (250,000 events per time-lapse condition) using three dense square shaped decay 
rate clusters at centre positions of 0.016 s−1, 0.3 s−1 and 3.9 s−1 and stepwise increased their width from 0% to 70% 
relative width (Fig. 2g). GRID recovered the width of rate clusters in most scenarios. However, a tendency to split 
clusters into two close sub clusters became apparent.

Since a power-law behaviour of TF – chromatin dissociation has been suggested8,14,18, we tested whether GRID 
would accurately resolve a power-law shaped ground truth. In principle, GRID is able to handle power-law dis-
tributions (Methods). We simulated several survival time distributions (100,000 events per time-lapse condition) 
corresponding to power-laws with exponents between 1 and 214,18 including photobleaching and noise (Methods, 
Eq. (10)) (Fig. 2h). GRID split the broad distribution of decay rates into sub clusters. However, the resulting decay 
rate distribution is well distinguishable from a sparse distribution of decay rates or broad individual rate clusters 
(Fig. 2c-g).

GRID analysis of CDX2 dissociation from chromatin.  An active area of research deals with the inter-
action between transcription factors and chromatin. For instance, it is yet unclear how to properly distinguish 
and quantify the distinct modes of interaction a TF can have with the chromatin and, in particular, how many 
different (dissociation) rates can be resolved in live-cell experiments. Thus, after having validated our rate analysis 
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Figure 2.  Validation of GRID by simulations. (a) Simulated survival time distributions with dissociation 
rates of 0.1 s−1 and 5 s−1 and photobleaching rate of 1 s−1 (red lines) and distributions obtained using the 
results by GRID displayed in (b) (black dashed lines). (b) Comparison of different regularizations (specified in 
Methods) used in the cost function of GRID. The amplitudes of the spectra are colour coded. (c–h) Heat maps 
comparing the ground truth rate spectrum (indicated as Given) used to simulate survival time distributions 
(1st line) and the rate spectrum obtained by GRID (2nd line). Where applicable we added a 3rd line indicating 
the results of a multi-exponential approach. Simulations include a photobleaching rate of 1s−1, if not specified 
otherwise. Amplitudes are colour coded with logarithmic scale. The simulation parameters are summarized in 
Supplementary Table 1. (c) Behaviour of GRID for an increasing number of decay rates starting at k = 0.011 s−1 
and separated by a factor of 4. (d) Behaviour of GRID for an increasing separation between two distinct decay 
rates with kfast = 5 s−1 and kslow varying in interval [0.01, 4] s−1. Inset: influence of the number of detected 
events and separation of decay rates on the accuracy of the inferred spectrum (Methods). (e) Effect of different 
photobleaching rate constants (indicated on the left) on inferring five irregularly spaced decay rates with 
different amplitudes. (f) Effect of varying amplitudes on inferring five irregularly spaced decay rates. (g) 
Increasing width of three decay rate clusters centred at kslow = 0.016 s−1, kint = 0.3 s−1 and kfast = 3.9 s−1. Relative 
width of clusters is up to 70%. (h) Behaviour of GRID in the case of survival probabilities following a power-law 
distribution for different values of the exponent (indicated on the left).
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approach with simulations, we applied GRID to survival time distributions of CDX2 dissociation from chro-
matin, obtained by live-cell single-molecule tracking of the fusion protein Halo-CDX235 labelled with SiR-dye 
(Fig. 3a, Supplementary Videos 1 and 2 and Methods). We defined a Halo-CDX2 molecule as bound to chromatin 
if it was present within a radius of 288 nm for at least 100 ms. We recorded survival time distributions of bound 
molecules at four different time-lapse conditions.

