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Background. Danshen (Salvia miltiorrhiza Bunge) and its main active component Tanshinone IIA (TSA) are clinically used in
China. However, the effects of TSA on acute pancreatitis (AP) and its potential mechanism have not been investigated. In this
study, our objective was to investigate the protective effects of TSA against AP via three classic mouse models. Methods. Mouse
models of AP were established by caerulein, sodium taurocholate, and L-arginine, separately. Pancreatic and pulmonary
histopathological characteristics and serum amylase and lipase levels were evaluated, and changes in oxidative stress injury and the
ultrastructure of acinar cells were observed. The reactive oxygen species (ROS) inhibitor N-Acetylcysteine (NAC) and nuclear
factor erythroid 2-related factor 2 (Nrf2) knockout mice were applied to clarify the protective mechanism of the drug. Results. In
the caerulein-induced AP model, TSA administration reduced serum amylase and lipase levels and ameliorated the
histopathological manifestations of AP in pancreatic tissue. Additionally, TSA appreciably decreased ROS release, protected the
structures of mitochondria and the endoplasmic reticulum, and increased the protein expression of Nrf2 and heme oxygenase 1 of
pancreatic tissue. In addition, the protective effects of TSA against AP were counteracted by blocking the oxidative stress (NAC
administration and Nrf2 knockout in mice). Furthermore, we found that TSA protects pancreatic tissue from damage and
pancreatitis-associated lung injury in two additional mouse models induced by sodium taurocholate and by L-arginine. Conclusion.
Our data confirmed the protective effects of TSA against AP in mice by inhibiting oxidative stress via the Nrf2/ROS pathway.

1. Introduction

Acute pancreatitis (AP) is a common and aseptic inflamma-
tory disorder of the pancreas. According to global estimates,

the incidence of AP continues to rise, resulting in a substan-
tial medical and social burden [1, 2]. In the majority of
patients, AP is mild and self-limited; however, many patients
suffered from pancreatic necrosis and multiple organ failure
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(mainly acute lung injury), which leads to a high mortality [3,
4]. Unfortunately, despite the great progress in drug research
in recent years, there are almost no new drugs for the treat-
ment of AP.

Traditional Chinese medicine is clinically used in the
treatment of AP for a long history in China, such as
Danshen (Salvia miltiorrhiza Bunge). The potential thera-
peutic effect on AP was shown in a small sample clinical
trial [5]. As one of the main active components of Salvia
miltiorrhiza, Tanshinone IIA (TSA) has been found effective
in many diseases, such as cardiovascular diseases, liver
diseases, and cancer [6–8]. TSA has been broadly studied for
its multiple pharmacological properties including antiangio-
genic, antioxidant, anti-inflammatory, and anticancer activi-
ties [7, 9, 10]. More importantly, its sulfonate sodium
injection has been clinically applied in China for many years,
especially in cardiovascular and cerebrovascular diseases.
However, the effect of TSA against AP and its underlying
mechanisms are unknown.

Excessive oxidative stress is one of the most important
causes of cell injury in acute inflammatory diseases [11].
Studies have indicated that oxidative stress and the related
production of reactive oxygen species (ROS) play a major
role in pancreatic acinar cell injury in AP [12, 13]. Moreover,
many studies suggest that antioxidant treatment can effec-
tively reduce pancreatic tissue damage and inflammatory
response in mice of AP, such as carbon monoxide-bound
hemoglobin vesicle [14], coenzyme Q10 [15], and isoliquiri-
tigenin we reported earlier [16]. However, it is far away from
the clinical application.

In this study, we selected TSA, a traditional Chinese med-
icine monomer that has been used clinically, to investigate
the protective effects on AP through three classic murine
models and to explore the potential underlying mechanisms.

2. Materials and Methods

2.1. Animals. Male ICR mice weighing between 25 and 30 g
were purchased from the Yangzhou University Model Ani-
mal Center (Yangzhou, China). C57BL/6 wild-type (WT)
and nuclear factor erythroid 2-related factor 2 (Nrf2) knock-
out (KO) mice weighing between 20 and 25 g were purchased
from the Model Animal Research Center of Nanjing Univer-
sity (Nanjing, China). Before the experiment, all mice were
housed in specific pathogen-free (SPF) facilities, fed standard
rodent chow and water, and maintained at a controlled tem-
perature (25°C ± 2°C) under a light cycle (12 h light/12 h
dark). This study was performed with the permission of the
Science and Technology Commission of the Clinical Medical
College of Yangzhou University and was carried out in
accordance with the Principles of Laboratory Animal Care
(NIH publication number 85-23, revised 1996).

