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The phosphatidylinositol-3 kinase (PI3K) pathway is one of the

most frequently activated pathogenic signalling routes in

human cancers, making it a rational and important target for

innovative anticancer drug development and precision

medicine. The three main classes of PI3K inhibitors currently in

clinical testing comprise dual pan-Class I PI3K/mTOR inhibitors,

pan-Class I PI3K inhibitors lacking significant mTOR activity and

isoform-selective PI3K inhibitors. A major step forward in recent

years is the progression of over 30 small molecule PI3K inhibitors

into clinical trials and the first regulatory approval of the PI3Kd

inhibitor idelalisib for multiple B-cell malignancies. This review

article focuses on the progress made in the discovery and

development of novel PI3K inhibitors, with an emphasis on

antitumour activity and tolerability profiles for agents that have

entered clinical trials. We also discuss the key issues of drug

resistance, patient selection approaches and rational targeted

combinations. Finally, we envision the future development and

use of PI3K inhibitors for the treatment of patients with a range of

malignancies.
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Introduction
The phosphatidylinositol-3 kinase (PI3K) pathway is one

of the most frequently activated pathogenic signalling

routes in human cancers, affecting 30–50% of malignan-

cies, making it a rational and important target for innova-

tive anticancer drug development and precision medicine

[1,2]. There are four well-described Class I PI3K isoforms
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(a, b, d and g encoded by PIK3CA, PIK3CB, PIK3CD and

PIK3CG respectively) which catalyze phosphorylation of

phosphoinositides on the 30 position of the inositol ring,

and most importantly, the conversion of PtdIns(4,5) to

the second messenger PtdIns(3,4,5) or PIP3 — which in

turn recruits cytosolic proteins with PIP3-binding pleck-

strin homology (PH) domains (such as the serine/threo-

nine kinase protein kinase B/AKT), thereby localizing

them to the plasma membrane. The Class IA isoforms

(a, b and d) in particular are associated with oncogene-

sis, cancer progression and multiple hallmarks of malig-

nancy [3��].

The PIK3CA gene, which encodes the p110a catalytic

subunit of PI3K, is the most commonly mutated kinase in

the human genome [4]. The identification of driver

PIK3CA mutations through tumour genome sequencing

provided the first example of a mutated lipid kinase

oncogene [5��]. There is also evidence of PIK3CA am-

plification and overexpression in different cancers, as

well as numerous other oncogenic abnormalities, includ-

ing frequent mutation, deletion and loss of expression of

the tumour suppressor gene PTEN (Figure 1) [6,7].

Further research is required to delineate the relationship

of such aberrations with other oncogenic abnormalities,

so as to improve our understanding of potential mecha-

nisms of drug resistance, which may have implications

for the development of effective targeted combination

regimens.

A major step forward in recent years has been the pro-

gression of over 30 small molecule PI3K inhibitors into

clinical trials and the first regulatory approval of one such

agent, idelalisib (Zydelig, CAL-101; Gilead Sciences)

(see Figure 2 for representative chemical structures)

[8,9��,10��]. This present article focuses on the recent

progress made in the discovery and development of novel

PI3K inhibitors, with an emphasis on antitumour activity

and tolerability profiles for agents that have entered

clinical trials. We also discuss the key issues of patient

selection, drug resistance and rational targeted combina-

tions. Finally, we envision the future development and

use of PI3K inhibitors for the treatment of patients with a

range of different malignancies.

Current status of PI3K inhibitors
The three main classes of PI3K inhibitors currently in

clinical testing comprise dual pan-Class I PI3K/mTOR

inhibitors, pan-Class I PI3K inhibitors lacking significant
www.sciencedirect.com
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Figure 1
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The PI3K pathway with respective PI3K inhibitors. When PI3K is activated, phosphatidylinositol 3,4,5-trisphosphate (PIP3) is generated from

phosphatidylinositol 3,4-bisphosphate (PIP2), and recruits AKT to the cell membrane [80,81]. This leads to a conformational change and

phosphorylation of AKT and its subsequent activation. AKT then translocates to the cytoplasm and nucleus, where phosphorylation of various

