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Piezo1 induces endothelial responses to shear
stress via soluble adenylyl Cyclase-IP3R2 circuit

Dianicha Santana Nunez,1 Asrar B. Malik,1 Quinn Lee,1 Sang Joon Ahn,2 Arnold Coctecon-Murillo,1

Dana Lazarko,2 Irena Levitan,2 Dolly Mehta,1 and Yulia A. Komarova1,3,*

SUMMARY

Endothelial cells (ECs) continuously sense and adapt to changes in shear stress
generated by blood flow. Here, we show that the activation of the mechanosen-
sitive channel Piezo1 by defined shear forces induces Ca2+ entry into the endo-
plasmic reticulum (ER) via the ER Ca2+ ATPase pump. This entry is followed by
inositol trisphosphate receptor 2 (IP3R2)-elicited ER Ca2+ release into the cytosol.
Themechanism of ER Ca2+ release involves the generation of cAMPby soluble ad-
enylyl cyclase (sAC), leading to IP3R2-evoked Ca2+ gating. Depleting sAC or IP3R2
prevents ER Ca2+ release and blocks EC alignment in the direction of flow. Over-
expression of constitutively active Akt1 restores the shear-induced alignment of
ECs lacking Piezo1 or IP3R2, as well as the flow-induced vasodilation in endothe-
lial restricted Piezo1 knockout mice. These studies describe an unknown Piezo1-
cAMP-IP3R2 circuit as an essential mechanism activating Akt signaling and
inducing adaptive changes in ECs to laminar flow.

INTRODUCTION

Endothelial cells (ECs) lining the vessel intima are continuously exposed to recurring alterations in local

fluid shear stress,1,2 variations in hydrostatic pressure in the capillaries,3,4 and changes in vessel wall tensile

strain during increased vascular pulsations.5 These localized changes in mechanical forces, such as fluid

shear stress, are integral to normal perfusion. Fluid shear stress, the frictional force generated by distinct

spatial and temporal blood flow patterns, is the most relevant factor in developmental and physiological

vascular processes.1,6,7 These processes include angiogenesis,6 as well as the maintenance of blood pres-

sure and flow patterns1,2,7 needed to ensure normal blood perfusion in vital organs such as the brain and

heart.8–10

It is now apparent that ECs sense forces such as shear stress by engaging multiple mechanosensitive pro-

teins, including G-protein-coupled receptors,11,12 adherens junction proteins,13,14 and flow-sensitive ion

channels including the recently discovered Piezo-type mechanosensitive ion channel component 1

(Piezo1).15–17 Piezo1 is a well-established mechanosensitive channel, which non-selectively transports

Ca2+ from the extracellular milieu to the cytosol of ECs in response to mechanical forces.18–20 Deleting

the Piezo1 gene in mice reduces the level of shear-evoked increases in intracellular Ca2+18 as well as pre-

vents the morphological and cytoprotective responses of ECs to shear force.18,21 Impairment or loss of

Piezo1 activity severely compromises vascular development and angiogenesis18,19 and induces hyperten-

sion in adult mice.22 However, signaling mechanisms that control EC adaptation to shear stress down-

stream of Piezo1 remain poorly understood.

Shear stress induces both Ca2+ entry from the extracellular milieu through mechanosensitive channels, and

Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) localized in the ER membrane.23 A funda-

mental question is whether these two mechanotransduction pathways are intrinsically linked for regulating

EC adaptation to sheer stress. Piezo1 channel, which interacts with and modulates the activity of the sarco/

endoplasmic reticulum Ca2+ ATPase (SERCA) pump,24 may activate both Ca2+ entry from the extracellular

milieu and Ca2+ release from the ER stores. Here, the data show that the activation of Piezo1 by shear

stress leads to the rapid mobilization of intracellular Ca2+ into the ER lumen followed by ER Ca2+ release

via a sAC-cAMP sensitive mechanism. In contrast to previous studies showing phospholipase C (PLC)-

mediated Ca2+ release from the ER stores via an IP3-IP3R cascade,25,26 the data, described here, link Piezo1

mechanosensing to a cAMP-dependent ER Ca2+ release through IP3R2. This Piezo1-sAC-IP3R2
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mechanotransduction circuit plays a critical role in the activation of Akt signaling as a part of the adaptive

morphological response of ECs to laminar shear stress causing vessel vasodilation.

RESULTS

Shear stress activation of Piezo1 in endothelial cells induces rapidmobilization of intracellular

Ca2+ into the endoplasmic reticulum lumen

To determine the role of Piezo1 in shear stress-induced ER Ca2+ signaling, we exposed endothelial mono-

layers to laminar fluid shear forces of 5 and 10 dyn/cm2, stresses known to stimulate adaptive morpholog-

ical response in ECs.1We also exposed endothelial cell monolayers to lower level laminar flow of 2 dyn/cm2,

as it does not induce EC adaptive morphological changes.1 The temporal changes in [Ca2+]ER were

measured using the ER-targeted Ca2+ sensor G-CEPIA1er, which emits fluorescence when bound to ER

Ca2+.27 Exposure of human pulmonary arterial endothelial (HPAE) monolayers to 5 and 10 dyn/cm2 shear

forces for 60s increased fluorescence in the ER, indicative of increased [Ca2+]ER (Figures 1A and 1B). These

changes were dependent on the shear forces applied and were far less apparent in cells exposed to

2 dyn/cm2 shear (Figures 1A and 1B). Furthermore, the amplitude of [Ca2+]ER increased proportionally to

the shear force applied (Figures S1A and S1B), whereas the rate constants calculated for ER Ca2+ rise

and decay were lower at higher shear force (Figure 1C). Similar kinetics were also observed in human aortic

endothelial (HAE) monolayers subjected to 10 dyn/cm2 laminar shear stress (Figures S1C–S1F), indicating

the generalizability of our finding to arterial ECs of different vascular beds.

