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ABSTRACT Identification of co-expressed sets of genes (gene modules) is used widely for grouping
functionally related genes during transcriptomic data analysis. An organism-wide atlas of high-quality gene
modules would provide a powerful tool for unbiased detection of biological signals from gene expression
data. Here, using amethod based on independent component analysis we call DEXICA, we have defined and
optimized 209 modules that broadly represent transcriptional wiring of the key experimental organism C.
elegans. These modules represent responses to changes in the environment (e.g., starvation, exposure to
xenobiotics), genes regulated by transcriptions factors (e.g., ATFS-1, DAF-16), genes specific to tissues (e.g.,
neurons, muscle), genes that change during development, and other complex transcriptional responses to
genetic, environmental and temporal perturbations. Interrogation of these modules reveals processes that
are activated in long-lived mutants in cases where traditional analyses of differentially expressed genes fail to
do so. Additionally, we show that modules can inform the strength of the association between a gene and an
annotation (e.g., GO term). Analysis of “module-weighted annotations” improves on several aspects of
traditional annotation-enrichment tests and can aid in functional interpretation of poorly annotated genes.
We provide an online interactive resource with tutorials at http://genemodules.org/, in which users can find
detailed information on each module, check genes for module-weighted annotations, and use both of these
to analyze their own gene expression data (generated using any platform) or gene sets of interest.
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Nearly half of the predicted protein-coding genes in Caenorhabditis
elegans lack a functional annotation based on direct experimental
evidence (Lee et al. 2018). As a result, querying gene annotation

databases, such as the Gene Ontology (GO) or curated pathways can
fail to detect biologically meaningful signals in gene expression data
(Ashburner et al. 2000; Fabregat et al. 2017; Kanehisa et al. 2012). An
alternative approach to understanding gene function is to use in-
formation about gene expression. Gene-expression data can be used
to define groups of genes that show similar patterns of expression, or
co-variation, across many different conditions, which arise due to
changes in genes' transcriptional activity and/or their post-transcrip-
tional regulation. These groups are called transcriptional gene mod-
ules, with each module potentially representing a discrete biological
phenomenon. Gene modules are routinely constructed when clus-
tering algorithms are applied to gene-expression data and have been
used successfully to identify gene regulatory mechanisms in a variety
of contexts, from the yeast cell cycle (Wu et al. 2006) and sporulation
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(Wang et al. 2005) to human cancer cells (Teschendorff et al. 2007) to
cognitive decline in patients with Alzheimer disease (Mostafavi et al.
2018). Furthermore, large compendia of data sampling diverse pertur-
bations have been used to define fundamental gene-expression pro-
grams of entire organisms (Hughes et al. 2000, Engreitz et al. 2010, Zhou
and Altman 2001).

In C. elegans, the most recent effort to generate high-quality
fundamental transcriptional modules is now almost two decades
old (Kim et al. 2001). Co-expressed genes were grouped together
into 43 groups (or “mountains”) based on their correlation across
553 microarrays. However, the compendium did not contain all genes
(e.g., over 30% of the microarrays only contained �11,000 of C.
elegans’ 20,470 protein-coding genes) and each gene was assigned
exclusively to one group, although it is well-established that genes can
participate in multiple processes(Oeckinghaus et al. 2011; Gerstein
et al. 2012). The number of perturbations for which gene expression
data are available has also increased substantially since 2001.

Here, we define 209 transcriptional gene modules in C. elegans
using a heterogeneous compendium of 1386 microarrays and a
method we call DEXICA, for Deep EXtraction Independent Com-
ponent Analysis. DEXICA builds on prior implementations (Lee and
Batzoglou 2003; Gong et al. 2007; Engreitz et al. 2010) of independent
component analysis (ICA) for gene module extraction by maximizing
the biological information content of the modules. It does so by
varying data pre-processing methods and the number of extracted
ICA components (modules) until the number of significantly
enriched biological annotations in the module set is maximized.
DEXICA also uses an artificial neural network to partition each
independent component to determine which genes should be
included in each module.

We show that the 209 DEXICA C. elegans modules capture gene
expression patterns that correspond to biological processes; for
example, responses to heat stress, xenobiotics and pathogenic bac-
teria, and to several individual tissues. Furthermore, data analysis in
the module space correctly reveals biological processes that are
missed by analyses of differentially expressed genes. We provide a
user-friendly web interface, with tutorials, in which users can test
which of the 209 gene modules are active in their datasets and find
detailed information about each module that helps determine which
biological process(es) they represent.

Finally, we explore whether gene modules can be used to improve
existing gene annotations. We reason that an annotation shared among
co-expressed genes is more likely to be relevant to their function than
one that is not, and that annotations of co-expressed genes can
provisionally be “transferred” onto their poorly annotated compan-
ions. We calculate what we call “module-weighted gene annotations”
by weighting the association between a gene and an annotation by the
degree to which the annotation appears predictive of the gene’s
module membership. We show that matrix-based analysis of mod-
ule-weighted annotations is more sensitive and specific than common
annotation enrichment tests. We provide a framework for using
module-weighted annotations to detect significant GO terms and
promoter oligonucleotides directly from expression data, and to
identify novel GO terms conferred onto genes based on their module
membership.

The first part of this paper, which describes the construction and
biological validation of the C. elegansDEXICAmodules, is directed to
computational biologists, and the second to C. elegans biologists who
may or may not have experience in computational biology. Readers
simply wishing to apply this analytic method to specific gene lists
should feel free to skip directly to the later sections but may also enjoy

reading about the performance of the modules in our various
validation test cases.

MATERIALS AND METHODS

Compendium construction
To build the compendium of 1386 C. elegans Affymetrix arrays, we
first downloaded all CEL files with the appropriate platform ID
(GPL200) from the GEO database available on March 1, 2014,
excluding those for which the organism was not C. elegans and the
sample type was not RNA. We excluded arrays from experiments
for which fewer than 8 hybridizations were performed in order to
mitigate the effect that under-sampled conditions might have on
predicted modules. We then performed a quality control step using
the quality assessment functions provided in the simpleAffy (v2.40.0)
R package (http://bioinformatics.picr.man.ac.uk/simpleaffy/), dis-
carding arrays that did not meet the quality thresholds recommended
in the simpleAffy documentation.

We generated expression values for probesets separately for each
experiment (determined by GEO series IDs) using the RMA prepro-
cessing procedure provided in the affy (v1.40.0) R package (Gautier
et al. 2004), then used the bias (v0.0.5) R package (Eklund and Szallasi
2008) to remove intensity-dependent biases in expression levels. We
then concatenated the expression matrices for each experiment into a
single matrix. Next, we either performed between-experiment quantile
normalization on the entire matrix using the limma (v3.18.13) R
package (Smyth 2005), or omitted this step, depending on the pre-
processing method to be tested. Finally, we scaled and centered the
arrays, such that the mean of each column was zero and the standard
deviation was 1.

Conducting ICA
To conduct ICA of the gene expression matrix, we used the fastICA
(v1.2-0) R package (http://CRAN.R-project.org/package=fastICA)
with default parameters except for the “method” parameter, which
we set to “C” to increase computational speed, and the “row.norm”
parameter, which we set to ”TRUE” in order to balance the total
compendium variance between genes with subtle changes in ex-
pression values and those with large changes in expression values.

Partitioning of independent components
To convert independent components to discrete sets of genes, we
employed two methods. In the first, for each component, we assigned
all genes with a weight.= 3 to the positive (“a”) hemi-module, and all
genes with a weight ,= -3 to the negative (“b”) hemi-module. In the
second, we created an artificial neural network using the neu-
ralnet (v1.32) R package (http://CRAN.R-project.org/package=
neuralnet) to predict positive and negative partitioning thresholds
for each independent component, based on the component’s skew-
ness and kurtosis (see Supplemental Methods), then assigned genes
whose weights exceeded these thresholds to the corresponding hemi-
modules.