GRID inferred a dissociation rate spectrum with five clearly distinct narrow dissociation rate clusters centred 
between 5 s−1 and 0.006 s−1 and spreading not more than two GRID units, with amplitudes strongly decreasing 
between ca. 80% and <5% (Fig. 3b and Supplementary Table 2). The resolution of the width of rate clusters is 
limited by the spacing of decay rates in GRID. To provide an estimate of the accuracy and precision of GRID 
we reanalysed the dataset 499 times using random 80% of the data in each time-lapse condition36 (Fig. 3b and 
Methods). This revealed a spread of decay rates within three to five GRID units. The photobleaching rate of the 
SiR-dye was obtained as 0.1 s−1. Simulated distributions using the dissociation rate spectrum extracted from the 
data by GRID well overlapped with the measured survival time distributions (Fig. 3a), in contrast to simulated 
distributions using dissociation rates obtained by fitting a tri-exponential model (Fig. 3a). Compared to common 
multi-exponential analysis, dissociation rates inferred by GRID better described the measurement.

To test for the influence of time-lapse conditions on the rate spectrum determined by GRID, we omitted the fastest 
time-lapse condition of 0.05 s in the analysis (Supplementary Fig. 2a). This time-lapse condition exclusively contains 
temporal information between 0.05 and 1 s. As expected, the extracted rate spectrum is devoid of the dissociation rate 
at 5 s−1, while the remaining spectrum does not change considerably (photobleaching rate was 0.4 s−1) (Supplementary 

Figure 3.  Dissociation rate spectrum of CDX2 – chromatin interactions. (a) Fluorescence survival time 
distributions of SiR-Halo-CDX2 obtained by live-cell single molecule tracking (grey symbols), fit with a tri-
exponential model (blue lines) and distributions obtained using the results of GRID displayed in (b) (red lines). 
Time-lapse conditions are indicated above the distributions. The graph contains data from 10,653 molecules in 
79 cells. Error bars denote s.d. (b) Event spectrum of CDX2 obtained by GRID using all data (red circles) and 
as an error estimate a heat map of 499 GRID results obtained by resampling 80% of data (blue colour code) (see 
Methods). (c) Sketch of the connection between single molecule tracking data and the corresponding event and 
state spectra. Upper panels: The event spectrum is obtained if molecules binding in a time interval are counted. 
This spectrum is a measure of an effective on-rate. To get from this kinetic rate constant to a state spectrum the 
binding time of these molecules has to be considered. Lower panels: The state spectrum is obtained, if molecules 
binding in a snapshot of time are counted. This spectrum depends on the on-rate as well as on the binding time 
of the molecules and is therefore a measure for the effective affinity (for details, see text and Methods). (d) State 
spectrum of CDX2 obtained by GRID using all data (red circles) and as an error estimate a heat map of 499 
GRID results obtained by resampling 80% of data (blue colour code) (see Methods).
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Fig. 2b). When omitting the slowest time-lapse condition of 9 s, which contains similar temporal information than the 
time-lapse condition of 5 s, the extracted rate spectrum does not change considerably, as expected (photobleaching rate 
was 0.1 s−1) (Supplementary Fig. 2c,d). This analysis points towards robust inference of rate spectra by GRID.

The dissociation rate spectrum obtained by GRID yields the relative frequency with which dissociation events 
of a certain rate occur during an observation period (Fig. 3c). We call such a spectrum ‘event spectrum’. The 
amplitudes depend on the effective on-rate of the TF to the corresponding binding site and thus include infor-
mation on the number of binding sites and the physical on-rate. Alternatively, information on the probability to 
observe a TF engaged in a certain binding state at an instantaneous time snapshot might be important. We call 
such a spectrum ‘state spectrum’. The event spectrum can be transformed into the state spectrum by weighting 
the amplitudes with the according rates (Methods). The amplitudes in the resulting state spectrum depend on the 
effective affinities between the TF and the corresponding binding site.

We calculated the state spectrum for Halo-CDX2 and found that TFs have a high probability to populate 
binding states with slow dissociation rate. While dissociation events with the transient rate of ca. 5 s−1 occur most 
frequent during an observation period (Fig. 3b), binding sites with a slow dissociation rate of ca. 0.006 s−1 are 
most often populated at any snapshot in time (Fig. 3d).

We further tested for the influence of the number of measured data points in survival time distributions on 
the rate spectrum determined by GRID. We successively reduced the percentage of measured data included in 
resampling from 80% to 20% (Supplementary Fig. 3). While the recovered decay rates spread over more GRID 
units for lesser data, the overall shape of the decay rate spectrum was still recovered even with only 35% of the 
measured data, pointing to the robustness of the method.