2.2. Experimental AP Models and Drug Administration. In
order to investigate the protective effects of TSA against
AP, three classic mouse models of AP were established. All
the three models in each independent experiment were
repeated two times.

2.2.1. Mild AP Model Induced by Caerulein. A mild AP
(MAP) model was induced by intraperitoneal (i.p.) injection
of caerulein (200μg/kg, 10 times at one-hour intervals;
Cat. Pep03263, Nanjing Peptide Co. Ltd., Nanjing, China)
[16, 17]. Mice were randomized into five groups: vehicle,
caerulein, caerulein+low-dose TSA (5mg/kg), caerulein+
medium-dose TSA (25mg/kg), and caerulein+high-dose
TSA (50mg/kg). TSA (Cat. HY-N1370-100mg, MCE Co.
Ltd., New Jersey, USA) dissolved in PBS was injected
intraperitoneally 0.5 h before the first caerulein injection.
An equal volume of PBS was injected into the vehicle
and caerulein group mice. All groups of mice were sacri-
ficed 12 h after the first injection of caerulein.

2.2.2. Severe AP Model Induced by Sodium Taurocholate
Hydrate (TLC). In the TLC (Cat. T4009, Sigma-Aldrich, St.
Louis, MO, USA) induced SAP model, retrograde infusion
of TLC (1% TLC (100μl)+methylene blue reagent (20μl))
dissolved in saline was slowly injected into the distal com-
mon bile duct and pancreatic duct using an insulin needle
[18]. All mice were randomized into three groups: sham,
TLC, and TLC+TSA. In the sham group, only abdominal
operation was performed, and TLC was not injected. In the
TLC+TSA group, TSA (25mg/kg) was injected intraperito-
neally into mice 2 h before the operation. An equal volume
of PBS was injected into the sham and TLC groups. All mice
were sacrificed 12 h after TLC administration.

2.2.3. Severe AP Model Induced by L-Arg (L-Arg). In the SAP
model induced by i.p. injection of L-Arg (4 g/kg, 2 times at a
1 h interval; Cat. A5006, Sigma-Aldrich, St. Louis, MO, USA)
[16], mice were also randomized into three groups: vehicle,
L-Arg, and L-Arg+TSA. After the first injection of L-Arg, a
medium dose of TSA (25mg/kg) was injected intraperitone-
ally at 24 h and 48h. All mice were sacrificed 72 h after L-Arg
administration.

2.3. Blocked the Oxidative Stress Pathway. To explore the
involvement of TSA in mediating the Nrf2/ROS antioxidant
pathway in AP in vivo, the ROS inhibitor N-Acetylcysteine
(NAC) was administered to caerulein-induced mice, resulting
in five groups: vehicle, caerulein, caerulein+TSA, caerulein
+NAC, and caerulein+TSA+NAC. NAC (100mg/kg, 2 times
at a 1h interval; Cat. No. A0737, Sigma-Aldrich, St. Louis,
MO, USA) and TSA (25mg/kg) dissolved in PBS were pread-
ministered intraperitoneally 1h and 0.5h, respectively, before
caerulein administration. Then, Nrf2 KO mice were incorpo-
rated into the caerulein-inducedmodel, resulting in six groups:
WT vehicle, WT caerulein, WT caerulein+TSA, KO vehicle,
KO caerulein, and KO caerulein+TSA. TSA (25mg/kg) was
administered via the same method described above. All groups
ofmice were sacrificed 12h after the first injection of caerulein.