Obtaining gene annotations and microarray data
For module optimization, we obtained GO term and REACTOME
pathway annotations for C. elegans genes using biomaRt (v2.18.0) R
package (Durinck et al. 2009) and ensembl mart for data retrieval. To
obtain genes’ tissue annotations, we downloaded all available data from
the GFPWormdatabase (http://gfpweb.aecom.yu.edu/) (Hunt-Newbury
et al. 2007), which contains annotated expression patterns of promo-
ter::GFP fusion constructs; in total, this dataset provided annotations for
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1821 genes across 89 tissue types (n.b., we considered the same
tissue in different development stages to be distinct tissue types).
For Module Annotation Pages (Tool 3 on http://genemodules.org/),
known tissues (anatomies) of gene expression were downloaded
from the “expression patterns” database from Wormbase (WS275).
This dataset included 5376 genes and 2438 anatomical terms. GO
term enrichment was calculated using topGO(v.2.34.0) and cele-
gans.db (v 3.2.3) R packages. To obtain fold changes for isp-1
mutants, we used data previously published by our group in which
isp-1(qm150) mutants were compared to wild type controls (Cristina
et al. 2009). To obtain fold changes for hif-1 mutants, we used the
maanova (v1.33.2) R package (http://research.jax.org/faculty/church-
ill) and data previously published by Shen, et al. (Shen et al. 2005),
to calculate the induced gene fold changes upon mutation of hif-1.
All other microarray data were obtained directly from the authors of
the original publications or from the GEO database (see Supplemen-
tal Methods).

Optimizing gene module prediction
To optimize gene module prediction, we performed ICA with a
variety of different data preprocessing options [e.g., the choice of
preprocessing algorithm (RMA, GCRMA, PLIER, MAS 5.0), back-
ground, perfect match, bias correction, and normalization methods],
and with a varied number of extracted components from 5 to 500 by
increments of 5. For each parameter combination, we repeated ICA
5 times.

We tested the biological validity of the independent components
generated by each ICA run by determining the number of annota-
tions that were enriched in at least one hemi-module. We chose not to
optimize based on the number of modules with at least one significant
annotation, as tests using simulated data showed that this approach
could lead to signals being split into multiple, less accurate repre-
sentations (data not shown). We first calculated a p-value for the
enrichment of genes associated with each annotation term in each
hemi-module using the hypergeometric test. We then applied the
Simes method (Simes 1986) for multiple hypothesis testing (alpha =
0.05) to the set of p-values for each annotation term. The Simes
method is similar to the Benjamini-Hochberg method(Benjamini and
Hochberg 1995) for controlling the false discovery rate, but differs in
a way that makes it more appropriate here: it aims to answer the
question, “Given a set of p-values, what is the likelihood that at least
one null hypothesis is false?”, while the Benjamini-Hochberg method
asks, “What fraction of rejected null hypotheses are actually true (i.e.,
falsely discovered)?” Failure of the Simes test indicates that at least
one null hypothesis is false at the specified alpha level. To verify the
accuracy of our module quality statistics, we repeated all tests using
module definition matrices in which gene IDs had been randomly
shuffled.

Quantification of module activity in gene
expression data
To project a data vector, x, such as a set of gene-expression fold
changes, onto a set of gene modules, we used the scalar projection
method, in which a mixing vector, a, is calculated from the dot
product of the data vector and the unit vectors comprising themodule
definitions, Ŝ, as shown in equation 2:

a ¼ x � Ŝ (2)

The resulting mixing vector, a, provides an indication of the weight of
each module definition vector in the projected data, x. Note that

because x is a vector of gene fold changes, this analysis can be applied
to data generated using any RNA profiling platform (e.g. RNAseq,
microarray). Projection of a data matrix, X, which generates a mixing
matrix, A, was carried out using the same procedure.

To calculate signed variance explained (SVE), we calculated the
relative variance explained (VE) for each module from a as follows,
where n is the total number of modules:

VEi ¼ a2i
Pn

i¼1
a2i

(3)

We then multiplied these values, which are strictly positive, by -1 in
each case where ai ,0 to obtain SVE.

Generation of the Enrichment matrix, E
First, ANN-based partitioning of the module definition matrix, S, was
used to generate matrix Sp. Sp contains two gene sets per independent
component (which we refer to as hemi-modules), for a total of 418.
Using a matrix of known Boolean associations between genes and
annotations, B, we calculated a hypergeometric probability for each
annotation in each hemi-module. We used the frequency of genes
bearing a particular annotation in the hemi-module, the frequency of
such genes in the compendium, the number of genes in the hemi-
module, and the number of genes not in the hemi-module as the q,m,
k, and n input parameters, respectively, to the phyper() function of the
stats (v3.0.3) R package (http://www.R-project.org/).

We used these p-values to populate a matrix, E, with a row for
each hemi-module and a column for each annotation. For under-
represented annotations, we entered the log(p-value) in the matrix,
and for over-represented annotations we entered the –log(p-value).

Generation of module-weighted annotations
Our calculation of module-weighted annotations takes advantage of
the fact that, in modules generated by ICA, prior to partitioning, each
gene has a weight in each module. Given a score, or weight, for each
annotation in each module, this allows genes to be associated with
annotations via a matrix product calculation. In the E matrix (see
above) highly positive values correspond to strongly enriched anno-
tations in a hemi-module, highly negative values correspond to
strongly depleted annotations. We transform the gene module ma-
trix, S, into an unpartitioned hemi-module matrix, H, by concate-
nating it with a negative copy of itself column-wise:

H ¼ ½S 2S � (4)

The product of this matrix with the E matrix produces matrix R,
which relates genes to annotations:

H � E ¼ R (5)

As a final step, we normalize the values in this matrix row-wise; i.e.,
separately for each annotation, by subtracting the mean and dividing
by the standard deviation.

Analysis of GO terms based on gene weights
To test whether the ranking of GO terms based on gene weights
(Table 1) was statistically significant, we constructed a list comprising
all semantic words used in all GO terms, excluding words shorter
than three letters and uninformative words (e.g., “the” and “for”.) We
then tested each word for bias toward appearing near the top or
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bottom of the ranked GO term list. In agreement with our initial
observations, the most significantly top-biased words pertained to
macromolecular complexes, such as “nucleosome”, “cilium”, and
“ribosomal”, and the most significant bottom-biased words pertained
to cell signaling, such as “signal”, “kinase”, and “receptor”. Many of
the GO terms containing cell signaling words were generic in nature,
e.g., protein kinase regulator activity, thus, our results may partially be
explained by a lack of co-regulation among constituents of different
signaling pathways. However, some specific cell signaling terms, e.g.,
Notch signaling pathway also appeared near the bottom of the ranked
GO term list, suggesting that the genes annotated with such terms are
either not strongly co-regulated at the gene expression level or that
the biological conditions represented by the compendium did not
perturb their expression enough to form modules with our method.

Analysis of expression data with module-
weighted annotations
To test whether a set of gene fold-changes was significantly enriched
for specific annotations, given a module-weighted annotation matrix,
R, we calculated the dot product of the data vector, x, comprising the
set of gene fold-changes, and the R matrix:

a ¼ x � R (6)

The resulting vector, a, provides an indication of the degree to which
genes with strong weights for each annotation also have strong
fold-changes. To generate p-values from these, we permuted the
fold-change vector, x, 1000 times to create a background distribution
for each annotation, which we then used to determine z-scores.

Data Availability
All data supporting the findings of this study are available within the
paper and its supplemental materials. Dynamic access to the data,
with tutorials, is also provided through a Shiny App graphical user
interface at http://genemodules.org/. Specifically, 6 separate function-
alities are provided:

Tool 1: Determine which of the 209 modules defined here are active
in the user’s gene expression data (by inputting a list of gene
expression fold changes)

Tool 2: Using the partitioned 209 modules as gene sets, test whether a
list of user-specified genes is enriched in any particular module

Tool 3: Detailed description of each of the 209 C. elegans gene
modules

Tool 4: Visualize how genes assigned to a module change under a
variety of conditions (conditions can be chosen from the 716 per-
turbations derived from our microarray compendium or provided
by the user)

Tool 5: Get module-weighted GO terms associated with a user-
specified gene

Tool 6: Analyze gene expression data using module-weighted GO
terms

Supplemental materials include Supplemental Discussion and
Supplemental Methods, Supplemental References, eight Supplemen-
tal Figures and four Supplemental Files. File S1, “Partitioned S
matrix”, contains probe sets and genes that belong to each of the
209 DEXICA modules. File S2, “Module annotation summaries”,
provides a summary of information about eachmodule - top enriched
GO terms and top activating perturbation. File S3, “Finding exper-
iments that activate similar modules” contains a comparison of
module activity in all possible pairs of perturbations (contrasts) in

the microarray compendium to facilitate identification of perturba-
tions that activate similar modules. File S4, “Module-weighted GO
terms”, contains module-weighted GO annotations of each gene.
Supplemental material available at figshare: https://doi.org/10.25387/
g3.12061656.

