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The impacts of faecal subsampling 
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Abstract 

Objective:  Despite the move to at-home, small-volume collection kits to facilitate large population-based studies of 
faecal microbial compositional profiling, there remains limited reporting on potential impacts of faecal subsampling 
approaches on compositional profiles. This study aimed to compare the microbial composition from faecal subsam‑
ples (< 5 g) collected from the beginning and end of a single bowel movement in ten otherwise healthy adults (6 
female, 4 male; age: 24–55 years). Microbial composition was determined by V3–V4 16s rRNA sequencing and com‑
pared between subsamples.

Results:  There were no significant differences in OTU count (p = 0.32) or Shannon diversity index (p = 0.29) between 
the subsamples. Comparison of relative abundance for identified taxa revealed very few differences between sub‑
samples. At the lower levels of taxonomic classification differences in abundance of the Bacillales (p = 0.02) and the 
Eubacteriaceae family (p = 0.03), and the Eubacterium genera (p = 0.03) were noted. The observation of consistent 
microbial compositional profiles between faecal subsamples from the beginning and end of a single bowel move‑
ment is an important outcome for study designs employing this approach to faecal sample collection. These findings 
provide assurance that use of a faecal subsample for microbial composition profiling is generally representative of the 
gut luminal contents more broadly.
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Introduction
With exponential growth in the numbers of stud-
ies exploring the contribution of the gut microbiota to 
health and disease over the past decade, aligning sample 
collection approaches and analytical methods is crucial if 
the growing collection of outcomes are to be compared. 
Indeed, large numbers of studies have now assessed the 
impacts that differences in sample collection techniques 
(e.g. sample cups, swab-based collection kits), storage 
conditions (e.g. room temperature, immediate freezing, 
with/without stabilizing buffer), processing methods (e.g. 

with/without chemical and mechanical lysis), selection 
of 16s rRNA hypervariable regions for library prepara-
tion and sequencing, and data analysis pipelines (e.g. use 
of different reference databases) can have on microbial 
composition (see reviews, [1, 2]). The impact of these 
methodological factors on diversity metrics [3], detection 
of gram-positive bacteria [4], detection of anaerobic bac-
teria [5], and estimation of low-abundance/rare taxa [6] 
have all been acknowledged.

To support the recruitment of large, often geographi-
cally distant cohorts, earlier sample collection methods 
suggesting homogenization of the entire bowel move-
ment and subsampling of the homogenate for subsequent 
compositional profiling [7] have fallen out of favor in 
preference for in-home collection kits. These methods 
require volunteers to sample a small amount of faecal 
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material, but standardization of subsampling in the con-
text of the complete bowel movement is rarely stipulated 
in available protocols. Given consideration of the impli-
cations of other aspects of sample collection/storage/
handling on overall microbial composition, it is surpris-
ing that the potential impacts of faecal subsampling have 
been less readily documented. Of the few studies we are 
aware of, findings are inconsistent; Gorzelak et  al. [8] 
have previously reported differences in the abundance of 
a number of key taxa in subsamples taken from outer and 
inner stool microenvironments, whereas Santiago et  al. 
[9] reported largely similar composition from outer and 
inner stool microenvironments. Conscious of the appar-
ent lack of empirical data supporting consistent microbial 
composition, or otherwise, from faecal subsamples and 
the considerable practical implications of such observa-
tions, the aim of this study was to compare the microbial 
composition from faecal subsamples collected from the 
beginning and end of a single bowel movement.

Main text
Methods
This study involved the analysis of faecal material col-
lected as part of the AussieGut™ program for the 
determination of faecal microbial composition. Indi-
viduals (n = 10; 6 female, 4 male; age: 24–55 years) were 
instructed to collect a small (< 5  g) faecal subsample 
from the beginning and end of a single bowel move-
ment using provided faecal collection kits. Collection kits 
included a 70 mL faecal collection cup with scooped lid 
(Sarstedt, SA, Australia) and flushable collection paper 
(Eiken Chemical, Tokyo, Japan). Samples were to be free 
of water and urine. Faecal samples were returned to the 
laboratory within 24 h of collection and stored at − 80 °C 
until analysis. Individuals provided written informed 
consent prior to participation and ethical approval was 

provided by the Griffith University Human Research Eth-
ics Committee (ref#: MED/19/15/HREC).