2.4. Blood and Tissue Collection. All groups of mice were
sacrificed after anesthetization via i.p. injection of sodium
pentobarbital (50mg/kg). Serum was obtained at different
time points for amylase and lipase measurements according
to the manufacturer’s instructions (Amylase Kits (Cat.
100000060) were bought from Biosino Bio-Technology,
Beijing, China; Lipase Kits (Cat. A054-1-1) were bought from
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Nanjing Jiancheng Corp., Nanjing, China). Pancreatic and
pulmonary tissues were harvested immediately, some tis-
sues were fixed in 4% paraformaldehyde for morphological
study, and the other tissues were stored at −80°C for fur-
ther analysis.

2.5. Histopathological Severity Evaluation. After dehydration,
waxing, and embedding, pancreatic and pulmonary tissues
were stained with hematoxylin and eosin, respectively. Histo-
morphological damage to the pancreas was assessed by the
severity of edema, inflammatory cell infiltration, and acinar
cell necrosis [19]. And histopathological damage to the lung
was assessed by the severity of infiltration of neutrophils,
thickness of alveolar, and alveolar congestion [20]. All the
histopathological scoring evaluation was performed by two
blinded pathologists.

2.6. Oxidative Stress Detection. In order to protect the oxida-
tive stress indexes from oxidation, pancreatic tissues were
homogenized in precooling PBS immediately after mice scar-
ifying without multigelation and then centrifuged to obtain
supernatant. All the procedures were operated on ice. Malon-
dialdehyde (MDA) and glutathione (GSH) levels in the
supernatant were measured according to the manufacturer’s
instructions (Cat. KGT004 and KGT006, Nanjing KeyGen
Biotech Co. Ltd., Nanjing, China). The ROS generation in
pancreatic tissues was detected by fluorescent probe-
Dihydroethidium (DHE), and the detailed procedures were
reported in our previous study [16].

2.7. Transmission Electron Microscopy. Furthermore, the
ultrastructure of acinar cells, especially mitochondria and
the endoplasmic reticulum, was observed by transmission
electron microscopy. Small fresh pancreatic tissues (1mm3)
were instantly placed in an electron microscope fixative at
4°C for 2-4 h and then fixed in 1% citric acid·0.1M phosphate
buffer PB (pH 7.4) at 20°C for 2 h. After dehydration with
alcohol and acetone, penetration with acetone and 812
embedding agents, and embedding and aggregation, the
pancreatic tissues were cut into ultrathin slices (60-80 nm)
by Leica UC7. Double staining of uranium-plumbum and
dried overnight, the slices were observed under transmission
electron microscopy.

2.8. Western Blotting. Referring to our previous methods
[16], primary antibodies against Nrf2 (1 : 1000 dilution; Cat.
ab31163, Abcam, Cambridge, UK), heme oxygenase (HO-1)
(1 : 1000 dilution; Cat. ab68477, Abcam, Cambridge, UK),
Lamin B1 (1 : 1000 dilution; Cat. 66095-I-IG, ProteinTech
Group Inc., Chicago, USA), and β-actin (1 : 1000 dilution;
Cat. sc47778, Santa Cruz, CA,USA) and secondary antibodies
(1 : 5000 dilution; Cat. ab205719 and ab205718, Abcam,
Cambridge, UK) were applied. Band densities were analyzed,
and β-actin and Lamin B1 were used as loading controls.

2.9. Statistical Analysis. Statistical analysis was performed by
a statistician blinded to this study with GraphPad Prism 6
software (GraphPad, San Diego, CA, USA), and data were
presented as the mean ± SEM with vertical bars. The results
were analyzed with one-way analysis of variance, Student-

Newman-Keuls tests, and the Mann–Whitney rank sum test,
and p < 0:05 was considered statistically significant.

3. Results

3.1. TSA Alleviated Pancreatic Histopathological Injury and
Serum Enzymes in Caerulein-Induced AP. As shown in
Figures 1(a) and 1(b), TSA ameliorated the histological
injury, resulting in decreased edema, inflammatory cell infil-
tration, and acinar cell necrosis. In addition, with a signifi-
cantly statistic difference, medium-dose TSA (25mg/kg)
was more effective than either low-dose (5mg/kg) or high-
dose (50mg/kg) TSA. These enzymatic results were consistent
with the pancreatic histopathological severity assessment
(Figure 1(c)). To verify the effect of TSA against AP and
explore the underlying pathway, we selected medium-dose
TSA for further experiments.