Influence of TF sliding on DNA on the width of decay rate clusters.  It is commonly assumed that dissoci-
ation of a TF from chromatin occurs from a few specific sequences and a plethora of unspecific sequences including one 
or several base mismatches at various positions. To test whether GRID is sensitive to this feature of chromatin interac-
tion, we modelled, and then simulated, the process of a TF interacting with multiple, contiguous nonspecific DNA sites 
(also known as 1D sliding) and compared the width of the resulting distributions to our simulations with GRID. We 
modelled unspecific DNA segments of variable length with dissociation from any site within the sliding segment37–39 
(Fig. 4a and Methods). We considered a standard deviation of unspecific binding energies of 1 kBT compatible with 
sliding40. We found that the dissociation rate from a single segment would reduce to a single value if fast 1D diffusion 
took place. When considering several separate segments of equal length but different base sequence, the corresponding 
dissociation rates combined to a narrow cluster, due to stochasticity in the base pair content of different segments. The 
width of this decay rate cluster anti-correlated with the length of the segments (Fig. 4b). This is due to averaging of 
individual dissociation rates on the DNA segment. Even small sliding segments resulted in cluster widths well below the 
resolution of GRID given by the spacing of invariable decay rates. Our calculations suggest that unspecific TF – DNA 
interactions in the presence of sliding result in a narrow decay rate cluster currently not resolvable by GRID.

Discussion
GRID reveals rate spectra underlying complex survival time distributions.  We introduced GRID, 
an approach to extract reaction rates from experimentally measured fluorescence survival time distributions of 
complex superimposed reactions. GRID robustly identifies the number and amplitudes of reaction rates and gives 
information on the width of rate clusters, even if lifetime measurements are aggravated by photobleaching of fluo-
rescent labels. Such distorting additional photobleaching rates hamper the use of previously reported approaches 

Figure 4.  Model of TF sliding on chromatin and predicted standard deviation of dissociation rate clusters. 
(a) State diagram of a TF (red box) sliding on and dissociating from DNA. Each binding position is associated 
with an individual binding energy. The kinetic parameters are specified in Methods. (b) Standard deviation of 
dissociation rates as a function of sliding length. For each sliding length, dissociation rates were obtained from 
500 simulations of the sliding model depicted in (a), where the sliding length of each segment has been kept 
constant but the base-pair content of each segment was varied for every simulation (for details see Methods).
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to tackle the inverse Laplace transformation of survival time distributions3–6 We note that, while we validated and 
applied GRID to data sets including photobleaching and several time-lapse conditions, it should in principle also 
be applicable to individual survival time distributions already corrected for photobleaching.

GRID has the advantage that the number of decay rates in the biological system does not have to be guessed. This is 
a major drawback of current multi-exponential analysis schemes using a small number of decay rates11,31,41. Our simula-
tions suggest that GRID, despite being the more complex approach, does not come with a loss in accuracy in a situation 
where the number of decay rates is known. In contrast, if more than three decay rates are present, GRID rather outper-
forms multi-exponential analysis schemes. We found that GRID well resolved up to six distinct decay rates in a range 
from 10 s−1 to 10−3 s−1. A second advantage of GRID is that it can reveal the width of reaction rate clusters, information 
intrinsically inaccessible to multi-exponential analysis schemes using a small number of decay rates.

GRID is currently restricted to superimposed reactions following Poissonian statistics with positive amplitudes. 
Thus, GRID is not applicable to arbitrary survival time distributions (Methods). Due to computation costs, the 
number of rates in the grid is currently limited to 200 (Methods). Consequently, the resolution to identify decay 
rates is limited, and oftentimes GRID splits a single decay rate onto two adjacent grid positions. Compared to Zhou 
et al.6, GRID converts the inverse Laplace transformation into an optimization problem, with the accompanying dis-
advantage of a large number of degrees of freedom. This required introducing a robust regularization. Additionally, 
a large number of measurements are advisable. In simulations including two decay rates, 5,000 data points in each 
time-lapse condition allow very accurate recovery of rates. Our analysis of experimental data suggests that overall 
10,000 data points are sufficient to robustly infer five decay rates. While GRID well allows distinguishing narrow 
decay rate clusters from broad clusters or a power-law distribution, it is limited in identifying the shape of broad 
clusters or distributions with high accuracy. We summarized the resolution limits of GRID in Table 1.