Code described in this study is available as an R package:
DEXICA R package https://github.com/MPCary/DEXICA. Data
to reproduce extraction of gene modules can be downloaded from
https://github.com/MPCary/DEXDATA.Celegans.

To install:

install.packages(“devtools”)
library(devtools)
install_github(“MPCary/DEXICA”, build_vignettes =

TRUE)
install github(“MPCary/DEXDATA.Celegans”).

RESULTS

Development of DEXICA and extraction of optimized
gene modules
A large body of gene-expression data is publicly available(Barrett et al.
2011; Rustici et al. 2013) and has enabled computational prediction of
gene modules(Kim et al. 2001; Segal et al. 2003a; Ihmels et al. 2004;
Michoel et al. 2009; Engreitz et al. 2010). We refer to our method for
going from a raw compendium of gene expression data to an optimized
set of gene modules and a list of genes that belong to each module as
DEXICA, for Deep EXtraction Independent Component Analysis
(described below).

While several methods exist for defining gene modules, indepen-
dent component analysis (ICA) generally outperforms clustering-
based approaches and principle component analysis in extracting
biologically relevant signals from large datasets15,22-24. Advantages of
ICA include its ability to deal well with high dimensional data and to
generate modules that can share genes. Furthermore, ICA does not
assume that latent signals in the data follow a Gaussian distribution,
an important property for gene module prediction, as gene reg-
ulation signals appear to be primarily super-Gaussian(Purdom
and Holmes 2005). For these reasons, we chose to use ICA for
module construction.

Briefly, ICA is a blind source separation method that attempts to
“unmix” a signal comprising additive subcomponents by separating it
into statistically-independent source signals(Hyvärinen and Oja 2000).
In the common notation, an n xm data matrix, X, is decomposed into
two new matrices – an n x k source matrix, S, and a k x m mixing
matrix, A, where k is the number of independent components:

X ¼ S � A (1)

In the context of gene-expression analysis, X is a matrix of m
measurements (e.g., microarrays) of n genes, and k independent
components are interpreted as gene modules. A indicates the weight
of each module in each microarray and S indicates the relative level of
inclusion of each gene in each module(Kong et al. 2008) (Figure 1a).

Using simulated data, we found that module-prediction accuracy
was highest when the number of extracted components matched the
true number of modules (Figure S1). Therefore, we sought to
optimize module prediction by evaluating results based upon their
biological information content, such as enrichment of Gene Ontology
(GO) terms(Ashburner et al. 2000), REACTOME pathways (Fabregat
et al. 2017), and tissue-specific expression(Hunt-Newbury et al.
2007). We applied ICA to a diverse compendium of 1386 C. elegans
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Affymetrix arrays obtained from the Gene Expression Omnibus
(GEO) database(Barrett et al. 2011). We then compared results
obtained from a wide variety of preprocessing methodologies and
the total number of components extracted. Omitting between-experiment
quantile normalization from the preprocessing procedure produced
modules that were more annotation rich than those produced by a
published implementation of ICA-based module extraction (Engreitz
et al. 2010) (Figure 2a-c). Furthermore, annotation content of the
modules was maximized when the number of gene modules (i.e.,
independent components) ranged from 191 to 226.

To enable functional evaluation of the modules, it is useful to
summarize them as discrete gene sets. To this end, we partitioned
each column of the Smatrix into three sets of genes: one set consisting
of genes excluded from the module, and two other sets consisting of
genes implied to be regulated in opposite directions. We refer to these
latter two sets as “hemi-modules” “a” and “b”, one set consisting of
genes with highly positive weights and the other consisting of genes
with highly negative weights (signs assigned based on skewness) in
the independent component. Thus, module genes regulated in one
direction (up or down) are part of one hemi-module and genes
regulated in the opposite direction (down or up) are part of the other
hemi-module. The “a” hemi-module is derived from the more highly
skewed side of the independent component, and is usually larger (i.e.
contains more genes). While others have used a fixed-threshold

approach to component partitioning (Lee and Batzoglou 2003;
Chiappetta et al. 2004; Engreitz et al. 2010); for example, defining
genes with weights exceeding +/2 3 standard deviations from the
component mean to be “in” each hemi-module, we found that
different individual modules showed maximum annotation enrich-
ments at different thresholds, suggesting that a ‘one-size-fits-all’
approach to partitioning was sub-optimal. An alternative approach
to partitioning that we attempted (described in Frigyesi et al. 2006)
failed to converge in many cases (data not shown). Therefore, to
increase partitioning accuracy, we trained a function to predict
partitioning thresholds from the shape of component distributions.
Because plots of training data revealed a complex solution surface, we
decided to use an artificial neural network (ANN) to predict parti-
tioning thresholds for each component from the skewness and
kurtosis of its distribution. The output of the ANN, i.e., predicted
partitioning thresholds, is shown in Figure S2a. Although using a
fixed-threshold approach to module partitioning produced similar
results qualitatively (Figures S2b-d), it resulted in fewer significant
annotations across the range of parameters tested than did ANN-
based partitioning (P ,2.2E-16, Figure S2e). Because the mean
optimum number of extracted components (dashed vertical lines
in Figure 2a-c and Figures S2b-d) was similar for both threshold and
ANN partitioning (209, and 209.33, respectively), we chose 209 as the
final number of components to extract from the compendium.

Figure 1 Schematic of module prediction using DEX-
ICA and derivation of module-weighted annotations. (a)
A matrix of gene expression data, X, is decomposed
using independent component analysis (ICA) into a
gene module definition matrix, S, and a matrix contain-
ing the weight of each module in each microarray, A.
Rows of the S matrix indicate the relative degree of
inclusion of a given gene in eachmodule. (b) Annotation
enrichment within modules is calculated using matrices
B and Sp. Known associations between genes and an-
notations are captured in a Boolean matrix B, where
1 indicates an association between a gene and an
annotation and 0 indicates a lack of an association. S
is partitioned into Sp, where 0 indicates a gene’s ex-
clusion from a module, while -1 indicates a gene’s
assignment to the “a” hemi-module and 1 to the “b”
hemi-module (a hemi-module comprises genes that have
extreme weights and the same sign in a given column
of the S matrix). Enrichment of genes associated with
each annotation in each hemi-module is calculated
using hypergeometric tests and log(p-values) (for un-
der-represented annotations) or -log(p-values) (for over-
represented annotations) are recorded in a new matrix,
E. (c) To generate module-weighted annotations, the S
matrix is first transformed into a matrix, H, which indi-
cates the weight of each gene in each hemi-module. H
contains twice as many columns as S because there are
two hemi-modules per module. The dot product be-
tween H and E results in the R matrix, where a row
indicates the weighted association between a gene and
each annotation. The color intensity in R indicates an-
notation weights that would result given the indicated
expression values in X and the Boolean annotations in B.
Color saturation in all matrices exceptB (Boolean) and Sp
(trivalued) indicate relative numeric values, with least
saturated colors (i.e., white) indicating highly negative
values, and most saturated colors indicating highly pos-
itive values.
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Figure 2 Optimization of genemodules. To determine the optimal preprocessingmethod and the optimal number of components (genemodules)
to extract from a gene expression compendium of C. elegans microarray data, we calculated the number of Gene Ontology terms (a), C. elegans
tissues (b), and REACTOME pathways (c) that were significantly enriched in at least one genemodule. Black points show results from a compendium
produced using a preprocessing procedure used by Engreitz et al.(Engreitz et al. 2010); red points show results for the best alternative
preprocessing method that we tested. Black dashed lines indicate the point on the x-axis of each graph at which loess regression curves showed
the greatest difference between red points and results from randomized controls (gray points). (d) The number of modules produced by DEXICA, by
a different ICA-basedmethod used by Engreitz et al.(Engreitz et al. 2010), and byC. elegans gene expression topomap generated by Kim et al.(Kim
et al. 2001). The number and the percentage of total predicted modules that have significant enrichment for various annotations are shown. Error
bars indicate s.d. between repeat runs of DEXICA or Engreitz et al.method. (e) Distribution of the number of probe sets partitioned to each of the
209 DEXICA modules. (f) Distribution of the number of different DEXICA modules to which a given probe set is partitioned. (g) Each of the
418 DEXICA hemi-modules was tested for enrichment of genes with different structural properties – presence a long 39-UTR, transcription as part of
an operon, and presence of multiple annotated splice variants.
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Gene modules are expected to represent sets of genes that are
co-regulated at the level of mRNA expression or stability. Therefore,
DEXICA modules should be enriched for DNA and RNA regulatory
sequences. To test this, we generated a list of potential regulatory
oligonucleotide sequences (called ‘words’) by applying the Mobydick
algorithm(Bussemaker et al. 2000) to the set of all predicted C. elegans
promoter regions and, separately, to the set of all predicted C. elegans
39-UTRs. We then calculated the statistical significance of the over- or
under-representation of genes bearing each word in each gene module.
Across multiple runs with 209 components, the mean number of gene
modules containing significant promoter words and 39-UTR words
was 106.3 and 40.6, respectively, significantly greater than results
produced by other module prediction methods we tested (P ,2.2E-
16, Figure 2d).