Depletion of Piezo1 abrogated the transient increase in [Ca2+]ER, leading to the reduction of both rise and

decay constants in ECs exposed to the stresses applied (Figures 1A, 1D, 1E, S1G, and S1H). Consistent with

previous reports,18 depletion of Piezo1 also markedly diminished the cytosolic Ca2+ rise in response to

shear stress (Figures S1I and S1J). Thus, these results revealed the central role of Piezo1 in regulating

Ca2+ homeostasis via a rapid mobilization of Ca2+ into the ER in response to shear stresses applied.

Figure 1. Shear stress activation of Piezo1 induces rapid mobilization of Ca2+ into the ER lumen

(A) Live-cell images of G-CEPIA1er, used to measure changes in [Ca2+]ER, upon the application of 10 dyn/cm2 laminar shear for 60 s in untransfected (UT) or

siRNA-treated endothelial monolayers as indicated; color-coding scale is shown below; times in seconds; scale bar, 20 mm. Arrow indicates the application of

shear stress.

(B) Time-dependent changes of [Ca2+]ER in endothelial monolayers before and after stimulation with 2, 5, and 10 dyn/cm2 shear stress for 60 s (highlighted

area) as in (A); n = 5-7 cells per group from 3 independent experiments; mean G SEM.

(C) Rate constants of ER Ca2+ rise and decay in (B), mean G SD; *, p < 0.05; ***, p < 0.001, ANOVA with Tukey’s post hoc test.

(D) Time-dependent changes of [Ca2+]ER in control and Piezo1-depleted endothelial monolayers upon the application of 10 dyn/cm2 shear stress as in (A);

n = 6 cells per group from 3 independent experiments; mean G SEM.

(E) Rate constants of ER Ca2+ rise and decay in D, mean G SD; left, *, p < 0.05; ***, p < 0.001, Student’s t test.
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Piezo1 cooperates with sarco/endoplasmic reticulum Ca2+ ATPase to induce the rapid

mobilization of Ca2+ into the endoplasmic reticulum

We next addressed whether the activation of Piezo1 can induce changes in [Ca2+]ER independent of me-

chanical stress. Here using Yoda1, a specific Piezo1 activator,28 we also observed transient increases in

[Ca2+]ER (Figures 2A–2C). Similar to cells exposed to laminar flow, activation of Piezo1 with Yoda1 led to

a rapid transient increase in ER Ca2+ (Figures 2A–2C). This response was prevented by Piezo1 knockdown,

indicative of the specificity of Yoda1 in activating Piezo1 (Figures 2A–2C). Depletion of extracellular Ca2+

also abolished the rapid mobilization of Ca2+ into the ER (Figures S2A and S2B). Furthermore, the rate con-

stants of ER Ca2+ rise and decay were significantly greater in Yoda1-stimulated ECs as compared to ECs

treated with diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) (Figures S2C and S2D),

Figure 2. Activation of Piezo1 with Yoda induces SERCA-dependent uptake of Ca2+ in the ER lumen

(A) Live-cell images of G-CEPIA1er in endothelial monolayers pre-treated with control or Piezo1 siRNA and stimulated with the Piezo1 activator Yoda1 at

time 0; color-coding as in Figure 1A; time in seconds; scale bar, 10 mm.

(B) Time-dependent changes of [Ca2+]ER upon Piezo1 activation using Yoda1 in (A); n = 6 cells per group from 3 independent experiments; mean G SEM.

(C) Rate constants of ER Ca2+ rise and decay calculated from data in (B); mean G SD; *, p < 0.05, Student’s t test; ***, p < 0.001, Student’s t test.

(D) Time course of [Ca2+]ER in endothelial monolayers pre-treated with control or STIM1 siRNA and stimulated with Yoda1 (arrow); n = 6 cells per group from

2 independent experiments; mean G SEM.

(E and F) Rate constants of the first (E) and the second (F) rise of ER Ca2+ calculated from data in (D), mean G SD; ns, not significant, Student’s t test; **,

p < 0.01, Student’s t test.

(G) Time-dependent changes of cytosolic [Ca2+]i on the activation of Piezo1 with Yoda1 (arrow) in endothelial monolayers pre-treated with control or STIM1

siRNA; n = 10-17 cells per group from 2 independent experiments; mean G SEM.

(H) Changes of [Ca2+]iwithin the first 350s (area under the curve) after Yoda1 stimulation calculated from data in (F); meanG SD; ns, not significant, Student’s

t test; ***, p < 0.001, Student’s t test.

(I) Live-cell images of G-CEPIA1er before and after the activation of Piezo1 with Yoda1 in endothelial monolayers pre-treated with vehicle (DMSO) or

thapsigargin (Th) to inhibit SERCA; color-coding as in Figure 1A; note, different scale ranges are used to demonstrate ER Ca2+ kinetics in cells inhibited of

SERCA; time in seconds; scale bar, 10mm.

(J) Time-dependent changes of [Ca2+]ER in (H); n = 6-7 cells per group from 3 independent experiments; mean G SEM.

(K and L) Changes in ER Ca2+ (area under the curve) following Yoda1 treatment (K) and rate constants of ER Ca2+decay (L) calculated from data in (J); meanG

SD; ***, p < 0.001, Student’s t test.
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the activator of receptor-operated Ca2+ entry,29 suggesting a different mechanism of Ca2+ mobilization

into the ER induced by Piezo1 as compared to receptor-operated Ca2+ entry.

