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Construction of biomaterials with the ability to guide cell
function is a topic of high interest in biomaterial development.
One approach is using components native to the ECM of the
target tissue to generate in vitro a microenvironment that can
also elicit specific responses in cells and tissues—an artificial
ECM (aECM). The focus is on collagen as the basic material,
which can be modified using a number of different glyco-
proteins, proteoglycans and glycosaminoglycans. Preparation,
immobilization and the biochemical characteristics of such
aECM are discussed, as well as the in vitro and in vivo response
of cells and tissues, illustrating the potential of such matrices
to direct cell fate.

What is aECM?

Implant integration depends on the interaction of tissue cells with
the implant surface. A prime goal of biomaterial development is
consequently the development of a surface that can guide and
direct these interactions.

One approach is based on the natural surroundings of the cells
in vivo: the extracellular matrix (ECM). This physical network
provides not only structure and support, but is also the biological
information that plays an important role in guiding develop-
ment, maintaining homeostasis and directing regeneration of cells
in a tissue-specific manner. It consists of a large and very hetero-
geneous set of components that are assembled locally into an
ordered, highly site-specific network: collagens, non-collageneous
glycoproteins (GP), proteoglycans (PG) and glycosaminoglycans
(GAG). Many of these ECM components confer cell adhesion

and have been used to increase cell adhesion to biomaterial
surfaces not optimally suited to it. Most adhesion receptors
function as signaling molecules, and engagement of different
receptors gives rise to a wide variety of intracellular signals that
in turn influence proliferation, differentiation and apoptosis.
Many structural components also associate with growth factors
and cytokines, regulating their function: storing, activating or
inactivating them, protecting them from degradation and
generating gradients cells can follow.

An artificial ECM (aECM) tries to utilize these functionalities
through reconstituting ECM components in vitro to construct a
microenvironment that mimicks the ECMs in its ability to guide
morphogenesis in tissue repair and engineering. Most ECM in
vivo has the collagen fibril as a central building block, and con-
sequently collagen, especially collagen type I, is most commonly
used in constructing an aECM. But native ECM structure varies
widely depending on the tissue and developmental stage, where
collagen is modified in structure and function by glycoproteins,
proteoglycans, and glycosaminoglycans. Through including some
of these components in the aECM—depending on the target
tissue and the purpose—aECM with different biochemical com-
position, fibrillar structure and mechanical properties, as well as
bioadhesive character, proteolytic susceptibility and growth factor
binding capacity can be constructed.1

Building aECM

Basis of aECM. The basis of aECM is in the majority of cases
collagen, just as it is the basis of ECM in the body. Collagen-
based aECM can be built using either suspensions of insoluble
collagen fibers, or solutions of collagen monomers which are then
allowed to form fibrils in vitro. Both can then be used in similar
ways to coat scaffolds and implants. This review will focus on
the use of fibrils generated in vitro from monomers, as this is
based on the natural capacity of collagen to self-assemble, and
thus bears a closer relation to the assembly and resultant structure
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of the fibrils in vivo especially if additional, non-collagenous
components are used.

Theoretically all fibril-forming collagens (I, II, III, V, XI, XXIV
and XXVII) could be used as described in the following if not
otherwise indicated, but the overwhelming majority of the
experiments were performed with collagen type I, as this is the
primarily occurring collagen in the body and is easily extracted
from tissues. There are some instances where recombinant
collagen has been utilized,2 but the in vitro formation of fibrils
from these monomers is often impaired as the post-translational
processing is not comparable to that of tissue-derived collagens.
Tissue-derived collagens, on the other hand, can be affected by
the extraction method used. Collagen monomers are soluble in
diluted acid, but most collagen in tissues is enzymatically cross-
linked via the telopeptides. Using acid extraction thus intact
collagen monomers can be attained, but only from the very small
fraction of non-crosslinked collagen. Pepsin digestion breaks
crosslinks by enzymatically degrading the non-helical telopeptides.
This gives higher yields and also reduces the already low anti-
genicity of collagen further, but has consequences for the self-
assembly of the monomers.

Formation of collagen fibrils. Allowing fibrils to form in vitro
based on the natural self-assembly potential of collagen gives a
certain amount of control over matrix properties by regulating
composition and structure in analogy to the in vivo process.
Such fibrils show the characteristical cross-striation pattern of in
vivo fibrils,3 indicating a close resemblace. This may influence
adherent cells, as the supramolecular organization of the collagen
matrix is of importance in cellular reactions.4 By being present
during fibril assembly and due to collagen-binding, non-
collagenous components can be included in the collagen matrix
by this method in a manner comparable to the in vivo process.
This can also affect collagen organization into fibrils and thus
structure and mechanical properties.

