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Abstract

Background: Developing effective strategies for signaling the pre-disease state of complex diseases, a state with
high susceptibility before the disease onset or deterioration, is urgently needed because such state usually followed
by a catastrophic transition into a worse stage of disease. However, it is a challenging task to identify such pre-
disease state or tipping point in clinics, where only one single sample is available and thus results in the failure of
most statistic approaches.

Methods: In this study, we presented a single-sample-based computational method to detect the early-warning
signal of critical transition during the progression of complex diseases. Specifically, given a set of reference samples
which were regarded as background, a novel index called single-sample Kullback–Leibler divergence (sKLD), was
proposed to explore and quantify the disturbance on the background caused by a case sample. The pre-disease
state is then signaled by the significant change of sKLD.

Results: The novel algorithm was developed and applied to both numerical simulation and real datasets, including
lung squamous cell carcinoma, lung adenocarcinoma, stomach adenocarcinoma, thyroid carcinoma, colon
adenocarcinoma, and acute lung injury. The successful identification of pre-disease states and the corresponding
dynamical network biomarkers for all six datasets validated the effectiveness and accuracy of our method.

Conclusions: The proposed method effectively explores and quantifies the disturbance on the background caused
by a case sample, and thus characterizes the criticality of a biological system. Our method not only identifies the
critical state or tipping point at a single sample level, but also provides the sKLD-signaling markers for further
practical application. It is therefore of great potential in personalized pre-disease diagnosis.

Keywords: Tipping point, Dynamic network biomarker (DNB), Pre-disease state, Critical transition, Single-sample
Kullback–Leibler divergence (sKLD)

Background
Critical transitions are sudden and large-scale state tran-
sitions that occur in many complex systems, such as
ecological systems [1, 2], climate systems [3, 4], financial
markets [5, 6], microorganism populations [7], psychi-
atric conditions [8],infectious disease spreading [9] and
the human body [10]. Recently, considerable evidence
suggests that during the progression of many complex
diseases, e.g. cancer [11], asthma attacks [12], epileptic
seizures [13] the deterioration is not always smooth but

abrupt, inferring the existence of a so-called tipping
point, at which a drastic or qualitative transition may
occur. Accordingly, the progression of a complex disease
can be roughly divided into three stages regardless of
specific biological and pathological differences during
the progression of diseases, that is, (1) a normal state, a
steady state representing the relatively healthy stage and
with high resilience; (2) a pre-disease state, which is the
limit of the normal state immediately before the onset of
deterioration, and with low resilience and high suscepti-
bility; and (3) a disease state, the other steady state with
high resilience after the qualitative deterioration (Fig. 1a).
It is important to predict the tipping point, so as to

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: scliurui@scut.edu.cn; chenpei@scut.edu.cn
School of Mathematics, South China University of Technology, Guangzhou
510640, China

Zhong et al. BMC Genomics           (2020) 21:87 
https://doi.org/10.1186/s12864-020-6490-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-6490-7&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:scliurui@scut.edu.cn
mailto:chenpei@scut.edu.cn


Fig. 1 The outline for detecting the early-warning signal of a pre-disease state based on sKLD. a The progression of complex diseases is modeled
as three states, including two stable states, i.e., a normal and a disease state with high stability and resilience, and an unstable pre-disease state
with low stability and resilience [5, 9]. As the limit of the normal state, the pre-disease state is a critical state just before the onset of deterioration.
b Given a number of reference samples that are generally from normal cohort and represent the healthy or relatively healthy individuals, the
sKLD score is capable to quantitatively evaluate the difference between two distributions of each gene, i.e., the background distribution that
generated from a set of reference samples, and a perturbed distribution yielded from the single case sample. The detailed procedure and
description of deriving the two distributions are presented in Methods section. c During the progression of a complex disease, the pre-disease
state is indicated by the significant change of sKLD, i.e., the sKLD changes gradually when the system is in the normal state, while it increases
abruptly when the system approaches the tipping point
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prevent or at least get ready for the upcoming deterior-
ation by taking appropriate intervention actions. Re-
cently, we proposed a theoretic framework, called the
dynamical network biomarker (DNB) concept [10, 14]
for identifying the pre-disease state of complex diseases.
This DNB concept, directly from the critical slowing-
down theory [15, 16], provides statistical method to se-
lect relevant variables for the pre-disease state, that is, a
small group of closely related variables (DNBs) convey
early warning signals for the impending critical transi-
tion by some drastic statistical indices [17, 18]. The
DNB theory and its extensions have been applied to sev-
eral cases, detected the tipping points of endocrine re-
sistance [19] as well as cellular differentiation [20],
investigated the immune checkpoint blockade [21], and
helped to find the corresponding pre-disease states of
several diseases [18, 22–26]. However, DNB method re-
quires multiple samples at each time point, which are
generally not available in clinics and other practical
cases, thus significantly restricting the application of
DNB method in most real cases. Therefore, when there
is only a single case sample available, it requires new
computational method to explore the critical informa-
tion, detect the early-warning signal and identify the
pre-disease state.
The rapid development of high-throughput technology

provides new insights for computational analysis, even
when there is only one single sample available. Actually,
based on a sample of high-throughput data, it is possible
to measure the expressions of thousands of genes simul-
taneously. Such high-dimensional observation at the
genome-wide scale not only provides the global view of
a biological system, but also presents the accumulated
effects of its long-term dynamics. Motivated by this
point, in this study we develop a data-driven computa-
tional method and achieve the single-sample detection
of the pre-disease state, by exploring the rich dynamical
information from the high-throughput omics data. Spe-
cifically, it is found that the qualitative state change
often causes the significant changes in the distributions
of some genes’ expression. Therefore, a novel index, the
single-sample Kullback–Leibler divergence (sKLD), is
proposed to quantify the disturbance brought by the sin-
gle case sample on the background distribution, where
the background or reference samples refer to samples
collected from a few healthy/relatively healthy individ-
uals. Correspondingly, an applicable algorithm is devel-
oped based on sKLD (Fig. 1b), including a procedure of
simulating the background distribution for each gene,
evaluating the perturbation to the background distribu-
tion triggered by a single case sample, detecting the
early-warning signal and identifying the pre-disease
state. During this procedure, a group of biomolecules
whose expressions are highly fluctuating before the