To investigate the role of STIM1, which translocates to the plasma membrane upon ER Ca2+ depletion to

activate store-operated Ca2+ entry30,31 in rapid mobilization of Ca2+ into the ER lumen upon the activa-

tion of Piezo1, we repeated these studies in STIM1 depleted cells (Figures 2D and 2E). Interestingly,

STIM1 depletion (Figures S2E and S2F) did not affect the kinetics of rapid rise in the ER Ca2+ but

decreased the rate constant of the second much slower rise in ER Ca2+ (Figures 2D–2F). Consistent

with the role of STIM1 in activating store-operated Ca2+ entry, the depletion of STIM1 also altered

the kinetics of Yoda1-induced increases in intracellular Ca2+ (Figures 2G and 2H). Whereas control

ECs showed a sustained increase in intracellular Ca2+ upon challenge with Yoda1, cells depleted of

STIM1 showed a transient increase in intracellular Ca2+ (Figures 2G and 2H). We concluded that

STIM1 did not contribute to the rapid rise in ER Ca2+ following Piezo1 activation but was necessary to

replenish the ER Ca2+ upon depletion.

We also addressed the role of the SERCA pump in regulating Piezo1-mediated ER Ca2+ entry. As Piezo1

and SERCA interact both in vitro and in cells,24 Piezo1 function may be coupled to the activation of the

SERCA pump. Thus, we inhibited SERCA using the specific non-competitive inhibitor thapsigargin,32

and determined the role of SERCA in the Piezo1-induced mobilization of Ca2+ into the ER. We demon-

strated that thapsigargin abrogated Yoda1-induced rise in the ER Ca2+ (Figures 2I–2K), but it had no sig-

nificant effect on ER Ca2+ decay (Figures 2J and 2L), which occurred at the same rate as in DMSO-treated

cells. ECs treated with thapsigargin showed a trend toward higher decay constants as the result of passive

leakage of ER Ca2⁺, which became more apparent when SERCA pump activity was inhibited. Thus, SERCA

activity was required for Piezo1-mediated rise in ER Ca2⁺ but not ER Ca2⁺ decay.

Activation of Piezo1 induces Ca2+ release through IP3R2

To address the mechanism of ER Ca2+ decay downstream of Piezo1, we depleted IP3R2 and IP3R3, two

inositol trisphosphate receptors highly expressed on the ER membrane of ECs33,34. Depletion of IP3R3

had no effect on Piezo1-induced ER Ca2+ decay since the rate constants were similar to control siRNA-

treated cells (Figures 3A–3C and S3A–S3C). In contrast, the depletion of IP3R2 significantly reduced the

rate constant of ER Ca2+ decay without affecting the rate constant of ER Ca2+ rise (Figure 3A–3C, S3C,

and S3D). Similarly, depletion of IP3R2 significantly diminished the rate constant of ER Ca2+ decay upon

the application of laminar shear stress (Figures 3D–3F).

Depletion of either receptor did not result in the compensatory upregulation of the other receptor

(Figures S3A–S3D). Furthermore, in contrast to IP3R3 depletion, which had no effect on Piezo1-mediated

changes in intracellular [Ca2+]i (Figures S3E and S3F), depletion of IP3R2 significantly reduced increases

in [Ca2+]i following the activation of Piezo1 with Yoda1 or by applying laminar shear stresses

(Figures S3G–S3J). These data suggest that the IP3R2 pathway was essential for the release of ER Ca2+

into the cytosol following mechanical or pharmacological activation of Piezo1.

Piezo1 activation of soluble adenyl cyclase induces cAMP-dependent endoplasmic reticulum

Ca2+ release

To investigate the signaling mechanism of Ca2+ release from the ER downstream of Piezo1, we studied the

role of cAMP in sensitizing ER calcium release through IP3R2 stores. The second messengers IP3 and free

intracellular Ca2+ activate all IP3Rs,
33,35 whereas cAMP exclusively sensitizes IP3R2.

36–38 Since Ca2+ directly

stimulates soluble-adenylate cyclase (sAC),39 we determined whether the influx of Ca2+ through Piezo1

activated sAC and induced the production of cAMP. We measured relative changes in cAMP concentra-

tions using the cAMP sensor EPAC1, a guanine nucleotide exchange factor directly activated by cAMP,

tagged to a circularly permuted GFP protein.40 Yoda1 increased GFP intensity of the cAMP sensor in endo-

thelial monolayers (Figure 4A), indicative of the increased generation of cAMP.

Furthermore, depletion of sAC significantly reduced Yoda1-induced production of cAMP (Figures 4A, 4B,

S4A, and S4B), suggesting that sAC was crucial in mediating cAMP generation downstream of Piezo1 acti-

vation. Furthermore, depletion or pharmacological inhibition of sAC with bithionol markedly reduced the

rate constant of ER Ca2+ decay (Figures 4C–4E and S4C–S4E) as well as delayed the increase in cytosolic

[Ca2+]i following pharmacological or shear-mediated activation of Piezo1 (Figures S4F–S4I). Thus, sAC
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activation was essential for Piezo1-induced generation of cAMP and Ca2+ release through cAMP-sensitized

IP3R2 stores.