Rates of CDX2 – chromatin dissociation.  For the dissociation of CDX2 from chromatin, GRID resolved 
five narrow dissociation rate clusters corresponding to chromatin residence times between 0.2 s and 170 s. All 
five interaction times appear necessary for a full description of the measured survival time distributions, as 
multi-exponential fitting using three dissociation rates as reported previously for different TFs31,41 failed to fully 
recover the measured survival time distributions.

The amplitudes in the event spectrum of CDX2 are given by the effective on-rates of complex formation of CDX2 
with corresponding binding sites on chromatin. If an identical kinetic on-rate is assumed for all binding sites, the 
event spectrum has its origin in the relative abundance of binding sites giving rise to a certain dissociation rate. 
Under this assumption, in the case of CDX2, ca. 80% of accessible binding sites would exhibit the shortest measured 
off-rate. In contrast, the amplitudes in the state spectrum are given by the effective affinities of CDX2 to correspond-
ing binding sites on chromatin. The state spectrum reveals that on average only approximately 6% of all bound mol-
ecules are engaged in such short interactions while ca. 70% are engaged in the two interactions of longest duration.

A fast rate above 1 s−1 of TF – chromatin interactions has previously been identified as binding of the TF to 
unspecific DNA sequences14,20,42. Although we do not have experimental evidence, by analogy, CDX2, too, might 
exhibit transient unspecific and stable specific binding to chromatin. However, we cannot exclude that also slow 
rate constants include unspecific dissociation processes. Due to the global accuracy of GRID, it might become 
possible to uniquely assign certain molecular interactions to certain dissociation rates in future studies.

For unspecific LacI and TetR – chromatin interactions, a power law was used to describe a large section of 
the survival time distribution14,18. Within this time section, the rate spectrum will be a continuous distribution, 
potentially representing a multitude of co-occurring different dissociation rates. For CDX2, despite the capability 
of GRID to hint at broad clusters, we did not observe continuous rate distributions but rather well-separated 
narrow dissociation rate clusters. These different observations probably reflect TF-specific kinetic behaviours.

The model we present for TF sliding on DNA might serve as an example for a system in which numerous 
different dissociation processes do not lead to a broad dissociation rate spectrum but a rate cluster with narrow 
width due to quasi-averaging. In fact, the width of this cluster would be smaller than one GRID unit.

Materials and Methods
Model for the survival time function of an ensemble of chromatin-bound fluorescently labelled TFs.  
We assume that dissociation of a TF from any bound state, in particular from a bound DNA sequence, follows 
Poissonian statistics with a dissociation rate constant µl characteristic for this particular state. We further assume 
that the TF may bind to a multitude of different DNA sequences, both unspecific and specific. The probability of 
a particular dissociation event to occur be Sl.

parameter maximum rate minimum rate
minimum distance 
between two rates

accuracy of 
amplitude accuracy of rate

GRID <10/s @ 20fps >0.001/s for live cell >4 fold ca. 10%a ca. 10%

multi-exponential <10/s @ 20fps >0.001/s for live cell >4 fold ca. 10%a ca. 5% for two rates

parameter photobleaching rate events in fastest rate width of rate cluster number of rates

GRID ≤2.4/s >50% ✓ ≤6

multi-exponential n.d. >50% not possible ≤3

Table 1.  Estimated resolution limits of GRID for several parameters. The values for GRID are estimated from 
Fig. 2. The values for the multi- exponential approach are estimated from Fig. 2c,d and34. arelative to the other 
amplitudes.
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For independent dissociation processes, the resulting survival time function of an ensemble of TFs is a super-
position of individual dissociation processes

N t N S t( ) exp( )
(1)l

L

l l0
1

∑ μ= −
=

for the remaining bound population N at time t if N0 TFs were bound at time t = 0. N0∙Sl is the number of 
TFs in the ensemble that exhibits the dissociation rate constant µl. The total number of dissociation processes is 
denoted by L.