critical transition are also picked out as the sKLD-
signaling marker for further practical application. This
new approach has been applied to a numerical simula-
tion, and six real datasets including lung squamous cell
carcinoma (LUSC), lung adenocarcinoma (LUAD), stom-
ach adenocarcinoma (STAD), thyroid carcinoma
(THCA), colon adenocarcinoma (COAD) from the can-
cer genome atlas (TCGA) database and acute lung injury
(GSE2565) from the NCBI GEO database. The identified
pre-disease states all agree with the experimental obser-
vation or survival analysis. And the corresponding sig-
naling markers have been validated by functional
enrichment.

Results
We present the definition and algorithm of sKLD score
in Methods section. Here, we used a single-sample with
high-throughput omics data, to identify the pre-disease
state or early warning signals of the disease deterioration
based on the sKLD score. Achieving reliable identifica-
tion with only one sample is of great importance in
clinic application since it is usually difficult to obtain
multiple samples from an individual who does not yet
exhibit any disease symptoms during a short period. To
illustrate how sKLD works, we applied our method first
to a simulated dataset, and then to six real datasets, in-
cluding LUSC, LUAD, STAD, THCA and COAD from
TCGA database (http://cancergenome.nih.gov) and acute
lung injury (GSE2565) from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/). The successful identifica-
tion of the pre-disease states in these diseases validated
the effectiveness of sKLD method in quantifying the tip-
ping point just before the critical transitions into severe
disease states.

Validation based on numerical simulation
A model of an eight-node artificial network (Fig. 2a) was
used to validate the proposed computational method.
This network is the regulatory representation for a set of
eight biomolecules, governed by eight stochastic differ-
ential equations Eq. (S1) shown in Additional file 1: A.
Such a model is represented in Michaelis-Menten form.
This type of regulatory network is usually applied to
study genetic regulations including transcription and
translation processes [27–29], and multi-stability and
nonlinear biological processes [30, 31]. In addition, the
bifurcation in Michaelis-Menten form is often employed
to model the state transition of gene regulatory networks
[32, 33]. In Eq. (S1), a parameter s was varying from −
0.5 to 0.2. Based on this model, a numerical simulation
dataset was generated.
It is seen in Fig. 2b that the single-sample Kullback–Lei-

bler divergence (sKLD) abrupt increases when the system
approaches a special parametric value s = 0, which was set
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as a Hopf bifurcation value (see Additional file 1: A for de-
tails). In other word, the high level of sKLD in the vicinity
of the critical parameter value s = 0 represents that the ref-
erence distribution P is significantly different from the

perturbed distribution Q, which was generated from a sin-
gle pre-disease sample. Besides, to demonstrate the ro-
bustness of the proposed method, a hundred sKLD scores
were calculated for each parameter s, respectively based

Fig. 2 The performance of sKLD based on a dataset of numerical simulation. a A network with eight nodes governed by a model is represented
in Michaelis-Menten form, based on which the numerical simulation is conducted. b The curve of sKLD score defined in Eq. (2). It is obvious that
the sKLD would abruptly increase when the system is near the critical point, i.e., s = 0, which is in accordance with the bifurcation parameter
value at s = 0 (see Eq. (S3) in Additional file 1: A). c It is seen that the perturbed frequency Q presents two peaks when the system approaches
the tipping point, i.e., s = 0, comparing with that in a normal state (s = − 0.2) or a disease state (s = 0.1) and there is no significant difference in
three stages of disease progression for the reference P
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on a hundred single samples perturbed by additive white
noise. It is seen that the median values of the box plots in
Fig. 2b also stably provides signals for the tipping point,
which indicates the sKLD score is featured with robust-
ness against sample noises. To better illustrate the differ-
ent distribution between normal and pre-disease states,
the dynamical progression of frequencies P and Q were
demonstrated in Fig. 2c with a series of parametric values,
i.e., s ∈ {−0.3, −0.2, −0.001, 0.1}. Each frequency in Fig. 2c is
a statistical plot based on ten thousand simulations. From
these frequency plots, it suggests that the perturbed fre-
quency Q in a pre-disease state (s = 0) presents two peaks,
that is, when the network system is in a pre-disease state,
the expressions of some nodes wildly fluctuate in a
strongly collective manner, resulting a distinct distribu-
tion. This critical phenomenon is accurately detected by
sKLD, which quantitatively provides a score for identifying
the upcoming bifurcation point. Therefore, the numerical
simulation validated the effectiveness of sKLD in detecting
the early warning signal of a qualitative state transition.
The detailed dynamical system is proposed in Additional
file 1: A. The source code of numerical simulation is
accessed in https://github.com/zhongjiayuna/KL_Project.