3.2. TSA Relieved the Oxidative Stress Injury and
Mitochondrial Damage in Pancreatic Tissue in Caerulein-
Induced AP. In order to clarify the mechanism of TSA, we
examined the changes of oxidative stress pathway and related
products in pancreatic tissue according to previous literature
reports [21, 22]. Consistent with the pancreatic tissue histo-
pathology, the ROS production was reduced after TSA treat-
ment, with the most marked decrease in staining in the
medium-dose TSA (25mg/kg) group (Figures 2(a) and
2(b)). Meanwhile, we found that TSA increased the activa-
tion of Nrf2 and HO-1 with the changes of MDA and GSH
(Figures 2(c)–2(e)). In addition, we observed the organelles
of pancreatic acinar cells via transmission electron micros-
copy. Ultrastructural changes were observed in organelles
such as mitochondria and the endoplasmic reticulum. Pan-
creatic acinar cells in the vehicle group exhibited normal
acinar nucleoli, mitochondria, and rough endoplasmic retic-
ulum. In the caerulein-induced AP group, marked mitochon-
drial rupture with loss of cristae and cystic expansion of
the endoplasmic reticulum was observed. However, after
medium-dose TSA treatment, the mitochondria and endo-
plasmic reticulum seemed to return to their normal form
without swelling (Figure 2(f)). Taken together, these results
indicated that TSA has a definite antioxidant effect on AP.

3.3. ROS Removal by NAC Abolished the Protective Effect of
TSA against AP Induced by Caerulein. In order to further
clarify the mechanism of drug action, the ROS production
inhibitor NAC was applied. As shown in Figure 3, the pan-
creatic histopathological lesions, serum levels of enzymes
(amylase and lipase), and level of MDA were significantly
decreased after NAC treatment (Figures 3(a)–3(c) and 3(f)).
In addition, the expressions of Nrf2 and HO-1 and the level
of GSH were markedly higher after NAC administration
(Figures 3(d)–3(f)). Obviously, on the basis of removing
ROS byNAC, continued use of TSA did not show a protective
effect on AP, nor did Nrf2/HO-1 protein expression level rise
further. These results suggested that ROS regeneration plays a
key role in the protection of TSA on AP.

3.4. The Protective Effect of TSA Was Counteracted in Nrf2
KO Mice in Caerulein-Induced AP. Nrf2-deficient mice were
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Figure 1: TSA alleviated pancreatic histopathological injury and serum enzymes in caerulein-induced AP. (a) Representative HE staining of
pancreatic tissues in magnifications 100x and 400x. (b) Histopathological scores of pancreatic tissues. (c) Serum amylase and lipase levels.
∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 versus the V/Cae group. n = 8 each group. V represents vehicle; S represents saline; L, M, and H
represent low-dose (5mg/kg), medium-dose (25mg/kg), and high-dose (50mg/kg) TSA.
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Figure 2: TSA relieved the oxidative stress injury andmitochondrial damage in pancreatic tissue in caerulein-induced AP. (a) Representative DHE
immunofluorescence image of pancreatic tissues in magnification 100μm. (b) DHE fluorescence. Percentage of V/S mean. (c) Levels of oxidative
stress products (MDA and GSH) of pancreatic tissues. (d, e) Protein levels of Nrf2 and total HO-1 in pancreatic tissues were analyzed by western
blotting. (f) The organelles of pancreatic acinar cells via transmission electron microscopy. Red and yellow arrowheads indicate mitochondria and
endoplasmic reticulum, respectively. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 versus the V/Cae group. n = 8 each group. V represents vehicle; S
represents saline; L, M, and H represent low-dose (5mg/kg), medium-dose (25mg/kg), and high-dose (50mg/kg) TSA.
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Figure 3: ROS removal by NAC abolished the protective effect of TSA against AP induced by caerulein. (a) Representative HE staining of
pancreatic tissues in magnifications 100x and 400x. (b) Histopathological scores of pancreatic tissues. (c) Serum amylase and lipase levels.
(d, e) Protein levels of Nrf2 and total HO-1 in pancreatic tissues were analyzed by western blotting. (f) Levels of oxidative stress products
(MDA and GSH) of pancreatic tissues. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 versus the V/Cae group. n = 8 each group. V represents
vehicle; S represents saline; M represents medium-dose TSA (25mg/kg); N represents ROS inhibitor NAC.
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used to further define the protective mechanism of TSA.
As expected, pathological injury was more severe in Nrf2
KO mice than that in WT mice. After Nrf2 deficiency,
the protective effects of TSA on pathological injury, enzy-
matic changes, and the levels of the oxidative stress products
MDA and GSH were counteracted (Figures 4(a)–4(d)). Thus,
with the above results of NAC treatment, TSA was confirmed
to alleviate the severity of AP by activating the Nrf2/ROS
pathway.