So far, we assumed that the survival time function of bound TFs is only determined by dissociation. However, 
in single molecule fluorescence experiments, the TF is identified by a fluorescent label prone to photobleaching. 
Thus, the experimentally observed termination of a bound state may be due to photobleaching of the fluorescent 
label or dissociation of the TF. We assume that photobleaching also follows Poissonian statistics.

The fluorescence survival time function observed in experiments then reads

∑ μ= − −
=

N t N kt S t( ) exp( ) exp( )
(2)l

L

l l0
1

where k is the photobleaching rate constant. According to this equation, only the sum k + μl can be inferred 
from the fluorescence survival time distribution. To separate photobleaching from dissociation, we performed 
time-lapse measurements9. There, by introducing varying dark times between two images, the relative contribu-
tions of illumination time-dependent photobleaching and real time-dependent dissociation can be separated.

Simulation of TF dissociation kinetics.  We simulated survival time distributions of TFs with effective 
dissociation rate constants τ= +k a k/ tleff,l off,l accounting for dissociation with dissociation rate constant koff,l 
and with the photobleaching number a k intτ= , the camera integration time intτ and the time-lapse period τtl. 
Different koff,l occurred with probability Sl. We first generated a random number with uniform distribution to 
draw the keff l,  from the probability distribution S. Next, we generated a new random number from an exponential 
distribution with the constant keff l,  to obtain the time at which the TF dissociated. This time entered a distribution 
with a bin-size corresponding to the time-lapse period. We repeated this procedure N times to obtain a survival 
time distribution of N TFs. To obtain a complete dataset, we repeated this procedure for various time-lapse peri-
ods tlτ . Simulations were conducted in MATLAB R2017a.

A Method for the inverse Laplace transform.  To determine the dissociation rate spectrum of the TF, we 
could in principle fit the fluorescence survival time function including photobleaching, Eq. 2, to the measured 
distributions obtained from several time-lapse conditions. However, we neither know the number of dissociation 
processes L nor can we ensure numerical stability of a fit with multiple degrees of freedom that lead to nonlinear 
gradients. To ensure unbiased and robust inference of dissociation rates in Eq. 2, we reduced the number of free 
parameters by applying a grid of I invariable dissociation rates with fixed spacing and numerically determined the 
probabilities Si of each dissociation rate. Summing up, the number of unknown parameters is I 1+ , namely [k, S]. 
Since I is usually larger than the number of observables in time-lapse measurements, the fitting problem is under-
determined. Thus, to obtain a unique solution, we applied regularizations based on basic physical considerations 
and time resolution constraints of the measurement process.

As first regularization, we introduced the constraint S ≥ 0 of non-negative probabilities and k ≥ 0 of a 
non-negative photobleaching rate constant. This ensures our model is monotonically decreasing, as expected 
from superimposed Poisson processes. As second regularization, we accounted for the integration time τint of the 
camera used to record fluorescent light, or to the criterion we used to define bound molecules, respectively. These 
times limit the time resolution of fast dissociation rates (µi > τint

−1). As a mathematical measure of this limitation, 
we introduced the time dependent expectation value of the dissociation rate < µ > of the bound TF population

t
S t

S t
( )

exp( )
exp( ) (3)

i i i i

i i i

μ
μ μ

μ
=

∑ −

∑ −

where the value ∑μ μ− −S Se / ei
t

i i
ti i  may be interpreted as the time dependent probability to find a TF that exhibits 

the dissociation rate µi at time t. We then introduced the expression

( ) (2 ) (4)int intμ τ μ τ−

to describe the change of the mean dissociation rate in the dead time of our measurement. By minimizing this 
quantity, we reduced the number of degrees of freedom during our dead time and thereby avoided overfitting. We 
refer to this regularization as the mean decay regularization (MDR).