Endoplasmic reticulum Ca2+ release through IP3R2 channel is required for the Akt-dependent

response of endothelial cells to shear stress

ECs lacking Piezo1 failed to induce Akt1 phosphorylation and became aligned in the direction of laminar

flow.18,19,22 Thus, we determined whether ER Ca2+ release as well as Akt1 activity were required for the

adaptive reorientation of ECs as induced by flow. As compared to endothelial monolayers grown under

static conditions, both HPAE and HAE monolayers subjected to 10 dyn/cm2 shear stress for 24h had

greater incidence of F-actin filaments with a smaller angle (0�-30�) relative to the direction of flow, indic-

ative of cell alignment shift (Figures 5A, 5B and S5A–S5F). The alignment, however, was lost in cells

depleted of either Piezo1 or IP3R2, as apparent from a significant decrease in the incidence of filaments

aligned to flow (0�-30�) and an increase in randomly distributed filaments (forming larger angles to flow)

(Figures 5A, 5B and S5A–S5F). Similar to Piezo1 depletion,22 IP3R2 deficiency prevented shear-induced

phosphorylation of Akt at S473 (Figures 5C and 5D), the site required for the maximal enzymatic activa-

tion of Akt.41

Figure 3. Activation of Piezo1 induces ER Ca2+ store release via IP3R2 channel

(A) Live-cell images of G-CEPIA1er upon the activation of Piezo1 with Yoda1 of endothelial monolayers pre-treated with control, IP3R2, or IP3R3 siRNA; color-

coding as in Figure 1A; time in seconds; scale bar, 10 mm.

(B) Time course of [Ca2+]ER in (A); n = 8-12 cells per group from 3 independent experiments; mean G SEM.

(C) Rate constants of ER Ca2+ decay calculated form data in (B); mean G SD; **, p < 0.01; ANOVA with Tukey’s post hoc test.

(D) Live-cell images of G-CEPIAer in control and IP3R2 deficient endothelial monolayers upon the application of 10 dyn/cm2 laminar shear for 60 s; time in

seconds; scale bar, 10 mm.

(E) Time course of [Ca2+]ER in (D); n = 7-9 cells per group from 3 independent experiments; mean G SEM.

(F) Rate constants of ER Ca2+ decay calculated form data in (E); mean G SD; **, p < 0.01, Student’s t test.
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Since the depletion of Piezo1 or IP3R2 prevented both shear-induced activation of Akt and alignment

of ECs in the direction of flow, we next addressed the role of Akt kinase in mediating the adaptive

morphological response to shear stresses. Expression of an activation-deficient Akt1 mutant42 prevented

the alignment of ECs in the direction of flow (Figures 6A, 6B, S5G, and S5H). We additionally determined

whether ectopic expression of constitutively active (myr)-Akt142 would restore the response of ECs

lacking Piezo1 or IP3R2 to shear stress. We observed that myr-Akt1 restored the alignment of ECs

depleted of either Piezo1 or IP3R2 (Figures 6C, 6D, S5I, and S5J). However, this response was not

seen in Piezo1-or IP3R2-depleted cells expressing the empty vector (Figures 6C, 6D, S5I, and S5J).

Thus, the loss of either Piezo1 or IP3R2 each prevented the adaptive response of ECs to shear stress

by limiting Akt signaling.

Furthermore, to address the physiological implication of Piezo1 in regulating the Akt-mediated response

of ECs to laminar shear stress, we transduced either empty control vector or myr-Akt1 in ECs of mesenteric

vessels isolated from endothelial-restricted knockout of Piezo1 mice (Piezo1DEC), which showed markedly

reduced vasodilation response to increased fluid shear as compared to control wild-type (WT) mice

(Figures 6E and 6F). We observed that the expression of myr-Akt1, but not the control vector, restored

the flow-induced vasodilation response of mesenteric vessels ex vivo to the level of control vessels

(Figures 6E and 6F). These data cumulatively suggest that the Piezo1-sAC-IP3R2 circuit is responsible for

the activation of Akt1 signaling in ECs and thereby, the spatial and temporal response of blood vessels

to changes in blood flow.

DISCUSSION

Here, we describe a unique role of Piezo1 in activating ER Ca2+ release that plays a fundamental role in

the adaptation of ECs to shear stresses (as described in the graphic abstract). The data presented here

show that the activation of Piezo1 by the application of transient or continuous laminar shear stresses

(data not shown) not only induces Ca2+ entry from the extracellular milieu into the cytosol but also ac-

tivates rapid mobilization of Ca2+ into the ER lumen in a force-dependent manner. The latter event is

followed by a rapid ER Ca2+ release from cAMP-sensitive IP3R2 stores, allowing the amplification

and propagation of calcium signaling throughout the cytosol to induce the adaptive response of ECs

to shear applied. Thus, Piezo1 regulates flow-induced increases in cytosolic Ca2+ by two independent

Figure 4. Activation of Piezo1 induces sAC-dependent generation of cAMP and cAMP-evoked ER Ca2+ release

(A) Time-dependent changes of cAMP concentrations upon the activation of Piezo1 with Yoda1 (arrow) in control and sAC-depleted endothelial monolayers;

n = 18 cells per group from 3 independent experiments; mean G SEM.

(B) Relative changes of cAMP concentrations in (A); mean G SD; ****, p < 0.0001, Student’s t test.

(C) Live-cell images of G-CEPIA1er upon the activation of Piezo1 with Yoda1 (arrow) in control and sAC-depleted endothelial monolayers; color-coding as in

Figure 1A; times in seconds; scale bar, 10 mm.

(D) Time-dependent changes of [Ca2+]ER in (C); n = 7-10 cells per group from 3 independent experiments; mean G SEM.

(E) The rate constants of ER Ca2+ decay calculated from data in (C); mean G SD; *, p < 0.05, Student’s t test.
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mechanisms: through the initial Ca2+ mobilization from the extracellular milieu and the release of Ca2+

through cAMP-sensitive stores.