Thawed faecal samples were initially homogenized in 
phosphate buffered saline, followed by repeated cycles 
of chemical and mechanical (bead beating) lysis and sub-
sequent DNA extraction using a commercially available 
kit (Qiagen, Hilden, Germany) as has been previously 
reported [10]. The V3-V4 region of the microbial 16s 
rRNA marker gene was amplified using universal prim-
ers (F: 5′-CCT​ACG​GGNGGC​WGC​AG-3′; R: 5′-GAC​
TAC​HVGGG​TAT​CTA​ATC​C-3′) [11], and polymerase 
chain reaction products sequenced on an Illumina MiSeq 
system (Illumina, California, USA) by a commercial 
provider (Macrogen, Seoul, South Korea). Clustering of 
sequence reads into operational taxonomic units (OTU) 
at 97% identity level was achieved using the Quantitative 
Insights in Microbial Ecology (QIIME) Suite [12]. The 
ChimeraSlayer program was used to remove chimaeras 
from aligned OTU and the FastTreeMP tool generated 
a phylogenetic tree. Taxonomic identity assignment was 
performed using a reference-based approach with the 
NCBI database of 16S rRNA gene sequences.

Identified microbial taxa were considered as prevalent 
(present in greater than 75% of the samples) or not-prev-
alent (present in less than 25% of the samples). A princi-
ple components analysis (PCoA) was used to explore the 
difference in the global microbial composition between 
the subsamples. The relative abundance of prevalent taxa 
were compared between subsamples using a paired-sam-
ple t-test or a Wilcoxon matched-pair signed rank test. 
Statistical significance was accepted at p < 0.05.

Results
An average of 27,976 ± 4955 reads per sample were used 
for taxa assignment. The total OTU count between sub-
samples did not differ (p = 0.32), with approximately 240 
OTU identified (Table 1). Similarly, the Shannon diversity 

Table 1  Diversity metrics and relative abundance data for prevalent bacterial phyla between faecal subsamples. Data are presented as 
mean ± SD (median; range)

a p value from Wilcoxon sign-ranked test

Sub-sample 1 Sub-sample 2 p-value

Diversity metrics

 OTU count 243 ± 75 (243; 140–362) 237 ± 71 (235; 135–360) 0.32

 Shannon Index 4.69 ± 0.69 (4.83; 3.71–5.50) 4.77 ± 0.69 (4.88; 3.70–5.75) 0.29

Phyla (relative abundance)

 Actinobacteria 0.41 ± 0.25 (0.41; 0.02–0.81) 0.42 ± 0.32 (0.29; 0.01–0.98) 0.80

 Bacteroidetes 30.9 ± 12.1 (29.8; 15.4–49.0) 29.7 ± 11.2 (28.3; 16.8–47.1) 0.51

 Firmicutes 63.2 ± 11.3 (58.8; 50.0–81.3) 65.7 ± 10.5 (65.7; 52.0–81.2) 0.35

 Proteobacteria 1.78 ± 1.85 (1.03; 0.19–6.20) 1.22 ± 0.80 (0.99; 0.24–2.62) 0.92a

 Verrucomicrobia 3.57 ± 5.83 (1.37; 0–18.0) 2.78 ± 4.14 (1.06; 0.0–12.6) 0.59a



Page 3 of 5Cox et al. BMC Research Notes           (2022) 15:49 	

index was consistent between subsamples (p = 0.29). At 
the phyla level, five phyla were prevalent; the relative 
abundance of these key phyla were consistent between 
the subsamples (Table 1). The Cyanobacteria (detected in 
a single sample only) and Tenericutes phyla (detected in 
both samples from two individuals) were considered not 
prevalent in the sample set and persisted at low relative 
abundance (< 0.05%).