We next defined the difference between the fluorescence survival time function and the measured distribution 
of the m-th point in the n-th time-lapse record, ∆fnm, as

∆ = −f
f

f

f

f (5)
nm

nm

n

nm

n

Measurement

2
Measurement

Fit

2
Fit
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where we normalized the values of the fitted and measured distributions to the population at the second time 
point of a time-lapse record to eliminate the unknown amount of the initial population.

Our model function fnm
Fit is given by the superposition of I  exponential functions

∑ μ τ= − ⋅ − ⋅ ⋅
=

f N a m S mexp( ) exp( )
(6)nm n

i

I

i i tl n
Fit

0,
1

,

where τtl n,  is the duration of the n-th time-lapse.
We further introduced the cost function L of the fitting problem, which consists of the difference between 

measurement and theoretical function, ∆fnm, and the regularization of the mean dissociation rate

∑ μ τ μ τ= ∆ + × 〉 −L f H [ ( ) (2 )]
(7)n m

nm
,

2
int int

2

Since both ∆fnm and the regularization contribute to the same cost function, we introduced the empirical 
parameter H to limit the influence of the regularization.

The complete optimization problem finally is

≥ ≥Lmin( ) where S 0, k 0 (8)

We solved this optimization problem with the gradient-based method fmincon solver with the sequential 
quadratic programming algorithm of the Matlab R2017a optimization toolbox, to find the spectrum of dissoci-
ation rates of TF-chromatin dissociation. Typically, to solve the optimization problem, the gradient of the cost 
function is estimated numerically, which here would result in a computation time of minutes on a standard 
computer. We decreased this time ca. ten-fold to several seconds by providing an analytical expression for the 
gradient. For resampling, the time demand increases according to the number of resampling-runs performed.

Alternatively, we tested the cost functions of the L2-norm (Type II) f Sn m nm i i,
2 2∑ ∆ +∑ , the L4-norm (Type III) 

∑ ∆ + ∑f Sn m nm i i,
2 4 and a more specific norm that weights the fitting parameters with the hyperbolic cosine 

f S kcosh(0 1 )n m nm i i i,
2∑ ∆ + ∑ . ⋅  (Type IV).

Application of GRID to power-law functions.  In GRID, we restricted ourselves to positive dissociation 
rates, positive amplitudes and a positive photobleaching rate. Therefore, GRID can be applied to a certain type 
of model-functions. The model functions as well as the absolute value of their derivatives have to decay strictly 
monotonously. In particular, we show here that GRID can be applied to power-law models.

We construct a survival function by calculating the power-law

α
=





+




α−

f t k t( ) 1
(9)

0

where k0 is a constant that shifts the pole to t 0< . The number α needs to be larger than one so that the average 
binding time of the TF converges. This model converges to a single exponential function in the limit α → ∞. We 
analytically calculated the spectrum S(k) of Eq. (9) as

∫ ∫α
α α





+


 = ⋅ − = Γ − ⋅ −

α
α

α
α

− ∞ − ∞ −( )k t S k kt k k k k kt k1 ( ) exp( )d ( ) exp( / ) exp( ) d
(10)k

0
0

1

0

1
0

0

To check whether the time-lapse approach combined with GRID can recover such a power-law we calculated 
a survival time distribution according to

τ τ
α

= − ⋅




+




α−

f t k t k t( ) exp( / ) 1
(11)bleach b tlint

0

To introduce noise we stochastically resampled this survival function.