Because the ICA algorithm employed by DEXICA, fastICA,
converges to a final solution from a random starting point(Hyvärinen
and Oja 2000), small differences typically exist in the output of
different runs; these differences can be seen in the vertical spread
of data points in Figures 2a-c, and in the error bars in Figure 2d.
While others have reconciled such differences through a clustering
approach applied to the output of numerous runs of the algorithm (so
called “iterated ICA”)(Frigyesi et al. 2006; Engreitz et al. 2010), when
applied to the C. elegans Affymetrix compendium, many of the final
components generated by this method were highly correlated to one
another, indicating non-independence and potential redundancy
among the components (data not shown). We therefore sought to
choose a single, high quality, fastICA run output to use as predicted
gene modules. Because we considered word enrichment the most
unbiased measure of module quality (as it relies only on DNA
sequence data), we chose as our final module set (File S1) the run
from a set of 100 with the best combined rank of significant promoter
and 39-UTR words (it ranked first in promoter words and third in
39-UTR words, Figure S3). The final median module size is
319 probe sets (Figure 2e) with half of all probe sets belonging
to at least 3 modules (Figure 2f). Only 4% of all genes (729 genes,
1189 probe sets) do not belong to any module. These genes show
significant enrichment for germline or embryonic expression.

Co-expressed genes often share common structural elements. For
example, genes within operons are switched on together during
recovery from growth-arrested states in C. elegans (Zaslaver et al.
2011) and 39-UTR length is associated with proliferation in cancer
cells (Mayr and Bartel 2009). To further explore the information
content of DEXICA-extracted modules, we tested each hemi-module
for over- and under-enrichment of genes with long 39UTRs, for genes
appearing in operons and for genes with multiple splice forms. Of the
418 hemi-modules, 65 contained a significant bias toward long 39-
UTR genes and 58 contained a bias toward short 39-UTR genes (q,
0.1, threshold chosen based on randomized control trials, see below;
Figure 2g). Twenty-one hemi-modules were significantly enriched
and 205 hemi-modules were significantly depleted for operon genes,
and 81 hemi-modules were enriched and 80 hemi-modules were
depleted for genes with multiple splice variants (Figure 2g). Control
tests performed on the samemodule set but with randomly scrambled
gene IDs produced no significant modules below q = 0.1 for any of the
gene properties we tested (data not shown). Therefore, DEXICA
successfully groups genes with common structural features into
modules, consistent with the known relationship between gene
structure and expression.

Together, these results show that the 209 C. elegans gene modules
extracted from a large microarray compendium are enriched for GO
terms, tissue and pathway annotations as well as for potential

regulatory DNA sequences and gene structural properties. DEXICA
is available as an R package (https://github.com/MPCary/DEXICA).
It provides tools to optimize ICA module extraction and partitioning
based on annotation enrichment and can be applied to any gene
expression compendium.

C. elegans DEXICA modules are biologically informative
We observed enrichment of functional gene annotations and oligo-
nucleotide sequences in DEXICA-extracted modules with even the
least optimal parameter settings (see Figure 2). To further test the
biological significance of the final 209 modules and to begin anno-
tating them, we constructed an alternate microarray compendium
comprising not 1386 individual arrays, as in the original compen-
dium, but rather the gene fold changes arising from contrasting
experimental and control samples in the same experiment. Projecting
the resulting 716-column matrix (one for each contrast) into the
space defined by our gene modules allowed us to see which exper-
imental perturbations activate or inhibit which modules.

We compared the most enriched GO terms in each module to the
most strongly activating or inhibiting experimental perturbations and
observed that in several cases these were in obvious agreement (File
S2 and Tool 3 on http://genemodules.org/). For example, the stron-
gest activation of m73 (module 73) is achieved by an embryonic
development time course experiment. Consistent with this, the top
GO terms enriched within genes that comprise m73 describe cell
division and the cell cycle. Module 153 is strongly activated by a
comparison of L3 lethargus (a larval period prior to molting) to active
L3 larvae and, accordingly, this module is enriched for GO terms that
describe cuticle remodeling. Similarly, m200 is activated in response
to the pathogen P. aeruginosa and the top GO terms enriched within
m200 genes include “defense response to Gram-negative bacteria”
and “innate immune response”.

DEXICA modules can also capture gene expression patterns that
define specific tissues. For example, m23 is strongly activated by GFP-
based enrichment of neurons (GSE8004). The top GO term associ-
ated with m23 is “neuropeptide signaling pathway” and genes in this
module have highly significant associations with neuronal anatomy
terms. Similarly, m144 is strongly activated by genes specific to
embryonic muscle cells (GSE8462) and is enriched for GO terms
such as “striated muscle dense body” and anatomies such as “body
wall musculature”. Together, these results indicate that DEXICA
modules represent biologically meaningful sets of genes.

It is very important to note that a lack of an obvious agreement
between the nature of a perturbation that strongly activates a module
and the top GO terms enriched in that module does not necessarily
indicate that a module is biologically meaningless. On the contrary,
this apparent disagreement can be a powerful tool for understanding
complex transcriptional responses to perturbations. For example,
starvation of L1 larvae induces a developmental arrest and has
widespread effects on metabolism and energy allocation (Baugh
2013). Module 51 is strongly activated by L1 starvation and is
enriched for GO terms that describe ribosome biogenesis (e.g.,
“ribosome biogenesis”, “nucleolus”), autophagy (e.g., “autophago-
some maturation”) and response to starvation (e.g., “cellular response
to nitrogen starvation”). Thus, this module represents several co-
ordinated processes that become activated in response to larval
starvation. Obvious agreement between a perturbation and GO terms
would also be absent if a process had not previously been associated
with a particular condition, making modules useful for hypothesis
generation. For example, a wild C. elegans isolate, JU1580, shows
strong activity of m55 relative to the laboratory C. elegans strain, N2,
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and genes within m55 are enriched for the “innate immune response”
GO term. This leads to a hypothesis that the immune systems of
JU1580 and N2 have different levels of basal activity.

Application of DEXICA modules to improve
gene annotations
Because gene annotations can be incomplete and biased, knowledge
about which genes tend to be co-expressed in an organism can help
inform which annotations are more likely to be biologically relevant
and help infer annotations of orphan genes based on annotations of
other module members (see Supplemental information for additional
discussion). To this end, we devised a calculation of scores, which we
call “module-weighted annotations”, based both on how much a
given annotation is enriched in each module (matrix E, Figure 1b-c)
and the degree to which a given gene belongs to that same module
(matrix H, Figure 1c).