Identifying the critical transition for acute lung injury
The sKLD has been applied to the microarray data of
dataset GSE2565, which is obtained from a mouse ex-
periment of phosgene-induced acute lung injury [34]. In
the original experiment, the gene expression data of case
samples were derived from the lung tissues of CD-1
male mice exposed to phosgene up to 72 h, while the
data of control samples were from that exposed to air.
During the experiment for both case and control groups,
there are totally nine sampling points, i.e., 0, 0.5, 1, 4, 8,
12, 24, 48, and 72 h, while at each sampling time point,
lung tissues were obtained from six mice [34]. Applying
the proposed sKLD-based method to the dataset, we re-
gard the six samples at the first time point (0 h) as the
reference/normal samples for both case and control
groups. The mean sKLD score shown as the red curve in
Fig. 3a, abruptly increases and reaches a peak at 8 h, sug-
gesting that there is a critical transition around 8 h. To
demonstrate the significance of the result, six datasets
were generated from a leave-one-out scheme. Applying
the sKLD algorithm to these datasets respectively, six
mean sKLD scores were derived and plotted as the yel-
low curves in Fig. 3a. It is seen that these sKLD curves
based on the re-sampled datasets all indicates the tip-
ping point at 8 h. In Fig. 3b, it exhibits the dynamical
change of distributions for both case and control sam-
ples. Obviously for control samples, there is little dy-
namical difference in the perturbed distributions, while
for case samples, the perturbed distribution at the 4th
sampling time point (8 h) is notably distinct from that at

other sampling time points (Fig. 3b), leading to the sig-
nificant change of sKLD score of case samples at 8 h.
The abrupt change of such quantitative index demon-
strates its effectiveness in detecting early signals of crit-
ical transition for complex diseases at a network level,
which may also reveal the mechanisms on disease pro-
gression [35–37]. In Fig. 3c, we demonstrate the dynam-
ical evolution of a network composed by the top 5%
most significant genes in terms of the cumulative area of
the case sample. Clearly, an obvious change in the net-
work structure occurs around 8 h, signaling the upcom-
ing critical transition at the network level. These results
agree with the observation in original experiment, that
is, after 8-h exposure to phosgene, the mice in case
group were observed a series of symptoms including en-
hanced bronchoalveolar lavage fluid (BALF) protein
levels, increased pulmonary edema, and ultimately de-
creased survival rates [34]. The severe phosgene-induced
acute lung injury is around 8 h and lasts until 12 h after
exposure. About 50–60% deaths were observed after 12-
hous exposure, and 60–70% mortality was observed after
24-h exposure [34]. Comparing with the former DNB
method [10], the common signaling genes for acute lung
injury is provided in Additional file 3.

Identifying the critical transition for tumor diseases
To demonstrate the effectiveness, the proposed sKLD
method is applied to five tumor datasets, lung squamous
cell carcinoma (LUSC), lung adenocarcinoma (LUAD),
stomach adenocarcinoma (STAD), thyroid carcinoma
(THCA), colon adenocarcinoma (COAD) from the cancer
genome atlas (TCGA), all of which were composed by
tumor and tumor-adjacent samples. The tumor samples
were grouped into different cancer stages according to cor-
responding clinical information of TCGA, that is, the
tumor samples were classified into seven stages for LUSC,
LUAD and STAD, and four stages for THCA and COAD.
The detailed sampling conditions are provided in Add-
itional file 1: Table S1. In all the five datasets, the tumor-
adjacent samples were employed as normal/reference sam-
ples. The sKLD was then calculated for each single tumor
sample following the proposed algorithm (the five steps) in
Methods. Finally, the average sKLD of each stage was
taken to identify any possible critical/pre-transition state.
Clearly, the significant change of sKLD successfully in-

dicated the critical stages prior to the metastasis for all
the five cancers (Fig. 4a-e). To validate the identified
critical state, the prognosis results respectively based on
before-transition and after-transition samples were ex-
hibited and compared through Kaplan-Meier (log-rank)
survival analysis (Fig. 4f-j and Additional file 1: Figure
S4). Specifically, before the identified critical stage, there
is generally a high expectation of life after diagnosis,
while after the critical stage, there is a much lower
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expectation of survival after diagnosis (Fig. 4f-j). How-
ever, before and after any other stages, there was no sig-
nificant difference in the prognosis (Additional file 1:
Figure S4), which suggests that the identified critical
stage is accurate and closely associated with prognosis.

The critical state of LUSC
For LUSC, the sKLD score abruptly increases at stage
IIA (Fig. 4a), indicating an upcoming critical transition

after stage IIA, that is, the invasion into the mediastinal
pleura at stage IIB, after which there are lymph nodes
metastasis, tumor invaded the visceral pericardial surface
and the intrapericardial pulmonary artery [38]. The crit-
ical transition has also been validated by survival ana-
lysis. It is seen from Fig. 4f that the survival time of
before-transition samples (samples from stages IA-IIA)
is much longer than that of after-transition samples
(samples from stages IIB-IV), resulting significant

Fig. 3 The application of sKLD in acute lung injury. a As shown in the red curve, the peak for the sKLD appears at 8 h, which can be used as an
early signal of acute lung injury deterioration. The result is consistent with the experimental observation. To illustrate the significance of the result,
six yellow curves are derived based on six sets of datasets generated from a leave-one-out scheme, which consistently indicate the tipping point
at 8 h. b The figure shows the dynamical changes in the distribution of signaling genes for the case data and control data, respectively. c From
the dynamical evolution of the network composed by the top 5% most significant genes in terms of the cumulative area of the case sample, it is
seen that the an obvious change in the network structure appear at 8 h
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difference (significant value p = 0.0034) between the sur-
vival curves of two sets of samples, i.e., samples derived
before and after stage IIA of LUSC. For the samples
solely from the two stages around the critical transition
point, i.e., stages IIA and IIB, the survival time of stage-
IIA samples is longer than that of stage-IIB samples
(p = 0.036; Additional file 1: Figure S5a). Besides, to
check if there is any other critical transition that leads to
different survival time, a series of survival analysis has
been carried out. As shown in Additional file 1: Figure
S5b-S5c, statistically there is little difference (p = 0.4741;
Additional file 1: Figure S5b) between the survival time
of stages-IA samples and that of stage-IB samples, and
little statistical differences (p = 0.5671; Additional file 1:
Figure S5c) in survival time among samples from stages