3.5. TSA Protected against SAP Induced by TLC and L-Arg.
AP is an inflammatory reactive disease induced by many
causes. In view of this, researchers often use a variety of dif-
ferent AP animal models to simulate the clinical reality of
AP patients. Here, we choose two different AP models to ver-
ify the effectiveness of TSA, which will increase the feasibility
of clinical application. Two mouse models of SAP were
induced by TLC and L-Arg, separately. As expected, the
severity of pancreatic tissue injury, including acinar cell
necrosis, edema, and inflammatory cell infiltration, was obvi-
ously alleviated after TSA treatment in both TLC-induced
and L-Arg-induced SAP models (Figures 5(a) and 5(b) and
Figures 6(a) and 6(b)).

Meanwhile, the decrease of serum enzymology was
observed (Figures 5(c) and 6(c)). Multiple organ failure rep-
resented by acute lung injury is one of the main causes of
death in patients with AP. Therefore, lung histopathology
was chosen to observe the severity of AP. It was found that
SAP-associated acute lung injury was markedly reduced after
TSA administration, characterized by less neutrophil infiltra-
tion, lower thickness of alveolar, and alleviated alveolar con-
gestion (Figures 5(d), 5(e), 6(d), and 6(e)). Collectively, the
above results indicated that TSA can protect mice against
SAP in models induced by TLC and L-arginine.

4. Discussion

AP is a common acute abdominal disease of the digestive
system with a high mortality rate for severe AP and lacks
effective clinical treatment. So, it is urgent to develop effective
drugs for the treatment of AP. It is a common method to find
effective drugs from natural resources such as plants, ani-
mals, and microorganisms. Our previous study has reported
that isoliquiritigenin can effectively reduce pancreatic tissue
damage and inflammatory response in mice of AP [16].
However, it is not clinically used and far away from applica-
tion. Hence, we focused on the Chinese herbs routinely used
in clinical practice.

Danshen (Salvia miltiorrhiza Bunge), also known as red
root, is one of the most commonly used Chinese herbals. It
was first recorded in Shen Nong’s herbal classic and has been
used for thousands of years in China. In clinical practice,
Salvia miltiorrhiza is a kind of traditional Chinese medicine
which is often used to treat AP patients, and compound
Salvia miltiorrhiza injection can decrease the expression of
proinflammatory factors [23], improve the hemorheology
abnormality, and reduce the acute respiratory distress syn-
drome and serious complications [5]. The protective effects
of Salvia miltiorrhiza on pancreatic tissue damage and

pancreatitis-related organ injuries were also observed in
animal experiments [24]. However, the specific activity com-
ponent of Salvia miltiorrhiza protecting against AP is still
unknown. TSA is a liposoluble compound extracted from
the root of Salvia miltiorrhiza and has many multiple biolog-
ical activities. Its sulfonate sodium injection has been widely
applied in clinical settings, mainly for treating cardiovascular
and cerebrovascular diseases—for example, for improving
vascular stiffness and blood pressure [25] and treating acute
cerebral infarction and acute ischemic stroke [26, 27]. At
present, there are few studies on the effect of TSA against
AP. Our previous study showed that TSA could reduce the
aortic endothelial damage in SAP rats [28]. Liu and Shen
[29] found that TSA had a significant effect on SAP-related
lung injury, which may be related to the change of cytokine
level and the reduction of inflammatory cell infiltration in
the lung. However, the effect of TSA on pancreatic necrosis
and related underlining mechanism is still not clear.