Module-weighted GO terms: To test the utility of module-weighted
annotations, we first examined whether they generally recapitulate
traditional (Boolean) annotations. If so, then genes traditionally
associated with each annotation should have larger weights for those
annotations (when normalization is omitted from their calculation)
than do other genes (two-sample KS test, alpha level = 0.05). For this
analysis we used GO terms as annotations and restricted the set to
terms with at least 15 annotated genes in order to ensure robust
signals; this set comprised 1651 GO terms. In 98.6% (1628/1651)
of cases, genes associated with each term had significantly larger
module-weighted annotations than did other genes, indicating
that module-weighted GO annotations do recapitulate Boolean
annotations.

We ranked each GO term by the weight of its most strongly
associated gene (Table 1). GO terms with the most highly weighted
genes were “ribosome” (CC) and “structural constituent of ribosome”
(MF). Consistent with this finding, genes involved in ribosome
biogenesis are known to be transcriptionally co-regulated(Wade
et al. 2006). On the other hand, GO terms associated with signal
transduction and kinase activity showed the lowest gene weights.
These results are statistically significant (see Supplemental Methods
methods) and show that some types of gene groupings (e.g., genes
encoding kinases) often used in the analysis of gene expression
data may not actually represent functions that are coordinately
regulated at the transcript level. Therefore, we suggest that
researchers use caution when interpreting a result that certain
annotations, like “kinases”, appear to be enriched in a transcriptomics
experiment.

A sensitive test will tend to give similar results despite small
amounts of random noise being added to the input data. To test the
sensitivity of a module-weighted annotation-based enrichment test,
we obtained gene fold changes for the 5 most recent (at the time of
query) C. elegans Affymetrix experiments deposited to the GEO
database. These experiments were not included in the data used to
construct the modules. We then added varying amounts of Gaussian
noise to the fold changes and for each level of noise, we calculated
enrichment z-scores for each GO term using three different methods:
the Kolmogorov-Smirnov (KS) test, the t-test (n.b., one-sample and
two-sample t-tests produced nearly identical results, data not shown),
and scalar projection of the gene fold changes onto a module-weighted
GO term matrix. We then compared these results to those obtained by
eachmethod when no noise was added (Figure 3a). Dissimilarity to the
initial results (zero added noise) increased rapidly with added noise
for both the KS test and t-test, while the projection-based results were

similar (r . 0.75) at even the highest noise levels tested (5 standard
deviations), suggesting that the projection-based test is more sensitive
than both the KS and t-tests.

A specific test will tend to show dissimilar results when given
dissimilar inputs. To test the specificity of module-weighted anno-
tation analysis, we selected the 100 most dissimilar experiments
(correlation of gene fold changes near zero) from a set of 188,805
comparisons. We compared the results of projecting the gene fold
changes from each experiment onto the module-weighted annotation
matrix to the results obtained from the KS and t-tests and found that
the experiments showed the weakest similarity in the significance
levels of annotations when using the projection method (P = 5.2e-13,
Figure 3b). These results show that annotation enrichment analysis
using module-weighted annotations may provide more reliable bi-
ological insights than gene set enrichment analyses that rely on the KS
(GSEA(Subramanian et al. 2005)) or t-tests (PAGE(Kim and Volsky
2005), GAGE(Luo et al. 2009)). Module-weighted GO terms for each
gene (matrix R, Figure 1c) are provided in File S4 and their signif-
icance in a query gene expression dataset can be tested using Tool
6 on http://genemodules.org/.

Module-weighted promoter words: While any Boolean gene anno-
tationmay be converted into amodule-weighted annotation, module-
based weights seem particularly well suited for describing regulatory
sequences, such as putative transcription factor and microRNA
binding sites. To this end, we generated weighted annotations for
each of the 5230 words in the promoter word dictionary we con-
structed using the Mobydick algorithm (described above and in
Methods).

To validate predicted regulatory word weights, we searched the
literature, the JASPAR database of transcription factor binding
profiles (Mathelier et al. 2016), and the GEO database for C. elegans
transcription factors with both an experimentally characterized
DNA-binding profile and, separately, a microarray experiment that
measured gene expression in a loss-of-function mutant of the tran-
scription factor gene. This search yielded 6 transcription factors: daf-
12, daf-16, hif-1, hlh-30, lin-14, and nhr-23. We then projected the
loss-of-function microarray experiment data (positively and nega-
tively changing genes separately) onto the module-weighted word
matrix, R (Figure 1c), and calculated z-scores for each word. Finally,
we compared the top-scoring words to the DNA-binding profiles of
the respective transcription factors. If the predicted promoter-word
weights are accurate, then words that resemble the binding profile
should score highly in this analysis.

For hif-1 and nhr-23, the most significantly enriched words in the
positively and negatively changing genes, respectively, matched the
canonical binding sites (Table 2). A word matching the hlh-30
binding site scored 6th overall among the up-regulated genes, and
for daf-12, four of the top 20 words for the up-regulated genes
contained GAACT or AACTT, which partially matched the reverse
compliment of a reported daf-12 binding half-site, AGTTCA(Shostak
et al. 2004). In the daf-16 data set, several words matching the
so-called “daf-16 associated element” (DAE)(Zhang et al. 2013)
scored highly. However, none of the four words matching the
canonical daf-16 binding site, T(G/A)TTTAC were among the words
comprising our Mobydick promoter-word dictionary, precluding
these from being represented in the analysis. The canonical binding
site for the final transcription factor, lin-14, is GAAC, but like the
canonical daf-16 binding site, neither this word nor its reverse
compliment was present in the promoter word dictionary, precluding
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it from representation. Taken together, these results suggest that module
weighted regulatory sequences can be used to determine important
regulatory sites in a gene expression experiment, and further validate
our method for calculating weighted annotations.

Finally, we tested whether module-weighted words could reveal
activity of the transcription factor HIF-1, previously shown to be
required for longevity of the isp-1 mitochondrial respiration mu-
tants (Lee et al. 2010). We calculated promoter word z-scores for
the isp-1 microarray data set and compared the results to those for
hif-1. As predicted, we observed a very strong anti-correlation
between the promoter word z-scores for isp-1 mutants and those
for hif-1 mutants (Figure 3c, R = -0.581, P , 2.2E-16) and four of
the six most active words matched the canonical HIF-1 binding
site [(A/G)CGTG; underlined in Figure 3c]. These results further
support the utility of module-weighted promoter oligonucleotides

for identifying biologically relevant regulatory sequences directly
from gene expression data.

Informative descriptions and annotations of
DEXICA modules
Gene co-expression modules are useful for interpreting gene expres-
sion data because they often represent transcriptional signatures of
biological processes (Segal et al. 2003b). Therefore, detailed infor-
mation about modules that are active in a gene-expression experi-
ment would be of primary interest to an investigator. We showed
above that C. elegans gene modules constructed using DEXICA are
biologically informative. As a comprehensive resource, we created a
Module Annotation Page for each of the 209 modules (see Data
availability, Tool 3). Each page shows the module’s significantly
enriched GO terms (excerpted in File S2), tissues of known

n■ Table 1 GO categories with strongest andweakest geneweights. The table shows the top 25 and the bottom 5GO categories, ranked in
decreasing order of the weight of their most strongly associated gene prior to normalization. Similar GO categories are grouped together,
and the genes with the highest weights for each group are also shown. rpl- (ribosomal protein, large subunit) and rps-
(ribosomal protein, small subunit) genes encode ribosomal proteins, and his- (histone) genes encode nucleosome components

GO Term Group GO ID Rank GO Term Top Genes

Ribosome GO:0005840 1 ribosome rpl-43, rps-15, rps-14, rpl-22, rpl-32
GO:0003735 2 structural constituent of ribosome
GO:0030529 3 ribonucleoprotein complex
GO:0006412 4 translation
GO:0043228 10 non-membrane-bounded organelle
GO:0043232 11 intracellular non-membrane- bounded

organelle
GO:0032991 20 macromolecular complex

Heme binding GO:0020037 5 heme binding R05D8.9, E02C12.6, T16G1.6, cyp-35A1,
C33C12.8GO:0046906 6 tetrapyrrole binding

GO:0005506 7 iron ion binding
GO:0004497 8 monooxygenase activity
GO:0009055 9 electron carrier activity
GO:0016705 15 oxidoreductase activity, acting on paired

donors, with incorporation or reduction
of molecular oxygen

Nucleosome GO:0006334 12 nucleosome assembly his-4, his-8, his-9, his-45, his-62
GO:0034728 13 nucleosome organization
GO:0031497 14 chromatin assembly
GO:0000786 16 nucleosome
GO:0032993 17 protein-DNA complex
GO:0006333 18 chromatin assembly or disassembly
GO:0065004 21 protein-DNA complex assembly
GO:0071824 22 protein-DNA complex subunit

organization
GO:0006323 23 DNA packaging

Lipid glycosylation GO:0030259 19 lipid glycosylation C33C12.8, cyp-35A5, cyp-35A1, dhs-23,
clec-210

Cuticle GO:0042302 24 structural constituent of cuticle col-2, col-84, col-158, col-44, R07E5.4
Oxidoreductase activity GO:0016491 25 oxidoreductase activity B0272.4, Y75B8A.4, acox-1, F58A6.1,

dhs-18
. . . . . . . . . . . . . . .