IIB, IIIA, IIIB, IV. In other word, there is no other crit-
ical transition point in either before-transition period
(stages IA-IB), or after-transition period (stages IIB-IV).
These results demonstrate that given high-throughput
molecular data, the critical transition associated with
disease deterioration and survival time in LUSC can be
identified by sKLD.
In addition, at the identified critical stage (stage IIA),

the top 5% most significant genes in terms of the cumu-
lative area of the case sample are selected as “sKLD-sig-
naling genes” for further functional analysis. Some genes
in the common “sKLD-signaling genes” have been re-
ported to be associated with the process of LUSC
(Table 1). For instance, the miR-195 axis regulates lung
squamous cell carcinoma (LUSC) progression through

Fig. 4 Identification of critical transition for tumor deterioration in five cancers: a LUSC, b LUAD, c STAD, d THCA and e COAD. Comparison of
survival curves before and after critical state for five cancers: f LUSC, g LUAD, h STAD, i THCA and j COAD

Zhong et al. BMC Genomics           (2020) 21:87 Page 7 of 15



BIRC5 [39]. CCNA2 promotes invasion and migration of
non-small cell lung cancer cells through integrin αvβ3
signaling pathway [40]. miR-26a/b inhibits directly mi-
gration, invasion, and proliferation of lung cancer cells
by targeting CDC6 [41]. CKS1B is a lung cancer-related
gene, knockdown of which results in a significant de-
crease in lung cancer cell proliferation, invasion and mi-
gration [42]. Depletion of E2F8 inhibits cell proliferation
and tumor growth in lung cancer, thus E2F8 can be con-
sidered as a novel therapeutic target for lung cancer
[43]. Knockdown of FOXM1 inhibits the cell prolifera-
tion in LUSC [44]. ITPKA serves as an early diagnostic
marker in lung cancer, whose overexpression promotes
tumorigenesis [45]. MCM2 regulates proliferation and
cell cycle in lung squamous cell carcinoma, whose over-
expressed protein is obviously associated with malign
differentiated degree and lymph node metastasis [46].
The sKLD-signaling genes for the five tumor datasets
were provided in Additional file 2.
Besides, functional enrichment through GO analysis

shows that the common sKLD-signaling genes are in-
volved in the biological processes including cytoskeleton
organization, chromosome condensation, regulation of

cell division and others (Table 2). These biological pro-
cesses are associated with the progression of cancer. Fur-
thermore, through IPA (Ingenuity Pathway Analysis),
these common genes are also enriched to cancer-related
function annotation, such as lung squamous cell carcin-
oma, development of malignant tumor and lung carcin-
oma (Table 2).

The critical state of LUAD
In Fig. 4b, the peak of the sKLD score at stage IIB sug-
gests that there is a critical transition of LUAD after
stage IIB. References showed that after stage IIB, ipsilat-
eral mediastinal or subcarinal lymph nodes were metas-
tasized (stage IIIA) and tumor began to invade heart,
great vessels and trachea (stages IIIA-IIIB) [47]. As
shown in Fig. 4g, there is significant difference (p = 3E-
07) between the survival curves of samples before and
after stage IIB of LUAD. Clearly, the survival time of
before-transition samples (samples from stages IA-IIB) is
considerably longer than that of after-transition samples
(samples from stages IIIA-IV). For the samples solely
from two stages IIB and IIIA around the critical transi-
tion point, the survival time of stage-IIB samples is

Table 1 The genes with high frequency in 13 “sKLD-signaling genes” groups in the critical stage (stage IIA) for LUSC

Gene Frequency Location Family* Relation with cancer progression

BIRC5 13 Cytoplasm other The miR-195 axis regulates lung squamous cell carcinoma (LUSC) progression through BIRC [39].

CCNA2 13 Nucleus other CCNA2 promotes invasion and migration of non-small cell lung cancer cells through integrin αvβ3
signaling
pathway [40].

CDC6 13 Nucleus other miR-26a/b inhibits directly migration, invasion, and proliferation of lung cancer cells by targeting
CDC6 [41].

CKS1B 13 Other kinase CKS1B is a lung cancer-related gene, knockdown of which can result in a significant decrease in
lung cancer cell proliferation, invasion and migration [42].

E2F8 13 Nucleus transcription
regulator

Depletion of E2F8 inhibits cell proliferation and tumor growth in lung cancer, thus E2F8 can be
considered as a novel therapeutic target for lung cancer [43].

FOXM1 13 Nucleus transcription
regulator

Knockdown of FOXM1 inhibits the cell proliferation
in LUSC [44].

ITPKA 13 Cytoplasm kinase ITPKA serves as an early diagnostic marker in lung cancer, whose overexpression promotes
tumorigenesis [45].

MCM2 13 Nucleus enzyme MCM2 regulates proliferation and cell cycle in lung squamous cell carcinoma, whose overexpressed
protein is obviously associated with malign differentiated degree and lymph node metastasis [46].