downstream substrates involved in the regulation of multiple cellular functions, including proliferation, survival and growth occurs. The PI3K

pathway is one of the most frequently activated signalling pathways in human cancers, affecting 30–50% of tumours, making it a rational target

for novel anticancer drug development. The red arrows indicate the respective mechanisms of action of different PI3K inhibitors, which include the

dual PI3K/mTOR inhibitors, pan-Class I PI3K inhibitors and isoform-selective PI3K inhibitors. Individual examples of different PI3K inhibitors in

clinical testing are shown in the figure. The table in the figure lists the regulatory and catalytic subunits of the respective PI3K classes.
mTOR activity and isoform-selective PI3K inhibitors [11].

The vast majority of these drugs are ATP-competitive

reversible kinase inhibitors, while PX-866 (Oncothyreon),

which is based on the earlier potent natural product but

unstable inhibitor wortmannin, is the only irreversible

PI3K inhibitor currently in clinical trial testing [12]. An

interesting spectrum of varying drug characteristics, with

respect to both antitumour activity and tolerability, has

been observed across the different PI3K inhibitors. Such

findings have influenced drug discovery and development

strategies and also regulatory registration approaches with

PI3K inhibitors.
www.sciencedirect.com 
Of special note, in July 2014 the US Food and Drug

Administration (FDA) approved the first PI3K to be

licensed, namely the PI3Kd inhibitor idelalisib for dif-

ferent B-cell malignancies: as monotherapy for patients

with relapsed follicular B-cell non-Hodgkin lymphoma

and small lymphocytic lymphoma, and in combination

with rituximab for those with relapsed chronic lympho-

cytic leukemia (CLL) [8,9��,10��]. The other classes of

PI3K inhibitors are still in early to late clinical trial

testing in solid tumours and/or haematological malig-

nancies utilising either monotherapy or combination

strategies.
Current Opinion in Pharmacology 2015, 23:98–107
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Figure 2
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Chemical structures of PI3K inhibitors highlighted in this article.
Tolerabilty profiles of PI3K inhibitors
The safety profiles of all three classes of PI3K inhibitors

are now well characterised through the clinical testing

of multiple agents. PI3K/mTOR inhibitors include

GDC-0980 (Genentech), which is related to the increas-

ingly used chemical tool compound PI-103 [13], PF-

04691502 (Pfizer), BEZ235 (Novartis), XL765 (Exelixis/

Sanofi-Aventis) and GSK2126458 (GlaxoSmithKline)

[11,14,15]. These agents share common, dose-depen-

dent drug-related toxicities comprising rash, fatigue,

hyperglycemia, as well as gastrointestinal symptoms

including nausea, vomiting and diarrhoea. Such effects

appear to be on-target, but differences in both frequency

and severity of certain adverse events between various

agents have been observed. Overall, these side-effects
Current Opinion in Pharmacology 2015, 23:98–107 
have limited the long-term tolerability of the dual

PI3K/mTOR targeting agents.

Inhibitors that target essentially all the Class I PI3 kinases

with minimal or no mTOR inhibition include the oral

compounds pictilisib (GDC-0941; Genentech), buparlisib

(BKM120; Novartis), XL147 (SAR245408; Exelixis/

Sanofi) and PX-866, together with the intravenous

BAY80-6946 (copanlisib; Bayer) [16–20]. The toxicities

seen with this class of agents are similar, albeit probably

less severe to those observed with PI3K/mTOR inhibi-

tors, and include rash, hyperglycaemia, gastrointestinal

symptoms and fatigue. For the intravenous inhibitor

BAY80-6946, at its maximum tolerated dose, six of seven

evaluable patients required insulin treatment for glucose
www.sciencedirect.com
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levels above 200 mg/dL, which occurred within 24 h of

dosing [21].

Despite the selectivity of the a, d and g isoform-specific

PI3K inhibitors, drug-related toxicities observed are gen-

erally similar to those observed with pan-Class I PI3K

inhibitors, including nausea, vomiting, diarrhoea and

fatigue. However, hyperglycaemia is frequently observed

with PI3Ka inhibitors such as BYL719 and GDC-0032

[22,23], in contrast to d and g isoform-specific PI3K

inhibitors for which myelosuppression with neutropenia

and raised liver transaminases have been reported, where-

as hyperglycaemia is relatively uncommon [8,9��,10��].