The initial Ca2+ ions entering through the Piezo1 channel are promptly mobilized into the ER lumen by

SERCA, the Ca2+ pump that recycles cytosolic Ca2+ into the ER lumen.43 ECs express all mammalian

SERCA isoforms, including SERCA2a and SERCA3,44 which exhibit high Ca2+ turnover rates45,46 and

might be involved in regulating the rapid mobilization of Ca2+ into the ER lumen downstream of Piezo1

mechanosensing. We speculate that the activation of Piezo1, which forms a complex with all SERCA iso-

forms to inhibit their activity,24 may modulate SERCA function by relieving the inhibitory effects on

SERCA activity.24 The rapid kinetics of Ca2+ mobilization into the ER also suggests that Piezo1 might

be recruited to specific plasma membrane microdomains to form a transient interaction with the ER

membrane. Therefore, we posit that Piezo1-mediated mobilization of Ca2+ into the ER resembles the

STIM1-Orai pathway, which refills the ER stores.31 In the latter case, SERCA is recruited to STIM1 and

Orai clusters47,48 to pump Ca2+ into the ER lumen upon the influx of extracellular Ca2+ through Orai.49

Figure 5. IP3R2-evoked ER Ca2+ release is required for shear-induced EC alignment and activation of Akt

(A) Representative images of F-actin in endothelial monolayers depleted of indicated proteins and grown under static or 10 dyn/cm2 laminar shear flow

conditions for 24 h; red arrow indicates the direction of flow; scale bar 20 mm.

(B) Frequency of F-actin distribution within 0-30� relative to the direction of flow, a measure of cell alignment; n = 6-15 field per condition, from 2 to 4

independent experiment on static group and 17-24 fields per condition from 4 independent experiments on shear group; mean G SD; *, p < 0.05; ***,

p < 0.001; ****, p < 0.0001, ANOVA with Tukey’s post hoc test.

(C) Western blot analysis of Akt (Ser 473) phosphorylation in endothelial monolayers depleted of indicated proteins and subjected to static or 10 dyn/cm2

shear stress conditions for 30 min.

(D) Fold increase in Akt phosphorylation in (C); data are presented as 3 biological replicates from 3 independent experiments; mean G SD; *, p < 0.05; **,

p < 0.01; ANOVA with Tukey’s post hoc test.
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However, Piezo1 induces prompt mobilization of extracellular Ca2+ into the ER through the activation of

SERCA. The present findings also show functional differences by which Orai and Piezo1 operate to

mediate extracellular Ca2+ influx. While Orai is activated by STIM1 upon ER store depletion,30,31,50 rapid

mobilization of Ca2+ in the ER downstream of Piezo1 is activated by mechanical stimuli independent of

ER store depletion. We show that STIM1 is dispensable for the initial rapid mobilization of extracellular

Ca2+ into the ER but is involved in ER Ca2+ replenishment secondary to IP3R2-evoked Ca2+ release down-

stream of Piezo1 mechanosensing.

ER Ca2+ storage accounts for 75% of intracellular Ca2+ in ECs.51 The build-up of ER Ca2+ can influence

the sensitivity of IP3R and RyR channels to their ligands35,52 and concomitantly activate ER Ca2+ release.

The ER Ca2+ release downstream of Piezo1 described here was independent of the initial increase in

luminal ER Ca2+. Treatment of cells with thapsigargin, a potent inhibitor of SERCA, blocked Ca2+ uptake

into the ER lumen but did not alter the kinetics of ER Ca2+ decay downstream of Piezo1 activation.

Further analysis of the pathways involved in ER Ca2+ release revealed that Piezo1-mediated influx of

extracellular Ca2+ subsequently activated ER Ca2+ release into the cytosol through the IP3R2 channel.

This rapid ER Ca2+ release was an essential part of the mechanotransduction response required for rapid

increase in cytosolic Ca2+.

In contrast to IP3R3, which is activated by IP3 and free intracellular Ca2+, IP3R2 activity can be potentiated by

cAMP.53,54 Production of both cAMP and ATP are commonly induced bymechanical forces, including shear

Figure 6. Activation of Akt downstream of Piezo1-sAC-IP3R2 circuit is required for the adaptation of endothelial cells to laminar shear stress and

vasodilation

(A) Representative images of F-actin, GFP, and Akt in endothelial monolayers ectopically expressing GFP or activity deficient AD-Akt. Cells were grown at

static or 10 dyn/cm2 laminar shear stress conditions for 24 h; red arrow indicates the direction of flow; scale bar 20 mm.

(B) Frequency of F-actin distribution within 0-30� angle relative to the direction of flow in (A); n = 5-10 fields per condition from 2 independent experiments;

mean G SD; **, p < 0.01, ANOVA with Tukey’s post hoc test.

(C) Representative images of F-actin and phospho-Akt (p-Akt) in endothelial monolayers depleted of Piezo1 or IP3R2 and ectopically expressing empty

vector or myr-Akt1. Cells were grown at static or 10 dyn/cm2 laminar shear stress conditions for 24 h; ref arrows indicate the direction of flow; scale bar 20 mm.

(D) Frequency of F-actin distribution within 0-30� angle relative to the direction of flow; n = 14-18 fields per condition across 3 independent experiments;

mean G SD; ***, p < 0.001; ****, p < 0.0001, ANOVA with Tukey’s post hoc test.

(E) Flow-induced vasodilation of mesenteric arteries isolated fromwild type (WT) or Piezo1DECmice infected with adenoviral particles encoding empty vector

or myr-Akt1 as indicated. n = 4 and 7 for Piezo1DEC and WT mice, respectively; *, p < 0.05 using two-way ANOVA, pap: papaverine.