Table 2 The functional enrichment of common “sKLD-signaling genes” in the critical stage samples for LUSC

Gene Ontology Consortium IPA

enriched biological process enriched p value enriched biological process enriched p value

cytoskeleton organization (GO:0007010) 2.00E-12 mitosis of tumor cell lines 1.39E-39

chromosome condensation (GO:0030261) 4.49E-09 development of malignant tumor 6.37E-29

regulation of cell division (GO:0051302) 1.23E-08 lung squamous cell carcinoma 1.62E-24

sister chromatid cohesion (GO:0007062) 2.43E-06 lung carcinoma 7.28E-22

isotype switching (GO:0045190) 1.03E-04 respiratory system tumor 1.19E-19

programmed cell death (GO:0012501) 6.57E-04 lymphocytic neoplasm 9.89E-12
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much longer than stage-IIIA samples (p = 0.012; Add-
itional file 1: Figure S5d). Besides, statistically it shows
little significant difference (p = 0.4421; Additional file 1:
Figure S5e) among the survival curves of samples from
stages IA, IB, IIA (the stages before the critical state),
and little difference (p = 0.1649; Additional file 1: Figure
S5f) among the survival curves of samples from stages
IIIA, IIIB, IV (the stages after the critical state), which
show that stage IIB of LUAD is highly associated with
the critical transition of survival time.
The functional analysis is carried out based on “sKLD-

signaling genes”. Through literature searching, some
genes in the common “sKLD-signaling genes” have been
shown to be associated with the process of LUAD
(Table 3). For example, PYCR1 may be a novel thera-
peutic target for inhibiting cell proliferation in lung can-
cer [48]. ETV4 promotes proliferation and invasion of
lung adenocarcinoma by transcriptionally upregulating
MSI2 [49]. Knockdown of PITX2 inhibits cell prolifera-
tion, migration and invasion of LUAD [50]. MDK plays
an important role in non-small cell lung cancer progres-
sion and prognosis and may act as a convincing prog-
nostic indicator for non-small cell lung cancer patients
[51]. Blocking glutamine-mediated induction of PPAT
inhibits cell proliferation and invasion in LUAD [52].
TOP2A is an ideal candidate as miR-144-3p target in
non-small cell lung cancer, while MiR-144-3p expression
is significantly correlated with lymph node metastasis
and vascular invasion [53]. HOXC13 promotes prolifera-
tion of lung adenocarcinoma via modulation of CCND1
and CCNE1 [54]. Up-regulation of SRPK1 in non-small
cell lung cancer promotes the growth and migration of
cancer cells [55].

Moreover, functional enrichment through GO analysis
shows that the common “sKLD-signaling genes” are in-
volved in the biological processes of meiotic cell cycle, cell
cycle checkpoint, cytokinesis, and so on (Table 4). These
biological processes are associated with the progression of
cancer. In addition, these common genes were also related
to lung adenocarcinoma and development of lung tumor
by functional enrichment in IPA (Table 4).

The critical state of STAD
For STAD, as shown in Fig. 4c, the drastic transitions
of average sKLD appeared in stage IIIB, which indi-
cated the imminent critical transition at stage IV.
According to the division of clinical stages of STAD,
the deterioration into stage IV means an advanced
metastatic stage, in which the tumor has spread to
nearby tissues or metastasized to other parts of the
human body [56]. Fig. 4h shows that there is signifi-
cantly difference (p = 0.0257) between the survival
time of two group of samples, i.e., samples respectively
from the before-transition period (stages IA-IIIB) and
from the after-transition period (stages IV) of STAD.
It is also noted that the survival time of samples from
stage IIIB is significantly longer than that from stage
IV (p = 0.0215; Additional file 1: Figure S5 g). Besides,
there is little significant difference (p = 0.1252;
Additional file 1: Figure S5 h) among survival curves
of samples from the period prior to the critical transi-
tion, i.e., stages IA-IIIA. These results demonstrate
that the sKLD detected the early-warning signals of a
critical transition of survive time and distant metasta-
sis at stage IV.

Table 3 The genes with high frequency in 59 “sKLD-signaling genes” groups in the critical stage (stage IIB) for LUAD

Gene Frequency Location Family* Relation with cancer progression

PYCR1 54 Cytoplasm enzyme PYCR1 may be a novel therapeutic target for inhibiting cell proliferation in lung cancer [48].

ETV4 50 Nucleus transcription
regulator

ETV4 promotes proliferation and invasion of lung adenocarcinoma by transcriptionally
upregulating
MSI2 [49].

PITX2 50 Nucleus transcription
regulator

Knockdown of PITX2 inhibits cell proliferation, migration and invasion of LUAD [50].

MDK 49 Extracellular
Space

growth factor MDK plays an important role in non-small cell lung cancer progression and prognosis and may
act as a convincing prognostic indicator for non-small cell lung cancer patients [51].

PPAT 49 Cytoplasm enzyme Blocking glutamine-mediated induction of PPAT
inhibits cell proliferation and invasion in
LUAD [52].

TOP2A 49 Nucleus enzyme TOP2A is an ideal candidate for miR-144-3p targets in non-small cell lung cancer and MiR-144-
3p expression is significantly correlated with stage, lymph node metastasis and vascular invasion
[53].

HOXC13 48 Nucleus transcription
regulator

HOXC13 promotes proliferation of lung adenocarcinoma via modulation of CCND1 and CCNE1
[54].

SRPK1 48 Nucleus kinase Up-regulation of SRPK1 in non-small cell lung cancer can promote the growth and migration of
cancer
cells [55].
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Some “sKLD-signaling genes” have been found in litera-
tures and identified to be associated with the process of
STAD (Table 5). For instance, COL10A1 promotes inva-
sion and metastasis in gastric cancer through transcrip-
tional regulation of SOX9 and the involvement of the
TGF-β signaling pathway [57]. BGN promotes tumor in-
vasion and metastasis of gastric cancer both in vitro and
in vivo [58]. CTHRC1 may be associated with metastasis
in human gastric cancer [59]. Let-7b inhibits cell prolifera-
tion, migration, and invasion through targeting CTHRC1
in gastric cancer [60]. Enforced expression of SALL4 not
only enhances the proliferation and migration of human
gastric cancer cells, but promotes the growth and metasta-
sis of gastric xenograft tumor in vivo [61]. Knockdown of
MMP11 inhibits proliferation and invasion of gastric can-
cer cells [62]. The overexpression of MAP4K4 promotes
cancer progression or metastasis [63, 64]. MiR-211 in-
hibits cell proliferation and invasion of gastric cancer by
down-regulating SOX4 [65]. The overexpression of
FOXS1 in gastric cancer cell lines can inhibit proliferation,
metastasis and epithelial-mesenchymal transition of tumor
through downregulating wnt/β-catenin pathway [66].