The disparate effects are consistent with the known

biology of PI3K isoforms [11]. However, there is a need

to develop better animal models to predict human toxi-

cities with PI3K inhibitors, and in particular to under-

stand any additive versus synergistic toxicities with

combination strategies involving these agents.

Antitumour activity of PI3K inhibitors
PI3K/mTOR inhibitors

With PI3K/mTOR inhibitors, despite the vertical block-

ade of the two different crucial nodes along the PI3K

signalling pathway, single agent antitumour activity has

been modest [11]. For example, only two of 78 patients,

one each with bladder and renal cell carcinoma, had

RECIST partial responses with GSK2126458 [24]. This

may partly be due to the narrow therapeutic window

associated with these drugs that limits their dose escala-

tion, or to the unselected populations of patients enrolled

into these early phase studies. Several PI3K/mTOR

inhibitors are currently being tested in ongoing single

agent or combination Phase II studies.

Pan-Class I PI3K inhibitors

Similarly, despite a favourable pharmacokinetic–pharma-

codynamic (PK–PD) profile, including evidence of target

engagement by measuring downstream phosphoprotein

biomarkers, only modest evidence of single agent anti-

tumour activity has been observed with the oral pan-Class

I PI3K inhibitors [16,17]. Anecdotal examples of antitu-

mour responses to pictilisib include a patient with onco-

genic V600E BRAF-mutant melanoma and another with

platinum-refractory epithelial ovarian cancer exhibiting

both PTEN expression loss and PIK3CA amplification

[16]. Interestingly, in an expansion cohort of patients with

non-Hodgkin’s lymphoma treated with BAY80-6946,

5 RECIST partial responses were observed in six evalu-

able patients, with FDG-PET studies confirming disease

regression [21]. A phase II study of BAY80-6946 in

patients with non-Hodgkin’s lymphoma is ongoing

(NCT01660451) [25]. Activity in this setting is likely

to be driven by the subnanomolar IC50 potency of

BAY80-6946 against PI3Kd [26].
www.sciencedirect.com 
Isoform-selective PI3K inhibitors

PI3Kd isoform-specific inhibitors

As discussed, robust single agent clinical activity has been

observed with the FDA-approved PI3Kd inhibitor idela-

lisib in B-cell malignancies that exhibit lineage-depen-

dency on this isoform. PI3Kd plays a crucial role in B cell

regulation, including proliferation and survival, and

demonstrates high expression in leukocytes [27]. The

observation that PI3Kd is especially hyperactivated in

different B cell cancers provided strong rationale for

developing potent and PI3Kd-isoform specific inhibitors

in such haematological malignancies, rather than solid

tumours [28]. This was supported by multiple preclinical

studies demonstrating that such a strategy would lead to

selective B cell cytotoxicity with minimal effects on other

haematopoietic cells [29].

It is likely that its increased increased specificity for the

PI3Kd isoform, together with reduced hyperglycaemia

has enabled the administration of relatively higher doses

of idelalisib, leading to enhanced target and pathway

suppression, potentially greater than that obtainable with

dual PI3K/mTOR inhibitors and pan-Class I PI3K inhi-

bitors. Another promising PI3Kd isoform-specific PI3K

inhibitor is IPI-145 (Infinity Pharmaceuticals) which has

also demonstrated impressive results in patients with

relapsed haematological cancers, including CLL and

lymphoma [30].

PI3Ka isoform-specific inhibitors

While there is a general lack of consensus between

studies involving PIK3CA mutant cell sensitivity to

pan-Class I PI3K inhibition [31–36], recent preclinical

studies indicate that PIK3CA mutant cancer cells are

indeed more sensitive to the p110a-specific inhibitors

BYL719 (Novartis) and INK1117 (Millennium) [37,38]

and the ‘p110b-sparing’ p110a inhibitors GDC-0032

(Genentech) and CH5132799 (Chugai Pharmaceutical)

[33,39]. Early phase clinical trials involving the p110a

inhibitors BYL719 and GDC-0032 have demonstrated

signals of therapeutic activity with RECIST responses

in PIK3CA mutant solid tumours, providing early proof-

of-concept for this targeted monotherapy approach

[22,23].