In this study, our results demonstrated that TSA exerts
protective effects in three classic AP models induced by caer-
ulein, TLC, and L-Arg. We confirmed that prophylactic
injection of TSA can ameliorate pancreatic pathological
injury, serum enzymatic responses, and related acute lung
injury. These results clearly showed the therapeutic effects
of TSA against AP.

Although the pathogenesis of AP is fully unclear,
Nrf2/HO-1-mediated oxidative stress and ROS generation
are considered an underlying mechanism of AP [30–33].
Our previous study indicated that oxidative stress and
Nrf2/HO-1 pathway were dynamically changed in pancreatic
tissue of AP mice and were the most significant at the peak of
inflammatory response [16]. Many clinical studies and ani-
mal experiments also showed the role of oxidative stress
and ROS generation in the pathophysiological response of
AP, activation of Nrf2/HO-1 pathway, and reduction of
ROS generation, which showed the protective effect against
AP [33–36]. Additionally, after reanalyzing the sequencing
results of relevant research [37], we found that HO-1
increased significantly in the AP mouse model induced by
caerulein (3.38-fold change vs. normal, p = 0:0001), while
other related genes including Keap1, NQO1, and GCLM
had no significant changes. Accordingly, the HO-1 gene
was addressed as the Nrf2 target gene. In this study, the
results showed that the Nrf2/HO-1 pathway was activated
with the changes of ROS production and oxidative stress
products in pancreatic tissue of AP, consistent with the
results of our previous study [16]. TSA administration upreg-
ulated the expression of the Nrf2/HO-1 pathway, reduced the
production of ROS, and protected the mitochondrial dam-
age. All these results showed that TSA had a definite effect
on reducing oxidative stress.

Our previous results showed that ML385, an Nrf2 inhib-
itor, can inhibit the activity of Nrf2. Nevertheless, what is
puzzling is that ML385 protects the severity of pancreatitis
in mice [16]. We surmised that ML385 may protect against
AP through other nonproven pathways, which suggests that
ML385 may not be a good choice for studying Nrf2 in
the study of AP. Hence, in this present study, we used
Nrf2-deficient mice and the ROS scavenger NAC, which
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Figure 4: The protective effect of TSA was counteracted in Nrf2 KO mice in caerulein-induced AP. (a) Representative HE staining of
pancreatic tissues in magnifications 100x and 400x. (b) Histopathological scores of pancreatic tissues. (c) Serum amylase and lipase levels.
(d) Levels of oxidative stress products (MDA and GSH) of pancreatic tissues. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 versus the V/Cae
group. n = 8 each group. V represents vehicle; S represents saline; M represents medium-dose TSA (25mg/kg).
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Figure 5: TSA protected against SAP induced by TLC. (a) Representative HE staining of pancreatic tissues in magnifications 100x and 400x.
(b) Histopathological scores of pancreatic tissues. (c) Serum amylase and lipase levels. (d) Representative HE staining of pulmonary tissues in
magnifications 100x and 400x. (e) Histopathological scores of pulmonary tissues. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 versus the V/TLC
group. n = 8 each group. V represents vehicle; M represents medium-dose TSA (25mg/kg).
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Figure 6: TSA protected against SAP induced by L-Arg. (a) Representative HE staining of pancreatic tissues in magnifications 100x and 400x.
(b) Histopathological scores of pancreatic tissues. (c) Serum amylase and lipase levels. (d) Representative HE staining of pulmonary tissues in
magnifications 100x and 400x. (e) Histopathological scores of pulmonary tissues. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 versus the V/L-Arg
group. n = 12 each group. V represents vehicle; S represents saline; M represents medium-dose TSA (25mg/kg).
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is more reliable than ML385 and better for the verification of
the mechanism of drug action. The results showed that
removal of ROS generation or Nrf2 defects could counteract
the protective effect of TSA. Accordantly, the mechanism of
TSA was preliminarily defined.

In conclusion, our findings first demonstrated that TSA
effectively protects against AP by inhibiting oxidative stress
via the Nrf2/ROS pathway (Figure 7). These results suggest
that TSA is a promising therapeutic drug for AP in future
clinical practice especially in the situation of TSA sulfonate
sodium injection which has been applied clinically.
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