The self-association of collagen into fibrils is an entropy-driven
process, but the assembly pattern is determined by the charge
pattern on the monomer surface. Raising pH and temperature
into the physiological range will induce monomer assembly.
Fibril formation can be followed by the increase in turbidity.
Nucleation, in which metastable nuclei consisting of pairs of 4D
staggered molecules with a short N- and C-terminal overlap are
formed, takes place in the initial lag phase where no changes
in turbidity can be measured. Telopeptides are of importance in
coordinating this step. It is followed by a rapid growth phase
which is determined by longitudinal and lateral interactions of
the monomers with the growing fibrils.5

In vitro fibrillogenesis has been studied for a considerable time.
Most preparations of collagen fibrils are based on modifications of
the method from Williams,6 who determined conditions under
which the resultant fibril morphology was optimized with a clear
D-periodic banding pattern (Figs. 1A and 2A). The process of
fibril formation and the structure of the resultant fibrils are
influenced by a large number of parameters: in vivo, these include
the collagen type or types, the extent of procollagen processing,
and the presence of non-collagenous components; in vitro,
additional parameters to be considered are temperature as well as

pH and buffer composition, which influence the electrostatic
interactions of the monomers.7,8 The pH affects the formation of
early subfibrils, with low pH possibly stabilizing intermediate
states.9 A phosphate concentration of around 30 mM is necessary
for producing well banded fibrils, but too much phosphate
results fibrils with a changed morphology: increasingly DPS III
and DPS IV forms occur (where microfibrils are packed anti-
parallel with different staggers), together with other, smaller fila-
mentous aggregates.6,10 Ionic strength affects fibril size, probably
by influencing superfibrillar bundling based on changes in
electrostatic interactions.

Another important factor is the collagen preparation. As
mentioned above, acid-extracted collagen still has intact telopep-
tides, as opposed to pepsin-extracted collagen. These telopeptides
play a role in initiating fibrillogenesis. For collagen with degraded
telopeptides, self-assembly is slower, and the fibrils are slightly
thicker and less stable. Selective removal of N-telopeptides
results in so-called D-periodic symmetry (DPS) fibrils, in which
molecules assemble in an antiparallel manner, while loss of the
C-telopeptides results in relatively short cigar-shaped D-periodic
fibrils.5

Generation of multi-component aECM. The modifications
of collagen type I and II fibril architecture necessary in vivo are
based on the addition of other ECM components. These can
either be other collagens (the so-called minor collagens), glyco-
proteins or proteoglycans. The same principle can be applied
during in vitro fibrillogenesis. As an example, collagen type I and
III form heterotypic fibrils both in vivo11 and in vitro.12,13 In both
cases this results in a decrease in fibril diameter of collagen I,
probably due to a lessening of fibril bundling with collagen III
inhibiting the interfibrillar interaction. Type V has a comparable
effect where the N-terminal domains of type V extending outward
through the gap zones.14 Non-collagenous ECM components
with collagen-binding properties can also interact with the
collagen monomers during fibrillogenesis, influencing matrix
formation, composition, and morphology. Fibronectin (FN) for
instance may accelerate fibril assembly, while the ionic strength of

Figure 1. Type I collagen fibrils from rat tail prepared in vitro without (A)
and with (B) chondroitin sulfate (10 mg/100 mg collagen). The CS added
was chemically oversulfated to a sulfation degree of 3 sulfate groups per
disaccharide. The resulting fibrils are finer than collagen fibrils without
added CS. Images 5 � 5 mm, AFM tapping mode (the authors thank Dr S.
Heinemann for the AFM-investigation).
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the buffer system determines the amount integrated into the
fibrils.12,15 Also, collagen-laminin gels can seemingly be prepared
over a wide range of different ratios (10:1 to 1:1).16,17 Another
possibility to include such proteins in collagen matrices is through
allowing them to bind to pre-formed fibrils. The interaction
depends on the conditions under which the fibrils were formed:
Collagen type I fibrils generated in buffers of high ionic strength
bind about four times as much fibronectin as fibrils generated in
buffers of low ionic strength, reflecting the importance of struc-
tural parameters.12 The collagen type also plays a role: collagen
type III has a stronger interaction with FN than type I under all in
vitro conditions, so that in heterotypic fibrils the amount of FN
bound depends on the fraction of type III collagen in the fibrils.
The effect may be due to several factors, such as the larger surface
area of type III fibrils, changes in fibrillar architecture, or the
different affinities of the collagen types for FN.12