Besides, based on GO analysis, the common “sKLD-signal-
ing genes” are enriched into the biological processes associ-
ated with the progression of cancer, e.g., extracellular matrix
organization, collagen fibril organization and ribosome bio-
genesis (Table 6). Furthermore, according to IPA, the com-
mon “sKLD-signaling genes” are also enriched to cancer-
related function annotation including digestive organ tumor,
digestive system cancer and abdominal cancer (Table 6). The
common sKLD-signaling genes for LUSC, LUAD and
STAD were provided in Additional file 4.

The critical state of THCA
As shown in Fig. 4d, for THCA, the sKLD score reaches its
peak at stage II, signaling the imminent critical transition at
stage III. There was extension to sternothyroid muscle or
perithyroid soft tissues and regional lymph node metastasis
in stage III [67]. There is significant difference between the
survival curves before and after stage II in THCA samples
(p = 0) (Fig. 4i). It is seen that the survival times of samples
before the critical state were significantly longer than for
samples after the critical state. There was no significant dif-
ference in survival curves among samples in stages III, IV

Table 4 The functional enrichment of common “sKLD-signaling genes” in the critical stage samples for LUAD

Gene Ontology Consortium IPA

enriched biological process enriched p value enriched biological process enriched p value

cell cycle checkpoint (GO:0000075) 1.92E-15 Lung cancer 7.77E-28

meiotic cell cycle (GO:0051321) 1.12E-11 Lung tumor 2.97E-27

cytokinesis (GO:0000910) 1.71E-06 Lung carcinoma 1.42E-23

fucosylation (GO:0036065) 1.65E-04 Non-small cell lung carcinoma 6.74E-22

regulation of cell development (GO:0060284) 3.15E-04 Development of lung tumor 1.48E-21

regulation of developmental process (GO:0050793) 9.30E-04 Lung adenocarcinoma 1.85E-21

Table 5 The genes with high frequency in 20 “sKLD-signaling genes” groups in the critical stage (stage IIIB) for STAD

Gene Frequency Location Family* Relation with cancer progression

COL10A1 19 Extracellular
Space

other COL10A1 promotes invasion and metastasis in gastric cancer through transcriptional regulation
of SOX9 and the involvement of the TGF-β signaling pathway [57].

BGN 18 Extracellular
Space

other BGN promote tumor invasion and metastasis of gastric cancer both in vitro and in vivo [58].

CTHRC1 18 Extracellular
Space

other CTHRC1 may be associated with metastasis in human gastric cancer [59]. Let-7b inhibits cell
proliferation, migration, and invasion through targeting CTHRC1 in gastric cancer [60].

SALL4 18 Nucleus transcription
regulator

Enforced expression of SALL4 not only enhances the proliferation and migration of human
gastric cancer cells, but promotes the growth and metastasis of gastric xenograft tumor in vivo
[61].

MMP11 18 Extracellular
Space

peptidase Knockdown of MMP11 inhibits proliferation and invasion of gastric cancer cells [62].

MAP4K4 18 Cytoplasm kinase MAP4K4 overexpression promotes cancer progression or metastasis [63, 64].

SOX4 18 Nucleus transcription
regulator

MiR-211 inhibits cell proliferation and invasion of gastric cancer by down-regulating SOX4 [65].

FOXS1 17 Nucleus transcription
regulator

Overexpression of FOXS1 in gastric cancer cell lines can inhibit proliferation, metastasis, and
epithelial-mesenchymal transition of tumor through downregulating wnt/β-catenin pathway
[66].
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(the stages after the critical state) (p = 0.5158; Additional
file 1: Figure S5i). The survival times of samples in stage II
were significantly longer than for samples in stage III (p =
0.0381; Additional file 1: Figure S5j). These results illustrate
the sKLD can detect the early-warning signals associated
with disease deterioration in THCA. Furthermore, the
functional analyses of some “sKLD-signaling genes” are per-
formed through IPA and literature searching, which is pro-
vided in Additional file 1: Table S2. The enrichment
analysis for the common “sKLD-signaling genes” is carried
out based on GO and IPA analysis, which is given in Add-
itional file 1: Table S3.

The critical state of COAD
For COAD, the drastic increase of the sKLD score from
stage I to stage II suggests a critical deterioration after
stage II (Fig. 4e). There are lymph nodes metastasis and
tumor directly invade other organs or structures in stage
III [68]. There was significant difference between the
survival curves before and after stage II in COAD sam-
ples (p = 0) (Fig. 4j). As shown in Fig. 4j, the survival
time of samples before the critical state were obviously
longer than that of samples after the critical state. There
were no statistics difference in survival curves among
samples in stages III, IV (the stages after the critical
state) (p = 0.1048; Additional file 1: Figure S5k). The sur-
vival times of samples in stage II were significantly lon-
ger than for samples in stage III (p = 0.0067; Additional
file 1: Figure S5 l). These results demonstrate the sKLD
can provide the early-warning signals associated with
disease deterioration in COAD. Moreover, functional
analyses of some “sKLD-signaling genes” are performed
through IPA and literature searching, which is given in
Additional file 1: Table S4. The enrichment analysis for
the common “sKLD-signaling genes” is performed
through GO and IPA analysis, which is provided in Add-
itional file 1: Table S5.