Presynaptic membrane GO:0042734 1647 presynaptic membrane K02E11.7, C45G9.6, clec-233, ttr-10,
cup-4

Signal transduction GO:0046579 1648 positive regulation of Ras protein signal
transduction

R04B5.6, cyp-33D3, C34D10.1, stdh-2, 19

FF10.1
GO:0051057 1649 positive regulation of small GTPase

mediated signal transduction
Calcium-dependent kinase GO:0009931 1650 calcium-dependent protein serine/

threonine kinase activity
tag-83, T21H8.5, cca-1, ZC101.1, ztf-16

GO:0010857 1651 calcium-dependent protein kinase
activity
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expression, enriched promoter and 3’-UTR oligonucleotide words,
transcription-factor binding sites predicted using HOMER (Heinz et
al. 2010) and component genes (each linked to a WormBase de-
scription). The component genes can be interrogated further for
enrichment of additional gene annotations or regulatory motifs [e.g.

using RSAT (Nguyen et al. 2018)] to gain a deeper understanding of a
module’s function.

A limitation of using GO terms and other pre-existing annotations
to interpret gene modules is that some cellular activities are poorly
annotated (see UPRmt example in section 1 below). For this reason, an

Figure 3 Performance of module-
weighted annotation-based tests. (a)
To assess sensitivity, Gaussian noise
was added to gene expression data
from 5 recent C. elegans Affymetrix
experiments not included in the com-
pendium used to train the modules.
[The standard deviation of the noise
distribution (m = 0) was varied from
0.5x to 5x the standard deviation of
the gene fold change distribution.] At
each noise level, z-scores for each GO
term (based on 100 random permuta-
tions of the gene IDs in the input data)
were calculated using three different
methods: KS – Kolmogorov-Smirnov
test; t-test – two-sample t-test (one-
sample test gave highly similar results,
data not shown); projection – projection
of the gene fold changes into the space
defined by the module-weighted an-
notation matrix, R. When conducting
KS and t-test, fold changes of genes
assigned to each GO term were com-
pared to fold changes of genes not
assigned to that term. Spearman cor-
relation coefficients were calculated
between Z-scores at each noise level
and Z-scores without any noise added.
(b) To assess specificity, 100 highly dis-
similar pairs of experiments (Spearman
correlation, r, of gene fold changes
near 0) were selected from a set of
188,805 pairs generated using pub-
lished microarray data. For each con-
trast belonging to a pair, we determined
Z-scores for GO annotations using the
three methods and calculated the rank
correlation (rho) of the absolute value of
these Z-scores between pair members.
The center of the box represents the
median value and whiskers extend to
themost extreme data point that is not
further than 1.5 times the IQR from
the box. (c) Gene fold changes in isp-1
and hif-1 mutants were projected into
promoter word space using module-
weighted promoter words (see Meth-
ods). The 10 points furthest from the
origin are highlighted with colored cir-
cles in the figure (orange= positive SVE
for hif-1, blue = negative SVE for hif-1),
and their words corresponding to these
points are shown to the right of the
figure. Four of the sixwords highlighted
in orange contain full or partial matches
to the canonical hif-1 binding site, (A/G)
CGTG (underlined).
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additional strategy to understanding what a given module represents
is to examine its activity under a variety of conditions. To facilitate
this, in the Module Annotation Pages we have also provided a ranked
list of perturbations (from the 716 we generated) that activate each
module significantly (also see File S2). While it is unlikely that a
typical gene module can be described completely using a single
semantic annotation due to the complexity of gene regulatory net-
works, we suggest processes that eachmodule likely captures based on
our comparison of module activity under several conditions and our
examination of enriched GO terms (File S2). In a typical workflow,
once the active modules in a gene expression experiment are identified
by a researcher, we recommend that the researcher consult Module
Annotation Pages and File S2 to infer the biological process(es) de-
scribed by the modules of interest.

Guide to using DEXICA modules

Gene modules can uncover processes that are poorly annotated and
therefore missed by conventional analyses: Mutations in compo-
nents of the electron transport chain reduce respiration, slow devel-
opment and reproduction and increase lifespan in C. elegans (Dancy
et al. 2014). The mitochondrial unfolded protein response (UPRmt) is
induced in response to a stoichiometric imbalance between nuclear and
mitochondrial proteins within mitochondria, and this process is known
to be active in long-lived respirationmutants (Baker et al. 2012; Durieux
et al. 2011). However, analysis of significantly differentially expressed
genes in the isp-1 respiration mutant, either using conventional GO
term- or KEGG pathway- overrepresentation tests or using a more
recent tool designed to query more comprehensive annotations of
C.elegans genes,WormCat(Holdorf et al. 2020), failed to identify UPRmt

or, for that matter, any process related to the mitochondria (Figure 4a).
We asked whether application of DEXICA modules could successfully
identify a UPRmt gene expression signature in isp-1 mutants.

As a first step of gene expression analysis using DEXICAmodules,
we determine a fold change of every detected gene between isp-1

mutants and wild-type animals. This calculation is done without
imposing any cut offs on the data (e.g., p-values or effect sizes). We
then project the resulting vector onto the module definition matrix (S,
see Figure 1), which can be done by using Tool 1 of the online user
interface (http://genemodules.org/). Three modules - m47, m66 and
m169 - displayed the highest activity (Figure 4b). Module activity is
represented as Signed Variance Explained (SVE), where + or -
indicates direction of activity (useful when comparing two or more
experiments), and the absolute value of SVE represents the relative
proportion of variance in a gene expression experiment explained by
a particular module. The sum of absolute values of SVE for all
modules is 1.

By consulting Module Annotation Pages (see section “Annotation
of DEXICA modules” and Tool 3 on http://genemodules.org/), we
determine that the same three modules are strongly active in other
respiratory-chain mutants, but also that the most strongly activating
non-respiration perturbation of m47 is a mutation in spg-7, a mito-
chondrial protein quality-control protease, disruption of which is
known to induce UPRmt (Pellegrino et al. 2014) (Figure 4b – a plot
like this can be generated by calculating module activity in each
experiment using Tool 1 and plotting the resulting SVE values against
each other). This finding suggests that m47 may encompass UPRmt

genes. If true, then m47 should be active in animals with constitutive
activity of the transcriptional UPRmt regulator, ATFS-1. To test this
prediction, we calculated module activity in atfs-1 gain-of-function
mutants (this perturbation was not part of the original compendium,
GEO Accession number GSE73669). Indeed, induction of the UPRmt

transcriptional response in otherwise healthy animals using this
mutation strongly and specifically induced activity of m47 (Figure
4c). Furthermore, genes that belong to m47 showed concordant
expression in the isp-1 respiration mutant, in response to UPRmt

induction by disruption of spg-7, and in response to constitutive
activity of ATFS-1 in normal animals (Figure 4c, d). As expected,
mutation of atfs-1 prevented these changes in animals with an

n■ Table 2 Top scoring promoter words for transcription factor perturbation experiments. The table shows the top three most significant
words (those with the most extreme z-scores), calculated using module-weighted promoter words, for each transcription factor loss-of-
functionmicroarray experiment. If a full or partial match (4 ormore bases) to the canonical binding site of the factor does not occurwithin the
top 3 ranking words, the most significant such match is also shown. Bold letters indicate matching positions to canonical binding sites