On the basis of a robust preclinical relationship, only

patients with advanced solid tumours harbouring PIK3CA
aberrations were enrolled onto the phase I trial of p110a-

specific BYL719; of 102 patients treated, nine RECIST

partial responses (four confirmed) were reported [22].

Similarly, in the first-in-human phase I study of GDC-

0032, from 12 patients with PIK3CA mutant solid

tumours, five objective responses were reported [23].

Four of these PIK3CA mutant responders had breast

cancer, indicating a potential molecularly selected

tumour type for more focused clinical testing in the

future. This is especially important since only one further
Current Opinion in Pharmacology 2015, 23:98–107
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response was observed in the other 22 patients with

different advanced solid cancers, which were all con-

firmed to be PIK3CA wildtype.

PI3Kb isoform-specific inhibitors

Preclinical data have indicated that PI3Kb isoform-spe-

cific inhibition is more potently effective in cancer cells

with PTEN loss [40,41], and clinical trials involving

PI3Kb-targeted inhibitors GSK-2636771 (GlaxoSmithK-

line) [42] and AZD8186 (AstraZeneca) [43] are currently

ongoing to explore the safety and antitumour activity in

patients with tumours characterised by PTEN deficiency

or PI3Kb aberrations. Interestingly, the phase I trial of

GSK2636771 demonstrated PI3K pathway inhibition, but

limited antitumour activity in patients with PTEN-defi-

cient tumours [42]. However, early signals of antitumour

activity with RECIST responses were observed, suggest-

ing that patients with tumours harbouring concomitant

genetic alterations in PIK3CB may benefit from PI3Kb

blockade; exploratory genomic analyses of tumour sam-

ples from 10 prostate cancer patients revealed a PIK3CB
L1049R mutation in a tumour specimen from a patient

who remained on study for 33 weeks, and an increased

tumoural PIK3CB gene copy number in a patient who

achieved a RECIST partial response.

Recently, important insights have been revealed about

potential limitations of a and b isoform-specific PI3K

inhibitors. With regards to PTEN loss and p110b depen-

dency, evidence now suggests that concurrent mutations

that activate p110a, such as an activated KRAS mutation,

can cause a context-dependent shift away from PI3Kb

inhibitor sensitivity to PI3Ka inhibitor responsiveness

[44]. Furthermore, recent studies demonstrate that cancer

cells which are initially dependent upon either PI3Ka or

PI3Kb can overcome isoform-specific inhibitory selection

pressures through the upregulation of the alternate class I

isoform [45��,46��]. Crucially, these recent data demon-

strate a level of robustness in PI3K signalling, suggesting

that pan-Class I PI3K inhibitors or the combination of

potent PI3Ka and PI3Kb inhibitors may ultimately be

required to impact different cancers by suppressing or

overcoming the upregulation of the non-targeted PI3K

isoforms.

Challenges in patient selection strategies
Moving forward, it will be important to establish clear

patient selection criteria using predictive biomarkers of

response and resistance for the different classes of PI3K

inhibitors. Such patient selection is however complex

and multi-factorial, and is likely to be affected by issues

of intra-tumoural and inter-tumoural heterogeneity [47]

and also by the development of crosstalk and disruption

of signalling feedback loops [48]. For example, a recent

study demonstrated that the frequent presence of sub-

clonal driver mutations, such as E545K PIK3CA, may

necessitate the stratification of targeted therapy response
Current Opinion in Pharmacology 2015, 23:98–107 
according to the percentage of tumour cells in which the

driver is identified [49]. Positioning of PI3K gene muta-

tions on the trunk or branches of evolutionary trees is also

likely to be important for the extent or duration of

response.