Many ECM proteoglycans are strong regulators of fibrillar
architecture; best known for this are the small leucine rich
proteins (SLRPs), such as decorin, biglycan, fibromodulin,
lumican, keratocan and osteoglycin. They consist of a protein
core with one or more glycosaminoglycan (GAG) chains. In most
cases they give rise to a delayed fibril assembly and a reduction
in fibril diameter (Fig. 2A and B), but not always: lumican
accelerates fibril formation, while biglycan does not affect fibril
assembly. The effect is based on an interaction of the protein core
with the collagen, though GAG variations can modulate it.18 The
main role of the GAG chains is based on their extending outward
from the bound core protein, thus inhibiting both the further
association of monomers and the lateral fusion of fibrils.19 In
vitro, PGs can only be included to a limited degree as they
generally inhibit fibril formation. Decorin/collagen ratios of 1:10
already result in a strong decrease both in fibril diameter and the
integration of collagen monomers into the fibrils.3 As with the
glycoproteins, different collagen types have different affinities for
PGs: collagen type II for instance binds more decorin and
biglycan than type I and III.20

One of the most commonly used combinations for aECM is
that of collagen with glycosaminoglycans. For this there is no true

in vivo analogy, as GAGs, with the exception of hyaluronan (HA),
are generally bound to a core protein, although there may be a
role for sugars as demonstrated for deglycosilated proteoglycans.21

Despite this, the combination of collagen with GAG has some
interesting properties.

Unlike the non-collagenous proteins, the interaction of GAGs
with collagen is unspecific and based on the net negative charge
of the sugars. Their effect on fibrillogenesis is heterogeneous:
Heparin induces a dose-dependent increase in fibril diameter22

and results in cigar-shaped fibrils, while chondroitin sulfate (CS)
(Fig. 2C) and heparan sulfate (HS) increase both mean fibril
diameters and heterogeneity of diameter distribution.3 Collagen/
CS gels also contain larger void spaces, and the viscous gel
component (loss modulus) is reduced.23

Since the interaction between collagen and GAG is based on
charge, the ionic strength is an important parameter in the
formation of collagen/GAG aECM. Especially in buffers of low
ionic strength, there is a very fast aggregation of collagen and
sugars with significant consequences for fibril morphology
(Fig. 2B), the degree of which depends on the individual
collagen and GAG types,24 with an increase in sulfation of the
GAG leading to a stronger interaction.25

To increase stability and reduce the speed of degradation in
vitro, the collagen-based aECM can be crosslinked.26 Using EDC
[1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride]
is the most common method; the crosslinking efficiency depends
on the molar ratio of EDC to GAG carboxylic groups.27 Other
possibilities are (1) glutaraldehyde, though here there may be
problems with cytotoxicity, (2) dehydrothermal crosslinking,28

where water content is reduced until interchain peptide bonds
can form or (3) the use of transglutaminase, which forms
ε(c-glutamyl) lysine isopeptide bonds.29

Immobilizing aECM

In the biofunctionalization of surfaces with aECM the immobili-
zation of the matrices is an important aspect. Basically two
methods can be used, either through covalent crosslinking or

Figure 2. Type I collagen fibrils from bovine hide prepared in vitro. (A) Collagen without additives. Note that fibrils of bovine origin are generally thicker
than those shown in Figure 1 . (B) Collagen with 10 mg decorin per 100 mg collagen. Addition of decorin results in increasingly finer fibrils. (C) Collagen
with 2 mg chondroitin sulfate A per 100 mg collagen. Lower amounts of CS with a lower sulfation degree (~0.9) result in fibrils that are larger than
collagen without additives, compared with the higher amount and sulfation degree as shown in Figure 1 . Images 5 � 5 mm, AFM tapping mode (the
authors thank Dr S. Heinemann for the AFM-measurement).
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through adsorption. Both have advantages and drawbacks:
Covalent crosslinking results in a very stable coating, but the
chemistry can be complicated and may result in changes that
affect protein functions. Adsorptive immobilization on the other
hand is a very simple process that can be conducted at physio-
logical parameters, but the interaction is at least in parts reversible,
and similar to crosslinking may lead to conformational changes
of less stable proteins.

Covalent immobilization. There are multiple methods of
covalent immobilization. In all cases functional groups of the
protein are part of the link. These can be lysine residues, which
readily form stable amine bonds with supports bearing active
esters, or amine groups. These form imines with aldehydes on the
material surface, which can then either be reduced to a stable
secondary amine linkage, or react with epoxides. Cystein residues
can interact with a-, β-unsaturated carbonyls like maleimides
and form stable thiolether bonds, and carbodiimide can convert
acidic residues into active esters which react with amine-bearing
supports.

Drawbacks are the generally random orientation of the
immobilized biomolecule and the fact that a sizeable number
may be inactive. This can be due either to sterical aspects, to
changes in protein stability (especially when carboxy- or amino-
bearing residues are used), or in protein activity (as for cystein
residues). To overcome these limitations, more complex,
biologically mediated methods are being developed (the reader
is referred to the review in ref. 30).