At the Family level, 44 unique bacterial families were 
identified; seven of these families were not prevalent 
within the sample set (Additional file  1: Table  S1). A 

PCoA using the prevalent families indicated that the 
microbial composition was generally similar between 
the subsamples (Fig.  1A). Further consideration of the 
prevalent families indicated that 35 of the 37 families 
had a consistent relative abundance between the sub-
samples; the relative abundance of the unclassified Bacil-
lales (p = 0.02) and the Eubacteriaceae family (p = 0.03) 
differed between the subsamples. For the unclassified 
Bacillales, this was accounted for by the detection of 
the taxa in five of the participants’ subsample 1, but in 
none of the participants’ subsample 2 (Fig.  2A). For the 

Fig. 1  Principle component analysis for (A) prevalent families (B) prevalent genera

Fig. 2  Relative abundance of (A) unclassified Bacillales (B) Eubacteriaceae family (C) Eubacterium genera between subsample 1 and subsample 2
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Eubacteriaceae family, the difference between the two 
subsamples was driven by a greater (10%—twofold) 
relative abundance in subsample 2 for five participants 
(Fig. 2B).

At the Genus level, 109 unique bacterial genera were 
identified; 31 of these genera were not prevalent within 
the sample set (Additional file 2: Table S2). A PCoA using 
the prevalent genera indicated that the microbial com-
position was generally similar between the subsamples 
(Fig.  1B). Further consideration of the prevalent genera 
indicated that 77 of the 78 prevalent genera had a con-
sistent relative abundance between the subsamples; the 
relative abundance of the Eubacterium genera (p = 0.03) 
differed between the subsamples. This difference was 
driven by a greater (10%—twofold) relative abundance in 
subsample 2 for five participants (Fig. 2C).

Discussion
Efforts to better understand the implications of various 
methodological choices on the study of microbial com-
position are well documented [1, 2]. However, the poten-
tial for variability in faecal subsamples from a single 
bowel movement appears less well characterized. With 
the move to greater use of at-home, low-volume faecal 
collection kits to facilitate large population-based stud-
ies, empirical data to support consistent microbial com-
position between faecal subsamples from a single bowel 
movement is crucial. This study was able to demonstrate 
that global diversity metrics and composition to the 
genus level were broadly consistent between faecal sub-
samples collected from the beginning and end of a single 
bowel movement in otherwise healthy adults.

Quantification of the inherent variability in microbial 
composition, both within a single bowel movement and 
within consecutive bowel movements (in the absence of 
other intervention or dietary modification), appears rela-
tively limited. In contrast, attempts to document spatial 
heterogeneity in microbial composition along the gastro-
intestinal tract are more common [13] and suggest differ-
ences in composition may persist even between relatively 
close anatomical sampling sites such as the sigmoid colon 
and rectum [14]. Our study has been able to help clarify if 
such differences carry over to luminal contents and cre-
ate distinct niches within a single bowel movement. Our 
findings of broadly consistent microbial diversity and 
composition between faecal subsamples are also in agree-
ment with the prior report from Santiago et al. [9] who 
found microbial composition was largely similar between 
outer and inner stool microenvironments. We do make 
note of the tendency for increased relative abundance of 
the anaerobic Eubacterium genera, in the subsample col-
lected from the end of the bowel movement among half 
of the participants, however it is unclear why this trend 

was evident for this one genera only and other members 
of the Clostridia class were not similarly impacted.

Limitations
We acknowledge that the study is not without its limi-
tations, employing a modest sample size and collection 
of subsamples from the beginning and end of the bowel 
movement only. Aware of the limitation of 16s method-
ologies for species level identification [15], we chose to 
report to the genus level only and so it is unclear if the 
largely consistent compositional profiles between sub-
samples extend beyond the genus level and include rare 
taxa. In addition, our study recruited otherwise healthy 
adults only and it is not clear if findings of consistent 
compositional features between subsamples would also 
be observed in particular disease states where skewed 
microbial composition may be anticipated. However, the 
outcomes do provide assurance that use of methodolo-
gies which employ collection of a faecal subsample can 
provide representation of the microbial composition 
from the gut luminal contents more broadly.
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