Discussion
Detecting the early-warning signal for the sudden de-
terioration is crucial to most complex diseases. How-
ever, it is a challenging task to identify the pre-disease

state prior to the occurrence of obvious symptoms due
to the lack of samples, that is, there is usually only one
single sample for an individual at a time point before
an accurate diagnosis is made. Clearly, such single-
sample problem, rising from clinical and experimental
practice, leads to the failure of traditional statistic
method, and thus requires new approaches that help to
overcome the sample limitation. In this study, we pro-
posed a single-sample-based computational framework,
the sKLD method, to quantify the disturbance on the
background caused by a sample. The sKLD has been
applied to real-world datasets and successfully identifies
the tipping points or critical states of complex diseases.
Specifically, the significant change of sKLD score indi-
cates the pre-disease state of phosgene-induced acute
lung injury before the deterioration into pulmonary
edema, the critical stage of (stage IIA) of LUSC prior to
the lymph nodes metastasis, the critical stage (stage
IIB) of LUAD before lymph nodes were metastasized,
the critical stage (stage IIIB) of STAD before distant
metastasis, the critical stage (stage II) of THCA before
lymph node metastasis, and the critical stage (stage II)
of THCA before lymph node metastasis. All these iden-
tified critical stages were validated by the survival ana-
lysis, that is, the patient would have a significantly
better prognosis if they were diagnosed before the crit-
ical stage. Besides, at any other stages, there was no sig-
nificant difference in the prognosis, suggesting that the
identified critical stage is accurate and closely associ-
ated with prognosis. The functional analysis of sKLD-
signaling genes is consistent with the upcoming deteri-
orations of diseases.
There are three advantages of the proposed method.

First, in contrast to the traditional biomarkers that are
used to “diagnose disease” based on the information of
differential expressions, sKLD is capable to “predict dis-
ease” based on the information of differential distribu-
tions among biomolecules. Second, given some reference
samples, sKLD works with only a single sample. Third, it
should be noted that sKLD is a model-free method,
which implies that in the sKLD strategy there is neither
feature selection nor model/parameter training

Table 6 The functional enrichment of common “sKLD-signaling genes” in the critical stage samples for STAD

Gene Ontology Consortium IPA

enriched biological process enriched p value enriched biological process enriched p value

extracellular matrix organization (GO:0030198) 3.32E-14 digestive organ tumor 4.04E-51

collagen fibril organization (GO:0030199) 5.31E-13 digestive system cancer 1.63E-50

ribosome biogenesis (GO:0042254) 1.08E-09 abdominal cancer 2.07E-49

regulation of cell cycle (GO:0051726) 1.61E-08 gastrointestinal tract cancer 7.11E-45

collagen metabolic process (GO:0032963) 3.67E-05 gastrointestinal carcinoma 1.49E-44

regulation of protein ubiquitination (GO:0031396) 9.60E-05 development of digestive organ tumor 5.9E-27

Zhong et al. BMC Genomics           (2020) 21:87 Page 11 of 15



procedure. It is thus different from the traditional ma-
chine learning or classification methods which, to pro-
duce a robust model in the learning process, requires a
substantial number of case and control samples to avoid
the overfitting problem.

Conclusions
We proposed a novel computational method sKLD
solely based on a single case sample. This method can
effectively detect the pre-disease state of complex dis-
eases, a state with high susceptibility before the disease
onset or deterioration. As the algorithm shown in
Methods section, the sKLD is easy to implement and
very flexible. It is therefore of great potential in person-
alized pre-disease diagnosis and prevention medicine.
The identification of sKLD-signaling genes is also helpful
in elucidating molecular mechanism of disease progres-
sion, and discovering prognosis indicators.

Methods
Theoretical background
The theoretical background is our recently proposed
DNB theory. Specifically, in order to theoretically and
mathematically describe the dynamics of a complex dis-
ease, its evolution is usually modeled as a time-
dependent nonlinear dynamical system [23, 69], in which
the sudden deterioration is regarded as a state transition
at a bifurcation point [16]. In ideal situation with small
noise, when a complex system is near the critical point,
among all observed variables there exists a dominant
group defined as the DNB biomolecules, which satisfy
the following three conditions based on the observed
data [10]:

� The correlation (PCCin) between any pair of
members in the DNB group rapidly increases;

� The correlation (PCCout) between one member of
the DNB group and any other non-DNB member
rapidly decreases;

� The standard deviation (SDin) or coefficient of
variation for any member in the DNB group
drastically increases.

The above three properties are necessary conditions of
the state transition at a codimension-one bifurcation
point, and can also be approximately stated as: the oc-
currence of a group of biomolecules whose expressions
are strongly fluctuating and highly correlated, implies an
upcoming critical transition. These three properties are
the theoretical basis of DNB method and have been
proved in the supplementary information of our previ-
ous work [10].
From the above three properties, it is clear that the crit-

ical transition of a system is actually indicated by “the

transition of distribution”, that is, for some variables (DNB
members), their distribution would significantly change
when the system approaches the critical transition point.
Therefore, by exploring the differential distributions (rather
than differential expressions) of some variables, it is possible
to predict the upcoming qualitative state transition. On the
other hand, a sample of high-throughput data enables us to
analyze the expressions of thousands of genes simultan-
eously. Such a high-dimensional sample is actually enriched
with dynamic information of accumulated effects, such as
the gene interaction after a long-term development of the
concerned biological system.
The Kullback–Leibler divergence (K–L divergence)

was widely employed to measure the difference between
two data distributions [70]. It provides a theoretical basis
for data differencing [71], outlier detection [72] and
evaluating sample similarity [73, 74]. Between two distri-
butions P and Q, the K-L divergence is defined as