(F) Quantification of data in (E) at D100 cm H2O; ****, p < 0.0001, ANOVA with Tukey’s post hoc test.
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stresses.55,56 We show that the activation of Piezo1 with Yoda1 induced a transient increase in cAMP pro-

duction. Depletion of sAC suppressed the Piezo1-mediated increase in cAMP, consistent with the crucial

role of sAC, which is activated by free intracellular Ca2+,39 in the generation of cAMP and cAMP-dependent

ER Ca2+ release downstream of Piezo1 mechanosensing. cAMP potentiates IP3-evoked Ca2+ release by un-

masking hypersensitive IP3R2 channels and potentiates IP3-evoked Ca2+ release from a discrete ER Ca2+

stores.54 We speculate that Piezo1 downstream signaling is spatially controlled and restricted to a subset

of IP3R2, which has a distinct intracellular distribution compared to IP3R3 precluding the activation of cal-

cium-induced calcium release from IP3R3 stores. cAMPmay also induce Ca2+ release by phosphorylating all

IP3Rs including IP3R3 in a PKA-dependent manner57; however, this mechanism does not explain our results

because the depletion of IP3R3 had no effect on ER Ca2+ release. Thus, our data support the role of the

cAMP-IP3R2 pathway, consistent with the specific effect of cAMP on IP3R2 channels.53,54 sAC tethered to

the mitochondria and microtubules58 can generate cAMP in close proximity to IP3R2, which localizes at

ER-mitochondrial interaction sites.59 Therefore, the subcellular organization of cAMP signals60,61 distin-

guishes the functional role of sAC from the transmembrane AC1, AC3, and AC8 isoforms that are also acti-

vated by Ca2+ signaling through binding to calmodulin.62

Transient receptor potential cation channel V4 (TRPV4) also contributes to shear-evoked Ca2+ mobiliza-

tion.18,63 Deletion of the Trpv4 gene significantly reduces shear-induced Ca2+ influx in ECs and vasodilation

of small mesenteric arteries in mice.63 Recent work showed that TRPV4 activation might be coupled to

Piezo1 signaling.64,65 Therefore, our results describing the mechanism of IP3R2 activation downstream of

Piezo1 may also inform how Piezo1 induced Ca2+ mobilization contributes to consequent activation of

TRPV4 by shear stresses.63 We posit here that release of ER Ca2+ through sAC-sensitive IP3R2 stores can

play an essential role in the amplification of calcium signaling downstream of Piezo1, a fast-inactivating

channel,16 which cannot produce, as we show here, a sufficient increase in cytosolic calcium to activate

EC response to shear stress. It is possible that IP3R2-evoked release is required for the activation of phos-

pholipase A (PLA2), which is responsible for the generation of 50,60-epoxyeicosatrienoic acid from arachi-

donic acid66,67 and the sequential activation of TRPV4 by this natural ligand.64

ECs exposed to laminar shear stress undergo adaptive morphological changes through the reorientation

of cells parallel to the direction of flow.68 Our findings show that these changes rely on a Piezo1-mediated

increase in cytosolic Ca2+ since ECs lacking Piezo1 failed to adapt to shear stress18 and induce flow-medi-

ated vasodilation.69 We demonstrate here that the genetic ablation of IP3R2 or sAC not only mitigate the

increase in cytosolic Ca2+ but also prevents the alignment of ECs in the direction of flow, emphasizing the

importance of the sAC-IP3R2 pathway in signaling the adaptive changes of ECs. Strikingly, ectopic expres-

sion of myr-Akt1 restores the morphological response of Piezo1- and IP3R2-deficient cells as well as flow-

induced vasodilation of mesenteric vessels of Piezo1DEC mice, showing the critical role of Akt signaling in

the shear-induced regulation of vascular tone.

The serine-threonine protein kinase Akt plays a crucial role in integrin-mediated signaling, endothelial cell

survival, and endothelial response to laminar shear.70–72 Akt translocates from the perinuclear region to the

upstream edge of cell-cell junctions relative to flow,73 where it phosphorylated immunoglobulin and pro-

line-rich receptor-1 (IGPR-1) at S220, causing a lateral redistribution of IGPR-1 along the cell-cell junctions

parallel to the direction of flow.74 In our studies, loss of either Piezo1 or IP3R2 prevented phosphorylation of

Akt at S473 in response to shear stresses. Thus, ER Ca2+ release was required to activate Akt signaling

mediated by sequential phosphorylation at Thr308 and S473 by phosphoinositide-dependent kinases

PDK1 and PDK2, and integrin-linked kinase (ILK), respectively.75,76 Whereas the mechanism of ER Ca2+

release in activating Akt signaling remains unclear, shear-induced activation of Akt was essential for the for-

mation of a mechanosensory complex between platelet-endothelial cell adhesion molecule 1 (PECAM1),

vascular endothelial (VE)-cadherin, and vascular endothelial growth factor receptors VEGFR2/VEGFR3.77

In addition, Akt might promote Piezo1 localization at the plasma membrane microdomains, thus providing

a positive feedback regulation of Piezo1 mechanosensing.78 However, the data presented here show that

expression of constitutively active Akt1 suffices to restore EC response to shear stress even in absence of

Piezo1 or IP3R2.

The results described here suggest a unique sAC-IP3R2 signaling pathway activated downstream of Piezo1

mechanosensing in ECs. We propose Piezo1 acts as an essential adaptive sensor for ECs that reorient ECs

through regulating ER Ca2+ dynamics and Akt signaling.
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Limitations of the study

The current study addresses a key signaling mechanism downstream of Piezo1 mechanosensing that pro-

motes EC adaptation to physiological shear stresses using cell culture and ex vivo vessel models. A poten-

tial limitation to the findings described here is a lack of analyses of the sAC-IP3R2 pathway in regulating

blood pressure, a physiologically relevant response of blood vessels to local and temporal changes in shear

stresses in vivo. From this perspective, it will be important to investigate the role of the sAC-IP3R2 pathway

using transgenic mouse models allowing a deletion of sAC or IP3R2 in ECs. On the basis of our findings, it is

anticipated that similar to Piezo1 EC-KOmice,22 animals deficient of sAC or IP3R2 in endothelial cells would

be prone to hypertension.
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d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture

Human Pulmonary Artery Endothelial cells (cat# CC-2530; Lots: 0000662151 and 20TL209928) and Human

Aortic Endothelial cells (Catalog #: CC-2535) purchased from Lonza were grown in EGM-2 media (cat#

CC-4176; Lonza) supplemented with EGM2 Bulletkit and 10% fetal bovine serum (FBS). Cells were cultured

at 37 with 5% CO2 and used from passages 4–7.