Calculation of the state spectrum.  The event spectrum yields the relative frequency Si of events exhibit-
ing the dissociation rate koff i, . To calculate the state spectrum, we considered the frequency of measured events 
originating from a certain binding site with dissociation rate koff i,  and corresponding on-rate kon i

eff
, . We assumed 

that the number of observed events is proportional to this effective association rate which yields

S k (12)i on i
eff

,∝

For a number of unoccupied binding sites Di , the relative frequency scales with this number

∝S D k (13)i i on i
eff

,

Division by the respective dissociation rate yields the effective affinity Keff i,  which comprises the binding affin-
ity of the TF and the number of free TFs and unoccupied binding sites.
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D k
k

K
(14)

i
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,

,

,
,∝ =

To obtain the amplitudes ⁎Si  of the state spectrum, Eq. (14) has to be normalized. We find:

=
∑

=
∑

=
∑= = =

S
K

K
N
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(15)

i

S
k

m
M S

k

eff i

m
M

eff m

bound i

m
M

bound m1

,

1 ,

,

1 ,

i

off i

m

off m

,

,

⁎

Comparing the effective affinities yields the normalized number Nbound i,  of molecules bound to binding sites 
with the dissociation rate koff i, .

Model of TF sliding on DNA.  In our model of TF-DNA dissociation, we assumed that the TF binds to a free 
segment of DNA with a length of N base pairs restricted by roadblocks at the edges of the segment43,44. Within the 
DNA segment, the TF may assume N different binding positions (Fig. 4). The TF slides between binding positions 
within this segment by 1D diffusion. The TF can leave the segment by dissociating from any position within the 
DNA segment. We further considered the variance σ2 of DNA binding energies in units of kbT. This variance in 
binding energies leads to dissociation rates that are normally distributed around the mean dissociation rate μ with 
a standard deviation σ. The variance of unspecific binding energies was previously estimated to be σ < = 1 kbT40. 
We ascribed a random dissociation rate from this distribution to each TF position within the DNA segment.

The rate of sliding of the TF from state (or position) i to j be αij. The ratio of αij and αji is determined by the 
energy difference between the two positions, which in turn is determined by the dissociation rates of the TF from 
DNA at positions i and j. To find values for αij and αji, we assumed that the transition rate to a lower binding 
energy level is given by the sliding rate, while the transition to a higher binding energy level is limited by the 
energetic gap between the two levels. With this assumption we calculated the transition rates according to the law 
of detailed balance

α
β μ μ μ μ

β μ μ

α
β μ μ μ μ

β μ μ

α

=






⋅ <

>

=






⋅ >

<

= − ≠

+
+ +

+

+
+ +

+

i j

/

/

0 for 1 (16)

i i
i i i i

i i

i i
i i i i

i i

i j

, 1
1 1

1

1,
1 1

1

,

where β is a mean sliding rate. As described in45, the Kolmogorov formalism may be used to model the dynamics 
of the TF on DNA. We found the time-dependent probability pi of the TF to be in state i

p p p p( ) (17)i i i i i i i i i i i i, 1 , 1 1, 1 1, 1µ α α α α= − + + + ++ − − − + +
˙

The observable dissociation rates are determined by the eigenvalues of the eigenvalue-problem and their 
amplitudes are determined by the solution of the time dependent probability. We calculated these amplitudes by 
introducing the initial condition p e(0) n

→ = →, which is the unitary vector in n-th direction. This initial condition 
states the initial position of the TF after association to the DNA segment. In this model of TF sliding, the ampli-
tudes of all except one eigenvalue vanish. Thus, from a single DNA segment, we obtained only one effective disso-
ciation rate.

Measurements in bacteria and in vitro found a diffusion constant of 1D sliding on the order of 0.01 
μm2s−1 38,43,44. Based on our theoretical modelling45, this results in a mean sliding rate β = 10+4s−1, which indi-
cates the rate at which the TF transits to the next base-pair without detaching from DNA. The sliding length was 
previously estimated to be on the order of 45 base pairs in bacteria43.

To describe overall TF binding in the nucleus, we considered 500 independent unspecific DNA segments of 
equal length but different base pair content. As above, each segment contributed a single dissociation rate corre-
sponding to the particular dissociation rate distribution of this segment of DNA. Due to the stochastic base pair 
composition drawn for each segment, the mean dissociation rates of different segments form a narrow cluster of 
dissociation rates.