DKL P;Qð Þ ¼
X
k

ln
P kð Þ
Q kð Þ

� �
P kð Þ: ð1Þ

It should be noted that the K-L divergence in Eq. (1) is
actually not a true metric, but usually serves as a meas-
ure of the similarity between distributions P and Q. Par-
ticularly, DKL(P,Q) is zero only when the distribution P
is identical with the distribution Q. DKL(P,Q) is positive
when the distribution P is different from Q. Clearly, for
the original K-L divergence, there is DKL(P,Q) ≠DKL(Q,
P). In this study, we use a symmetric measure defined as

DKL P;Qð Þ ¼

X
k

ln
P kð Þ
Q kð Þ

� �
P kð Þ þ

X
k

ln
Q kð Þ
P kð Þ

� �
Q kð Þ

2
: ð2Þ

Algorithm to identify the tipping point based on sKLD
Regarding a biological system as a time-dependent non-
linear dynamical system with m genes/variables, then at
each time point, the state of such system is expressed by
a high-dimensional vector, i.e., the expressions of m
genes/variables. A computational way is then developed
to exploring the dynamic difference between the normal
state and pre-disease state.
Given a set of reference samples (samples from normal

cohort which are used as the background that represent
the healthy or relatively healthy individuals), the follow-
ing algorithm is proposed to identify the pre-disease
state by using only one case sample.
[Step 1] Prepare a set of reference samples. The sam-

ples derived from the normal cohort are regarded as ref-
erence samples, which represent the background of
relatively healthy individuals in the normal state. For nu-
merical simulation, samples from a few initial time
points are viewed as reference/normal samples. For real
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datasets, samples from a normal cohort or normal tissue
are chosen as reference/normal samples, e.g., for the
stage-course data from TCGA, the tumor-adjacent sam-
ples are taken as the reference.
[Step 2] Fit a distribution for each gene in terms of the

expressions from the reference samples. Specifically, for
a gene gi, a Gaussian distribution Dgi is fitted based on
the k expressions of gi in the reference samples {S1, S2,
…, Sk}. Then, a k-dimensional vector (areaðDgiðS1ÞÞ, area
ðDgiðS2ÞÞ,…, areaðDgiðSkÞÞ) is obtained, in which the j-th
element is the cumulative area (its definition was shown
in the Eq. (S4) of Additional file 1) determined by the
fitted distribution Dgi and the expression of gi in the j-th
sample Sj (Fig. 1b).
[Step 3] Construct the reference distribution P as

follows.

P ¼
p1
p2
⋮
pm

2
664

3
775; pi

¼ mean area Dgi S1ð Þ� �
area Dgi S2ð Þ� �

⋯ area Dgi Skð Þ� �� �
Xm
j¼1

mean area Dgj S1ð Þ� �
area Dgj S2ð Þ� �

⋯ area Dgj Skð Þ� �� � ; i

¼ 1; 2; :::;m:

ð3Þ
[Step 4] For a single case sample scase of an individual,

construct a perturbed distribution Q based on scase as
follows.

Q ¼
q1
q2
⋮
qm

2
664

3
775; qi ¼

area Dgi Scaseð Þ� �
Xm
j¼1

area Dgj Scaseð Þ� � ; i

¼ 1; 2; :::;m: ð4Þ

For both distributions P and Q, it is clear that
Pm
j¼1

pj ¼ 1

and
Pm
j¼1

q j ¼ 1.

[Step 5] Calculate the sKLD score based on Eq. (2).
Clearly, such score evaluated the difference between
the reference distribution P and the perturbed distri-
bution Q.
According to the DNB theory, when the system ap-

proaches the critical state, the DNB biomolecules exhibit
significantly collective behaviors with fluctuations (see
the supplementary information of reference [18] for de-
tailed derivation in the ideal situation), which leads to
that the distributions of DNB genes in a pre-disease state
are different from those in a normal state. Thus, the
background distribution from a set of reference/normal
samples significantly distinct to the perturbed distribu-
tion from a new case sample, leading to the increase of

sKLD score in Eq. (2). Thus, sKLD score can provide the
early-warning signals of the critical transition. From
above algorithm, it is seen that the proposed method is
data-driven, and thus model free.

Data processing and functional analysis
The proposed method has been applied to six real data-
sets, i.e., the time-course dataset GSE2565 from NCBI
GEO database (http://www.ncbi.nlm.nih.gov/geo) and
five stage-course datasets LUSC, LUAD, STAD, THCA
and COAD from TCGA database (http://cancergenome.
nih.gov). The omics dataset GSE2565 comprises expres-
sion profiles from a mouse experiment, in which pul-
monary edema was triggered by inhalation of carbonyl
chloride. In this dataset, we discarded the probes with-
out corresponding NCBI Entrez gene symbol. For each
gene mapped by multiple probes, the average value was
employed as the gene expression. The five stage-course
datasets from TCGA contained RNA-Seq data and in-
cluded both tumor and tumor-adjacent samples. The
tumor samples were divided into different stages based
on clinical (stage) information from TCGA, and the
samples without stage information were ignored.
For all the diseases, functional annotations were per-

formed by searching the NCBI gene database (http://
www.ncbi.nlm.nih.gov/gene). The enrichment analyses
were separately obtained using web service tools from
the Gene Ontology Consortium (GOC, http://geneontol-
ogy.org) and client software from Ingenuity Pathway
Analysis (IPA, http://www.ingenuity.com/products/ipa).
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1186/s12864-020-6490-7.

Additional file 1. Identifying critical state by single-sample Kullback–Lei-
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