METHOD DETAILS

Transfections

Cells were treated with IP3R2, IP3R3, Piezo1 and sAC siRNA duplexes using Gene Silencer transfection re-

agent (cat# T500750; Genlantis) and used for experiments at 72–96 h post-treatment. Cells were trans-

fected with G-CEPIA1er sensor and ER marker mCherry-er27 by electroporating DNA vectors using Basic

Endothelial Cells Nucleofactor Kit (cat# VPI-1001; Lonza) and a Nucleofactor Device (Lonza) according to

the manufacturer’s instructions. Following DNA electroporation, cells were seeded at 70–75% confluency

and confluent monolayers were imaged 24–48 hours post transfection. For cell alignment experiments cells

were transfected with myr-Akt and activation deficient AD-Akt.42 Myr-AKT and AD-AKT constructs were a

gift from Dr. Monica Lee’s laboratory.

Measurements of intracellular calcium

Intracellular calcium concentrations were measured as previously described by us.34 HPAE cells grown on

glass-bottom dishes (Becton Dickinson) were loaded with 3 mM Fura 2 AM (Life technologies) for

20 minutes at 37�C in EGM-2 media without supplements. Cells were washed with Hank’s balanced salt so-

lution (HBSS) containing Ca2+ and Mg2+ and images were acquired at room temperature in phenol-free

media (Cell Applications, cat# 211PR-500). Fura-2 AM fluorescence was excited at 340 and 380 nm and

collected at 510 G 80 nm using an Axiovert 100 inverted microscope (Carl Zeiss) equipped with Plan-

Apo 603 with the numerical aperture (NA) 1.4 oil immersion objective, Lambda DG-4 switcher illumination

system (Sutter Instruments), AxioCom Hsm camera (Zeiss), fura-2 filter set (Chroma), and AxioVision Phys-

iology Acquisition module. Images were collected at 2-s intervals. Fluorescence ratios (F340/F380) were

calculated within a circular region of interest (radius 3 mm) for each cell after subtraction of intracellular

background, which was determined after quenching Fura-2 AM fluorescence by adding a mixture of

3 mM ionomycin and 5 mM MnCl2 in HBSS. [Ca2+]c was calculated from F340/F380 ratios using references

to Ca2+ standard solutions (Calcium Calibration Buffer Kits; Life technologies). Stored Operated Calcium

Entry (SOCE) was determined in HPAE cells loaded with Fura 2AM, incubated in Ca2+ free HBSS media,

and stimulated with 2 mM thapsigargin. Ca2+ entry was determined by addition of 2 mM Ca2+.

Measurement of ER calcium

Live-cell images of G-CEPIA1er and mCherry-er27 were simultaneously acquired at 37�C before and after

treatment of HPAECs with 5 mM Yoda1 using a confocal microscope (Zeiss LSM 710, Axio Observer Z1)

equipped with a 633 1.4 NA Plan-Apochromat oil immersion as well as a 103 0.5 NA Plan-Apochromat

dry objectives and a diode-pumped solid-state laser. The 633 objective was used to obtain high resolution

images of the ER structure whereas the images in shear stress experiments were acquired with 103 objec-

tive to correct for rapid changes in focal plane. Dual-color images were captured simultaneously using

l = 561nm and 488nm lasers and two BiG (binary gallium arsenide phosphide photomultiplier tube

(GaAsP-PMT) detectors. For comparisons of relative change in [Ca2+]ER, a cross-sectional view intensity

values of G-CEPIA1er normalized to mCherry intensity values was generated at each time point, and the

relative changes in [Ca2+]ERwere calculated.

In the experiments with SERCA inhibitor, cells were pretreated with 2 mM thapsigargin prior to starting live-

cell imaging experiments to ensure that SERCA is inhibited at the time of Yoda1 treatment without causing

a significant decrease in [Ca2+]ER.
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Measurement of cAMP production

cAMP production was measured using a genetically encoded Green Up cADDis cAMP sensor40 packed in

a BackMam viral vector (Montana Molecular; cat# U0200G), according to the manufacturer’s protocol.

The changes in cAMP fluorescence upon 5 mM Yoda1 treatment were assessed using a Nikon Eclipse

Ti microscope equipped with a 20X/0.40 objective and NIS-Elements image software at 48 hours post-

transduction.

Shear stress

For live-cell imaging and immunofluorescent staining experiments, pulsatile laminar shear stress was

applied on cells grown on m-Slide I 0.2, m-Slide I 0.4 or m-Slide VI 0.4 to achieve different ranges of shear

stress levels (IBIDI, cat# 80161, 80171, and 80601) using a MINIPULS 3 Peristaltic Pump (Gilson) connected

with a 1.6 mm serial connector for m-Slides and elbow luer connector male (IBIDI; cat# 10830 and 10802).

Shear stress application was made accordingly to IBIDI shear rate calculation for m-Slides. For measure-

ments of relative [Ca2+]ER, cells were imaged before and after application of 2, 5 or 10 dyn/cm2 shear

stresses for 60 seconds or duration of the experiment (data not shown). For cell alignment assays, cells

were subjected to flow or static condition for 24 hours.