Factor Canonical site Top words Projection set Z score Z score rank

DAF-16 T(G/A)TTTAC, CTTATCA� TTCTTATCA Down-regulated 23.95 1
GGAAG Down-regulated 23.69 2
TTTTCTG Down-regulated 3.47 3

HIF-1 ACGTG ACGTGAAC Up-regulated 4.39 1
CGTGAAC Up-regulated 4.38 2
ACGTG Up-regulated 3.71 3

NHR-23 AGGTCA AGGTCA Down-regulated 25.29 1
TGACCTA Down-regulated 24.72 2
CCTCCCCC Down-regulated 24.39 3

HLH-30 TCACGTGA(C/T) CTTACTATT Up-regulated 24.3 1
CGTAATCC Up-regulated 4.14 2
CTTTTTTCT Down-regulated 4.07 3
CACGTG Up-regulated 23.09 20

LIN-14 GAAC CCTACCTACCTA Down-regulated 4.35 1
GCGCGTCAAATA Up-regulated 23.95 2
GCCGCGCACCCC Down-regulated 23.78 3
GGTTCTGG Down-regulated 22.53 109

DAF-12 AGTTCA CCCCAC Down-regulated 24.41 1
GCTC Up-regulated 4.28 2
CCCCGCC Down-regulated 24 3
AACTTTT Up-regulated 3.51 11
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Figure 4 Analysis of module activity in isp-1 respiration mutants reveals activity of the key mitochondrial unfolded protein response (UPRmt)
transcription factor, ATFS-1. (a) Conventional annotation analyses of genes that are differentially expressed in isp-1(qm150) respirationmutants. GO
term-overrepresentation was determined using GOrilla(Eden et al. 2009) and KEGG pathway-overrepresentation was determined using
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induced UPRmt (spg-7 RNAi) (column 4 Figure 4d). Moreover, two
chaperone genes known to be induced during UPRmt (hsp-6 and dnj-
10) are part of m47. Taken together, these data strongly suggest that
m47 represents genes induced by ATFS-1 during the UPRmt. This is
an example of how identifying active gene modules in a mutant of
interest and finding other conditions that activate the same modules
can reveal biologically informative gene signatures.

Analysis of module activity, but not GO term or KEGG pathway
enrichment analyses, was able to identify correctly a key biological
process using gene expression data from isp-1 mutants. Why did GO
term enrichment analysis fail to recover the “mitochondrial unfolded
protein response” term (GO:0034514)? To our surprise, there are only
eight C. elegans genes annotated with this GO term (haf-1, ubl-5, gcn-
2, atfs-1, clpp-1, dve-1, hsp-6 and hsp-60). Among these, only hsp-6
and hsp-60 are induced during UPRmt, whereas the others are genes
needed for activation of UPRmt. In the KEGG pathway database,
UPRmt is not included as a discrete entry, but is part of the “Longevity
regulating pathway – worm” (map04212) entry, and similar to GO,
primarily includes inducers rather than mediators of the UPRmt.
These examples illustrate how incomplete annotations and/or overly
general groupings (e.g., containing both activators andmediators) can
result in a failure of standard annotation enrichment methods to
detect biological signals in gene expression data.

Nargund et al. have defined a set of ATFS-1-targeted genes based
on up-regulation of these genes with or without atfs-1 and in the
absence or presence of mitochondrial stress(Nargund et al. 2012).
While module analysis was able to reveal UPRmt without reliance on
any pre-existing gene annotations or pre-defined gene sets, we
wondered whether GSEA(Subramanian et al. 2005) analysis of isp-
1 gene expression data using this gene set would have been able to
detect ATFS-1 activity. The Nargund et al. ATFS-1 gene set showed
enrichment within isp-1 genes, but this enrichment was not statis-
tically significant (Figure S4). In contrast, when we tested enrichment
of the ATFS-1 gene set within modules (enabled by Tool 2 on http://
genemodules.org/), we found a highly significant enrichment within
m47 (Figure 4e). These results show that given a set of functionally
related genes, testing enrichment of that set within modules can be
more informative than testing enrichment within a ranked list of gene
changes, likely because modules comprise groups of genes that are
functionally related.

Gene modules can uncover gene signatures despite a lack of
significant differential expression: Reduction-of-function isp-1 mu-
tations extend lifespan in a manner dependent on the hypoxia
inducible factor 1 (HIF-1) (Lee et al. 2010), but, unexpectedly, we
found that the overlap between the significant genes obtained by
comparing isp-1 or hif-1 mutants to wild type was not statistically
significant (Χ2 test p-value = 0.17; Figure S5a). The other highly active
modules in isp-1 mutants besides m47 are m66 and m169. We

wondered if these modules represent genes regulated by HIF-1.
Indeed, when we compared gene module activity in hif-1 and isp-
1 mutants, we found a strong anti-correlation (Pearson correlation
between SVE = -0.730, P = 4.7E-36; Figure S5b) driven by m66 and
m169. The negative correlation is consistent with the finding that the
life extension observed when isp-1 activity is reduced requires activity
of HIF-1. The idea that HIF-1 directly regulates transcription of genes
in m66 and m169 is further supported by the fact that the canonical
HIF-1 binding site [(A/G)CGTG] is the top oligonucleotide sequence
enriched in the promoters of the genes comprising these modules (q-
values 8.13e-105 and 1.47e-28, respectively). The similarity between
module activity in isp-1 and hif-1 datasets, despite a lack of similarity
among their most differentially expressed genes, suggests that the role
of HIF-1 in regulating the lifespan of isp-1 mutants may be to
instigate small but coordinated expression changes in many genes,
most of which fail significance tests for differential expression in one
or both datasets. These results demonstrate that gene modules are
sensitive toward identification of transcriptional signatures and
therefore can be useful for analysis of datasets in which few gene
changes reach statistical significance.

Gene modules as a hypothesis generation tool: As shown above,
the correlation between the module activities of hif-1 and isp-1 was
substantial (r = -0.730), and therefore served as a strong validation of
the module approach to uncovering functionally significant process-
es. To determine how often two sets of module activities generated
from different experiments could be expected to show this degree of
similarity, we determined module activity correlations for all possible
pairs of the 716 experimental contrasts, excluding pairs in which both
contrasts originated from the same experiment (i.e., from the same
GEO series). This produced 188,805 contrast pairs, 13,376 (7.08%) of
which showed a statistically significant correlation (Holm corrected
p-value,0.05). As expected, the highest-ranking pairs were the same
experiment performed by different labs or at different times. The
strength of the hif-1 and isp-1 correlation would have fallen within the
top 1%, had those experiments been part of the contrast set. In-
terestingly, had we observed the similarity between the hif-1 and isp-1
projections without any prior genetic data, we might have hypoth-
esized a role for hif-1 in isp-1 mutants before such a role was
discovered from genetic screening (Lee et al. 2010). Therefore, to
give the reader a chance to find other unexpected correlations be-
tween perturbations (i.e., gene expression changes that activate
similar modules but that are generated by different experiments),
we include the full set of contrast comparisons in File S3. We hope
these comparisons will prove useful for hypothesis generation.

Guide to using module-weighted annotations
To aid in functional interpretation of gene expression data despite
sparse annotations of many C. elegans genes, we have developed a

DAVID(Huang et al. 2009).WormCat(Holdorf et al. 2020) is an online analysis tool that queries the GOdatabase but works independently of GO and
addresses some of its limitations. Significant gene expression changes were determined using the limma R package and FDR-adjusted p-value
of ,0.05. (b) Knockdown of a protein quality-control protease spg-7 is the top non-respiration microarray experiment in the compendium that
induces activity of the isp-1module m47. Module activity is expressed as signed variance explained (SVE). (c) Comparison of isp-1(qm150)mutants
and animals that express a constitutively active form of atfs-1, a key transcription factor required for the UPRmt. The gene expression scatter plot
shows all detected genes (22,625; black) overlaid with genes that belong to m47 (367; pink). r, Pearson correlation coefficients. (d) Normalized
changes in expression of genes that belong to m47 (367 genes) in response to inhibition of respiration (isp-1 mutation, column 1), activation of
UPRmt by disrupting mitochondrial protein quality control (column 2), constitutive activation of atfs-1 under normal conditions (column 3), and
activation of UPRmt in the absence of atfs-1 (column 4). (e) Genes up-regulated by ATFS-1 during UPRmt, as determined in Nargund et al.
2012 (Nargund et al. 2012), are strongly enriched in m47. Enrichment was calculated using hypergeometric statistics.
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process of transferring gene annotations based on the degree of
gene co-expression to create “module-weighted gene annotations”
(see description above). This approach provisionally transfers
annotations, such as GO terms, that are enriched in a module to
all gene members of that module. This can be useful in at least two
ways: for studying individual genes and for identifying functional
categories within gene expression data.