Quantitative comparison between rate spectra.  To quantify the resemblance between inferred spec-
trum and ground truth in Fig. 2d and Supplementary Fig. 1, we calculated the scalar product of these two spectra. 
This value is high if the rates are at the same position and low if the rates are shifted with respect to each other. 
The scalar product in principle is zero if two rates are shifted by one increment in GRID. We relaxed this fact since 
a single rate is oftentimes split up into two neighbouring rates in our simulations due to the limited resolution 
of GRID. We therefore allowed a shift of up to 3 GRID units and assigned a value equal to the one obtained if no 
shift was present.

We calculated the scalar product for 100 stochastic simulations with identical parameters to obtain the frac-
tion of inferred results with a matching spectrum, where we defined a matching spectrum to have a scalar product 
larger than 0.5. The resulting values are represented in the insets of Fig. 2d and Supplementary Fig. 1 as a function 
of the number of simulated events and of the separation of decay rates.
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Cell culture and preparation.  NIH3T3 cells were cultured and prepared as described in35. Cells with sta-
ble integration of Halo-CDX2 under doxycycline-induced expression control (kindly provided by David Suter, 
EFPL, Lausanne, Switzerland) were seeded one day before experiments on a closable Delta-T glass bottom dish 
to prevent evaporation (Bioptechs, Pennsylvania, USA). Expression of Halo-CDX2 was induced by adding 10 ng/
ml doxycyclin to the medium four hours before imaging. Cells were stained with SiR-dye (kindly provided by 
Kai Johnson, EFPL, Lausanne, Switzerland) with a final concentration of 3 pM shortly before imaging according 
to the Halo-tag protocol (Promega). We tested for specificity of the SiR-Halo-tag dye and did not observe any 
SiR-Halo-dye signal in the cell nucleus in an NIH3T3 cell line not carrying the Halo-tag fusion protein insert 
(Supplementary Fig. 4).

Live cell single molecule imaging and tracking.  Single molecule fluorescence imaging was performed 
as described previously46. In brief, light of a 638 nm laser (IBEAM-SMART-640-S, 150 mW, Toptica, Gräfelfing, 
Germany) was used to set up a highly inclined illumination pattern on a conventional fluorescence microscope 
(TiE, Nikon, Tokyo, Japan) using a high-NA objective (100×, NA 1.45,Nikon, Tokyo, Japan). We calculated the 
intensity to be approximately 1.5 kW/cm². Emission light had to pass a multiband emission filter (F72–866, AHF, 
Tübingen, Germany) and was subsequently detected by an EMCCD camera (iXon Ultra DU 897U, Andor, Belfast, 
UK) with 50 ms integration time. For time-lapse imaging, dark-times were controlled by an AOTF (AOTFnC-
400.650-TN, AA Optoelectronics, Orsay, France). Temperature control was realized by the Delta-T system 
(Bioptechs, Pennsylvania, USA) and an additional objective collar (Thermo Technologies, Rohrbach, Germany).

Cells were prepared for imaging as detailed above and kept in OptiMEM medium at 37° during imaging for up 
to two hours of measurement time per dish. In each cell on average 482 molecules were detected during an aver-
age imaging period of 8 minutes. Single molecule spot detection and tracking was performed as described in46. 
In brief, we detected potential single molecules based on their fluorescence intensity compared to background 
fluorescence. Localization was performed using a 2D Gaussian fit. Halo-TF molecules were identified as bound 
molecules if they did not leave a radius of 288 nm for 3 (50 ms time-lapse) or 2 (other time lapse conditions) con-
secutive frames. Fluorescence survival time distributions were compiled from these tracking data.

Resampling.  To estimate accuracy and precision of a GRID result, we analysed a set of 80% randomly chosen 
values from the measured survival time distributions and repeated this process 499 times36. We plotted the result-
ing GRID spectra as a heat map that shows how often a certain spectral value was obtained in the 499 repetitions. 
If a spectral value was obtained less than two times, we omitted it.

Data availability
Data supporting the findings of this manuscript will be available from the corresponding author after publication 
upon reasonable request. All raw single particle tracking data are freely available in Matlab and csv file format at 
https://doi.org/10.5061/dryad.19st68k.

Code availability
The GRID software is freely available. A MatLab version of GRID and GRID simulation packages are available at 
https://gitlab.com/GebhardtLab/GRID.
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