For biochemical assessment of Akt signaling, cells were incubated in a 6 well plate and subjected to

10 dyn/cm2 shear stress for 30 minutes. The laminar shear flow was replicated using a flow device consisting

of a cone and plate apparatus describe elsewhere.79,80 The flow device consisted of a computerized step-

per motor UMD-17 (Arcus Technology) and a 1 deg tapered stainless steel cone.81

Immunofluorescent staining and image analysis

Immunofluorescent staining was made as published by us.82 In brief, HPAE cells were fixed with 4% form-

aldehyde in phosphate buffered saline (PBS) for 10 min at room temperature, washed once with PBS, and

permeabilized for 15 min with 0.01% Triton X-100 in PBS. Nonspecific sites were blocked with 3% Bovine

Serum Albumin (BSA) solution in PBS for 2 hours at room temperature. Cells were incubated with primary

antibody for 1 hour at room temp (or overnight at 4�C). After several washes with PBS, samples were incu-

bated with secondary antibodies for 2 hours at room temperature. Cells were mounted Flouromount-G

with DAPI. Images were collected with a confocal microscope (Zeiss LSM880 Confocal Microscope) equip-

ped with a 633 1.4 NA Plan-Apochromat oil immersion objective.

To analyze the orientation of cells, a z-projected image of samples stained with phalloidin was rotated

to the direction of flow. Automated quantification by the ImageJ plugin OrientationJ83,84 evaluated

the orientation of actin filaments using a Gaussian function of standard deviation with a Cubic Spline

gradient to produce an event distribution of all local angles relative to flow. The distribution of orienta-

tion as a frequency of events at 30 degree intervals was determined. The OrientationJ plugin was also

used to generate a visual of the local directional analysis using the same Gaussian window s and Cubic

Spline gradient.

Western blotting analysis

Western blotting was made as described by us.82 For knock down experiments, cell lysates were collected

using Radioimmunoprecipitation assay (RIPA) buffer (Thermo Fisher, Cat # R027). For determination of AKT

and ERK phosphorylation, cell lysates were washed 2 times with cold PBS and collected using lysis buffer

(20 mM HEPES-KOH, pH 7.8, 50 mM KCl, 1 mM EGTA, 1% NP40, 1 mM NaF, 1 mM Na3VO4). Total protein

concentrations were measured using a Bicinchoninic acid (BCA) protein assay kit (Thermo Scientific; cat#

23225). Samples were boiled in Laemmli sample buffer (Bio-Rad; cat# 1610747) for 10 min and separated

using a SDS-PAGE system. Proteins were transferred to nitrocellulose membranes overnight at 4�C. Mem-

branes were blocked in 5% BSA for 1–2 hours. Proteins of interest were then detected by probing with the

indicated primary and horseradish peroxidase–conjugated secondary antibodies. In the experiments

where greater protein separation was needed, for example, for Piezo1 detection, vinculin and a-tubulin

were used as loading controls because of their higher molecular weight. In the experiments detacting

AKT and ERK phosphorylation, GAPDH was used as loading control due to variability in b-actin protein

expression under flow conditions. Following incubation with secondary antibodies, proteins were detected

using chemiluminescence and Premium Autoradiography film (lab Force, cat# 1141J52). Band intensities

were quantified using densitometry analysis using ImageJ software (National Institute of Health).
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Curve fit and quantification of rate constants

GraphPad Prism9 software was used to fit a linear regression to the ER Ca2+ rise and one phase exponential

decay regression to fit ER Ca2+ decay. To calculate the rate constant for ER Ca2+ rise, a linear regression

defined as y = yIntercept + Slope*x was used. To calculate the rate constant of ER Ca2+ decay, a one phase

exponential decay regression defined as y= (y0 - Plateau)*exp(-K*x) + Plateau, where K is the rate constant

for ER Ca2+ decay was used.

Vasodilation measurement in mouse mesenteric arteries

Mesenteric arteries from EC-restricted Piezo1 knockout mice and wild type C57BL/6 mice were used to

measure flow-induced vasodilation as described previously.85 Briefly, mice were euthanized by CO2 inha-

lation followed by cervical dislocation. Mesenteries were extracted and removed of all fatty tissues to

isolate arterioles. Arterioles were divided into two pieces and incubated with adenoviral particles carrying

the empty vector or encoding myr-Akt1 for 48 hours at 37 �C, 5% CO2. First order arteries (120–180 mm in

diameter) were cannulated into a flow-chamber, and rested for 30 minutes under 60 cm H2O internal pres-

sure (resting diameter). Endothelin-1 (120 pM) was applied to pre-constrict the vessel to respond to flow

(pre-constrict diameter). Internal flow was generated by a pressure gradient between two reservoirs con-

nected to each end of the cannulated vessel at D10, D20, D40, D60, and D100 cm H2O, while the internal

pressure was maintained at 60 cm H2O. Flow-induced vasodilation was measured after 3 minutes of

each pressure gradient applied (flow-induced diameter). Papaverine (100 mM), an endothelial independent

vasodilator, was applied after vasodilation measurement at D100 cm H2O to confirm smooth muscle func-

tionality in vasodilation. Data were calculated using following equation:

Vasodilation (%) = (flow-induced diameter – pre-constrict diameter)/(resting diameter – pre-constrict diam-

eter)*100.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was calculated using GraphPad Prism9 software (GraphPad). Student’s t-test was

used for experiments with two experimental groups. One-way ANOVA with Tukey’s test was used for ex-

periments with two or more experimental groups. For flow-induced vasodilation experiments statistical

analysis was performed using two-way ANOVA, and the data were presented as mean G standard error.
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