For studying individual genes: if a query gene has a strong
module-weighted association to a GO term with which it is not
traditionally associated, it means that this gene is co-expressed with
other genes that are traditionally associated with the GO term. For
example, by applying Tool 5 (http://genemodules.org/) to the small
ribosomal subunit S16 (rps-16), we find that most of the module-
weighed GO terms associated with this gene have something to do
with the ribosome or translation, indicating that rps-16 is tightly
co-expressed with other genes involved in ribosome biogenesis and
not much else. On the other hand, while sod-3, a superoxide
dismutase, does have significant weights for GO terms with which
it is traditionally associated (e.g., oxidoreductase activity, superoxide
metabolic process and response to superoxide), “catalase activity”
ranks more highly for sod-3. This indicates that sod-3 is co-expressed
with genes annotated as catalases. While it is unlikely that sod-3 has a
novel catalase activity, it is more likely that expression of sod-3, a
superoxide dismutase, is coordinated with expression of catalases,
since hydrogen peroxide produced by sod-3 is further degraded by
catalases to avoid damage to the cell. Some of the other top-ranking
module-weighted GO terms for sod-3 describe dioxygenase activity.
Similarly, this may indicate that dioxygenases generate superoxide
radicals, and therefore increased expression of these enzymes is
typically correlated with increased expression of a superoxide dis-
mutase. Therefore, analysis of module-weighted annotations of in-
dividual genes can help form hypotheses about novel gene functions
and transcriptional co-regulation of distinct biological processes.

The second application of module-weighted annotations is similar
to a common analysis scheme whereby over-represented annotations
(e.g., GO terms) are identified within a list of significantly differen-
tially expressed genes. The key difference is that traditional annota-
tions have been extended using information about gene co-expression
(i.e., gene modules). Furthermore, this approach leverages all expres-
sion data, even genes that do not change in a significant way. Instead
of calculating enrichment p-values, Z-scores are calculated based on
the strength of the module-weighted association between each gene
and each annotation and the magnitude of that gene’s fold-change in
the list of gene fold-changes. This analysis scheme is more selective
and sensitive toward identifying functional categories of genes that
change in response to a treatment than traditional over-representation
analyses (see section “Application of DEXICA modules to improve
gene annotations” above). Tool 6 on http://genemodules.org/ accepts a
list of gene fold-changes and returns a table of module-weighted GO
terms ranked by their predicted activity.

DISCUSSION
We have captured much of the transcriptional wiring of C. elegans by
extracting gene co-expression modules from a large compendium of
gene expression data. These 209 modules represent RNA-level sig-
natures of diverse biological processes that can occur in C. elegans
and, along with the tools we provide, can be used as a resource for
analyzing gene expression data, or in fact to interrogate gene lists of
any sort. Because genes are grouped into modules based purely on
how they behave in experimental assays, and because modules
encompass both previously-annotated and unannotated genes alike,

modules can reveal signals within transcriptomic data that otherwise
would be missed due to incomplete knowledge of gene function,
subtle gene expression changes or noisy data.

Experimentally, gene-expression modules can be used to decon-
volve complex phenomena into subsets of co-regulated genes, genes
that likely act together to mediate a specific process. The modules can
be annotated extensively, as we have done, and these annotations can
be applied provisionally to all genes in the module. Regulatory factors
associated with specific annotations (like 59 or 39 oligonucleotide
words) can be implicated as well, and functional links can be revealed
between dissimilar conditions that activate the same modules (e.g. see
File S3).

ICA has been applied to the prediction of gene modules before,
but we could find no examples in the literature of optimizing the
process using biological metrics in the manner that we describe.
Combined with the improved ability to partition independent com-
ponents provided by our artificial neural network approach, we
expect that DEXICA will be useful for constructing gene modules
for other organisms. The DEXICA software and our C. elegans
modules and data are freely available as R packages online (see Data
availability).

While we have taken steps to maximize module prediction
accuracy for the microarray compendium we assembled, many
additional gene modules may exist in C. elegans that were not
perturbed sufficiently in the samples comprising the compendium
to be detected. These gene modules would remain hidden. As new
areas of research are explored and new experiments are published,
however, new gene modules will be discovered. For example, most of
the gene expression data in our compendium was collected using
whole animals. Data collected from isolated cells or tissues could help
produce modules that are active in a relatively small number of cells.
The DEXICA package can be used to create new and improved gene
modules using compendia with expanded information content.

The impetus for constructing gene modules in C. elegans was to
create gene groupings that do not rely on existing annotations,
because annotations of many genes are missing or incomplete. We
then wondered whether numeric scores based on gene co-expression
could actually improve the existing gene annotations, leading us to
develop the concept of module-weighted annotations. By weighting
an association between each gene and each annotation by the degree
to which that annotation appears to predict gene modularity, anno-
tations that are shared by co-expressed genes are “boosted” and those
that are not are diminished. It is important to note, however, that
relevance scores between genes and annotations could be calculated
using other metrics of gene behavior as well. For example, a gene
might be weakly associated with a term in the context of gene
expression but strongly associated with it in the context of physical
protein interactions.

We have found that analysis of module-weighted GO terms is less
sensitive to noise than are typical statistical over-representation tests.
Furthermore, because module-weighted annotations incorporate in-
formation about gene expression, they effectively model the gene-
gene correlation structure of the system. This is useful because typical
over-representation tests do not perform well with gene sets that have
a high level of gene-gene correlation [i.e., annotations assigned to
genes that are strongly co-expressed are more likely to be significant
(Goeman and Buhlmann 2007; Gatti et al. 2010; Tamayo et al. 2016)].
GSEA, for example, deals with gene-gene correlation issue using
permutation. We show that module-weighted GO terms produce
significantly fewer false positives than do over-representation tests
(see Figure 3b). Therefore, we think that module-weighted
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annotations are a promising new way to address the gene-gene corre-
lation problem and are working to develop it further for annotation
enrichment analysis.

Module-weighted annotations may be especially useful for pro-
moter/39-UTR word analysis. Projection of gene expression changes
onto the module-weighted word matrix allows identification of po-
tential regulatory sequences directly from a list of gene fold changes,
bypassing many steps required by traditional regulatory sequence
detection (sequence retrieval, repeat masking, over-representation
analysis, and background correction). More importantly, this analysis
is more likely to yield true positive results because it makes use of a
large amount of historical data (via the modules) to filter out
sequences with no apparent regulatory function.

We used module-weighted word analysis to analyze data from six
transcription factor perturbation microarray experiments. Four of the
six produced high scoring promoter words that closely matched the
known DNA binding sites of the corresponding transcription factors.
For the two that did not, daf-16 and lin-14, words that exactly
matched the factors’ canonical binding sites were not present in
the promoter word dictionary generated by the Mobydick algorithm,
and results for these factors could be poor for this reason. Interest-
ingly, the second highest scoring word for the genes down-regulated
upon daf-16 perturbation was GGAAG, and this word occurs twice
more as a substring among the top 20 scoring words. This sequence is
a partial match to an alternative daf-16 binding site reported in
hookworm (Gao et al. 2010), G(A/G)(C/G)A(A/T)G, suggesting that
this site may be functional in C. elegans as well.

Finally, because annotations shared among a significant fraction
of the genes in a module are “transferred” to all genes in the module,
module-weighted annotations can be used provisionally to infer novel
functions for genes, which is especially useful for studying poorly
annotated genes.
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