Genotype-based sensitivity correlation studies that in-

cluded PI3K inhibitors have involved the assessment of

large cancer cell line panels in high-profile publicly

available publications and associated datasets such as

the Cancer Genome Project (CGP, Sanger Centre) and

the Cancer Cell Line Encyclopaedia (CCLE, Broad

Institute) [50,51]. Overall, large discrepancies were iden-

tified between the sensitivity-genotype associations iden-

tified by these two data sources, although the DNA

sequencing and RNA expression data were found to be

concordant [52��]. Because of this lack of consensus, it is

currently unclear which of these genetic associations are

fully robust and further studies are required to resolve

this. Note that it is important to consider precise PI3K

isoform selectivities and to include multiple different

inhibitor chemotypes so as to minimize off-target effects

and maximize robustness of findings [53].

Animal models are important to establish the quantitative

extent and duration of on-target and pathway inhibition

necessary for both biological and therapeutic effects [54].

These data can then be used to correlate preclinical PK–
PD profiles to toxicity and efficacy results. For example,

preclinical studies of the pan-Class I PI3K inhibitor

pictilisib demonstrated that greater than 90% inhibition

of AKT phosphorylation over several hours is required for

50% reduction in the number of proliferating cancer cells

in vitro and subsequent growth arrest in tumour xeno-

grafts [20,55]. In the subsequent phase I trial of pictilisib,

PK was dose-proportional, while phosphorylated AKT

levels were suppressed >90% in both platelet-rich plasma

at 3 h after dosing and in tumour at doses associated with

PK (area under curve [AUC]) >20 h mmol/L [16]. Signifi-

cant increases in plasma insulin and glucose levels, as well

as >25% decrease in (18)F-fludeoxyglucose (FDG) up-

take by positron emission tomography (PET) in seven of

32 evaluable patients also confirmed target modulation.

Despite these promising PK–PD data, single agent anti-

tumour activity was modest, with limited RECIST

responses observed [16].

Drug response prediction studies have generally utilised

mutation, copy number and gene fusion data to generate a

measure of pathway deregulation. This strategy has

allowed accurate prospective identification of cancer cells

sensitive to the pan-Class I PI3K agent pictilisib (false-

discovery rate or FDR < 10�10) and the dual class I PI3K/

mTOR drug GDC-0980 (FDR < 0.0019), as well as other

targeted agents in a large panel of cancer cell lines [56]. In

the future, it will be crucial to test the predictive power of

such an aggregate scoring system of signalling pathway
www.sciencedirect.com
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deregulation incorporating proteomic and phosphopro-

teomic data and using patient-derived samples and clini-

cally defined response criteria to assess if this approach

can reliably identify patients who are likely to respond to

PI3K inhibitors.

Rational targeted combination strategies
With the exception of the d-targeted drugs, because of

modest clinical effects observed so far with single agent

PI3K inhibitors — certainly less than is seen with BRAF,

MEK, EGFR and ALK inhibitors in the corresponding

vulnerable genotypes — it is important that rational com-

binations of PI3K inhibitors are pursued to maximize the

chances of revealing their full therapeutic potential in

cancer patients. Moreover, this is additionally important

because the PI3K pathway is a common mechanism of

resistance to multiple targeted agents, and conversely,

resistance to PI3K inhibitors may also develop due to

aberrant compensatory signalling through other path-

ways. Some currently pertinent combination strategies

are described in this section.

Activating PIK3CA mutations are the most frequent ge-

nomic alterations in oestrogen receptor (ER)-positive

breast cancers and PI3K inhibition results in increased

expression of ESR1 mRNA and ER protein together with

enhanced ER-driven transcriptional activity, with these

effects seen in laboratory models and in tumours from

patients treated with the PI3Ka-specific inhibitor

BYL719 [57]. Importantly, data from preclinical models

show that the anti-ER drug fulvestrant markedly

increases the response of ER-positive tumours to PI3Ka

inhibition, resulting in major tumour regression in in vivo
animal models, suggesting that combined PI3K and ER

inhibition is a rational approach to target such tumours.

Building on this, a randomized phase II breast cancer

study (FERGI) assessing the combination of pictilisib

and the ER antagonist fulvestrant in ER-positive aroma-

tase inhibitor-resistant advanced or metastatic breast can-

cer was recently reported [58]. In this study, although no

overall difference was observed in median progression-

free survival (PFS) between the combination of pictilisib

and fulvestrant versus placebo and fulvestrant, an explor-

atory analysis demonstrated that patients who were both

ER and progesterone receptor (PR) positive were 56%

less likely to have disease progression when treated with

the experimental arm versus placebo (median PFS,

7.4 versus 3.7 months; p = 0.002).

CDK4/6 inhibition was shown to sensitise cancer cells to

PI3K inhibition, producing a greater reduction of cell

viability. Tumours from patients responding to the PI3-

Ka-specific inhibitor BYL719 demonstrated suppression

of RB phosphorylation, while non-responding tumours

exhibited sustained or increased levels of phospho-

RB after treatment [59�]. This suggested persistent
www.sciencedirect.com 
phosphorylated Rb post-PI3K inhibitor exposure as a

potential clinical marker of acquired or intrinsic resistance

to PI3K inhibition. Furthermore, the combination of

PI3K and CDK4/6 inhibitors was shown to overcome

intrinsic and adaptive PI3K inhibitor resistance, causing

regressions in PIK3CA mutant tumour xenograft models.

Clinical studies are underway with the combination of

CDK4/6 and PI3K inhibitors [60��].

Resistance to PI3K inhibitors has been observed in cancer

cells in which upstream signalling is increased via upre-

gulated secretion of the EGFR ligand amphiregulin [61],

increased expression of receptor tyrosine kinases (RTKs)

such as EGFR, HER3 and IGF1R/IR due to FOXO-

mediated transcriptional upregulation [62], and activated

NOTCH signalling [63]. Promising preclinical data gen-

erated from studies combining RTK and PI3K inhibitors

indicate that antitumour responses to PI3K inhibition can

be significantly enhanced in triple negative breast cancer

models through the combination with a dual EGFR/

HER3 antagonist in vitro and in vivo, with important

implications for this relatively hard to treat subtype

[64]. Overexpression of kinases RSK3 and RSK4 has also

been demonstrated to confer resistance to PI3K inhibitors

through the attenuation of apoptosis and upregulation of

protein translation [65].

Other resistance mechanisms to PI3K inhibitors involving

MYC oncogene activation have also been proposed. A

chemical genetic screen in breast cancer cell lines impli-

cated the activation of both MYC and Notch pathways as

putative resistance mechanisms to PI3K inhibitors [63].

Use of an engineered mouse model with an activated

PIK3CA H1047R allele showed that MYC activation

resulted in acquired resistance to specific PI3K inhibitors,

independent of the PI3K pathway [66], while a study of

genetically defined mammary epithelial cells also impli-

cated either MYC or eukaryotic translation initiation

factor 4E (eIF4E) amplification, both associated with

elevated 50 cap-dependent protein translation, as a resis-

tance mechanism to the dual PI3K/mTOR inhibitor

BEZ235 [67]. This indicates that drivers of protein trans-

lation confer resistance to PI3K pathway-targeted drugs.

The preclinical combination of PI3Ka inhibitors with

EGFR, AXL, or PKC inhibitors can overcome the resis-

tance observed in squamous cell carcinomas (SCC) of the

head and neck, where SCC cells that become resistant to

PI3Ka inhibition maintain PI3K-independent activation

of mTOR [68].

The oncogenic RAS–RAF–MEK–ERK MAPK pathway

is possibly the most commonly reported escape mecha-

nism following PI3K pathway inhibition because of sig-

nalling crosstalk [35,69]. While dual inhibition of PI3K

and MAPK signalling has been reported to be synergistic

for increased cell death in preclinical models, data also
Current Opinion in Pharmacology 2015, 23:98–107
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suggest that narrow therapeutic indices due to overlap-

ping toxicities may be a challenge to the clinical success

of this combination, unless intermittent dosing strategies

prove efficacious [70]. For example, during the Phase I

study of the combination of the PI3K/mTOR inhibitor

SAR245409 (Merck Serono) and MEK inhibitor pimaser-

tib, escalation to their single agent doses was precluded

because of dose-limiting toxicities and the requirement

for dose modifications with chronic dosing [71]. A phase

Ib trial of buparlisib and the MEK1/2 inhibitor trametinib

(GSK) showed promising antitumour activity in patients

with KRAS mutant ovarian cancer; however, the chronic

tolerability of the combination at the recommended

phase II dose was challenging, due to frequent dose

interruptions and reductions for toxicity [72].

A recent preclinical study showed that baseline PI3K

activation is associated with greater resistance to inhibi-

tors of poly-ADP ribose polymerase (PARP) in small cell

lung cancer [73]. Previous studies had demonstrated

synergy between PARP and PI3K inhibitors in

BRCA1-deficient mouse models [74] and shown that

PI3K blockade promotes homologous recombination de-

ficiency by downregulating BRCA, thereby sensitising

BRCA-proficient tumours to PARP inhibition [75]. An-

other study supported the combinatorial inhibition of

PARP and PI3K as an effective option for PTEN-defi-

cient prostate cancer [76]. Clinical trials have recently

begun to test this rational combination hypothesis in

cancer patients [25].

Future perspectives and conclusion
Together with the approval of the PI3Kd inhibitor ide-

lalisib for different B-cell malignancies, there is now a

large armamentarium of different PI3K inhibitors with

diverse isoform-selectivity profiles in early to late clinical

trial testing, involving both monotherapy and combina-

tion strategies. Learning from the success with the PI3Kd

inhibitors and noting the modest clinical benefit to date

with single agent administration of other PI3K drug

classes, it is clear that we need to refine our views both

of target involvement and the corresponding therapeutic

strategies. Rational patient selection through the use of

analytically validated and clinically qualified predictive

biomarkers will be crucial. Obtaining tumour biopsies for

molecular profiling as well as minimally invasive analysis,

such as use of circulating plasma DNA, will be important

to predict sensitive and resistant patients, with further

refinement to identify clonal involvement to guide treat-

ment selection [77�].

Of likely importance is a very recent report that — in

contrast to mutations in the RAS–MEK signalling axis

that were less subclonal — 15% of mutations in genes in

the PI3K–AKT–mTOR signalling axis across different

tumour types are subclonal rather than truncal [49].

Responses are likely to be less impressive and durable
Current Opinion in Pharmacology 2015, 23:98–107 
where oncogenic mutations are subclonal rather than

truncal.

Where single agent PI3K inhibitor activity is not likely to

be effective owing to factors such as the lack of appropriate

genomic aberrations, the presence of clonal heterogeneity

or the development of adaptive feedback loops, it will be

essential to combine PI3K inhibitors — either with other

molecularly targeted drugs, hormonal agents, or alterna-

tively cytotoxic chemotherapy — in order to fully reveal

their full therapeutic potential. Such advances will only be

possible through further improvements in our understand-

ing of the underlying biology of tumours and the develop-

ment of appropriate isoform-selective drugs in specific

molecular settings. It is likely that there will continue to

be unexpected surprises. For example, amplification of the

mutant PIK3CA locus has been demonstrated to produce

resistance to PI3K inhibition [78].

Thereafter, we will need to identify the best PI3K

inhibitor combinations and to prioritize for clinical evalu-

ation those with the highest likelihood of patient benefit

and minimal toxicity. In the future, as preclinical models

and molecular profiling technologies become increasingly

sophisticated and robust, it is likely that we will have the

necessary biomarker tools and knowledge to support

clinical combination trials. For example, patient-derived

models of acquired resistance have recently been shown

in promising early studies to enable identification of

effective drug combinations for use in patients with

non-small cell lung cancer [79��]. Ultimately, combina-

tion studies involving PI3K inhibitors may be limited by

toxicity, and it will therefore be important to explore

different dosing regimens, including pulsatile schedules,

which may improve tolerability and optimise antitumour

activity. With such intermittent schedules, it may even be

possible to combine multiple drugs akin to approaches

used successfully to combat drug resistance in infections

such as HIV.

In conclusion, these are exciting times in precision cancer

medicine, with a range of different PI3K inhibitors avail-

able for use either as monotherapy or in combination

regimens. We now need to refine the clinical application

of PI3K inhibitors with different isoform selectivities

using robust predictive biomarkers and rational combina-

torial use with other antitumour agents, so as to maximally

impact cancer and provide patients with the greatest

chance of valuable benefit.
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