Collagen can be covalently immobilized—some commonly
used methods are low temperature glow discharge and cross-
linking with glutaraldehyde31 carbodiimide crosslinking with
coupling agent aminopropyl triethoxysilane and N, N'-disulpho-
succinimidyl suberate as linker,32 or deposition on reactive maleic
anhydride copolymers that mediate covalent attachment33—with
the general result of an improved biocompatibility. Especially in
the case of collagen, though, there is the question of whether a
covalent linkage is indeed necessary, or if the alternative method
of adsorptive immobilization is not sufficient.

Adsorptive immobilization. Entropic processes lead to an
aggregation of proteins at the interface between solid and liquid
phases. The interactions are determined by protein size, charge,
hydrophobicity and structure, by surface parameters such as
roughness, hydrophilicity and charge, and by the solvent and
other solute components present. The mechanisms responsible
are just as varied and include hydrophobic, electrostatic and
van der Waals interactions as well as structural changes in the
molecule, which may result in entropy or enthalpy changes,
though hydrophobic ones are usually considered to be the most
important.34

Adsorption is often considered to be a reversibel process, but
this is only partially true and depends on the free energy of the
adsorption: the higher this is, the less reversible the process will
be. During the initial minutes the interaction between protein
and surface is fast and indeed reversible, but then the surface
induces conformational changes in the protein that increase the
interaction and can lead to complete protein denaturation after
unlimited adsorption time.35 These conformational changes

contribute to the free energy and thus reduce desorption, but as
these changes are comparatively slow the desorption rate can be
described as a function of the contact time. Molecules with very
stable conformations can be expected to have only negligible
changes with little contribution to the free energy, thus forming
no strong adsorptive interactions. An exception are large, fibrillar
proteins: due to their high surface to volume ratio they have a
much higher number of potential binding sites than globular
proteins of a comparable size, and they can interact with the
surface via several segments. Although the adsorption free energy
of each segment may be small as no structural changes take place
to contribute, engagement of many segments will increase the
total adsorption free energy until the molecule does not readily
desorb anymore.36 In this case there is no time dependency and
adsorption is irreversible even after short times.

For this reason collagen fibrils can be immobilized using this
method with concentrations between 40 to 60 mg/cm2, and are
still stable against competitive adsorption of serum proteins.37

Solvents of a higher ionic strength tend to reduce immobilization
by about 20%, which indicates the importance of electrostatic
interactions. The effect is somewhat larger on collagen type III,
but generally there are no significant differences to collagen I,
and this may only be caused by the higher surface area resulting
from the finer fibrils. Heterotypic fibrils again take intermediate
positions.12

Including non-collagenous components usually had no influ-
ence on the adsorbed amount, excepting very thin fibrils as seen
for high decorin concentrations.3 The adsorption of all types of
collagen-based aECM is thus determined by the collagen part.

Characterizing aECM

Biochemical characteristics. This includes the stability of the
matrices against desorption, the release of individual components
(especially for multi-component aECM that depend on physio-
logical, non-covalent interactions), as well as the bioavailability
and functionality of the components (a large issue for crosslinked
matrices). What will also be taken into account is the ability of
matrices to interact with soluble mediators like growth factors
and cytokines, as many non-collagenous aECM components have
affinities for such factors.

Desorption of components. There is comparatively little infor-
mation about the desorption behavior of the components of
glycoprotein and proteoglycan containing matrices. For fibronec-
tin there seem to be two binding sites of different affinities on
collagen fibrils. There is no significant release of FN bound to the
high affinity site over five days under physiological conditions.
Any fibronectin bound after saturation of these high-affinit sites
probably interacts via a more unspecific mechanism, and is
released within the first two hours.12 Decorin shows a strong
interaction with collagen (dissociation constant 2.3 � 10210 M),38

and detectable desorption was small and limited to the first hour.3

This depended on the originally used amount, indicating that
here, too, unspecific binding may play a role. It seems fair to
assume that the mechanisms would be comparable for all collagen
binding proteins.
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The immobilization of larger amounts of non-collagenous
proteins thus requires a crosslinking step as for collagen-elastin
matrices with a ratio of 1:1. Without crosslinking 60% of the
elastin are released during the first 24 h, but EDC crosslinking
reduces this to 2% within 7 d.39

If GAGs are included in collagen matrices, there is a significant
desorption due to the unspecific, low affinity interactions if the
matrices are not crosslinked.3

Amount of immobilized components. The amount of GAG that
associates with collagen fibrils during fibrillogenesis depends on
the GAG, the collagen type and the ionic strength of the buffer.
As an example, collagen II binds more CS than collagen type I,
though fibril diameter is reduced instead of increased. The affinity
for different chondroitin sulfates is in the following order: CS C
. CS B . CS A,40 and is in all likelyhood due to the degree,
and possibly the pattern, of sulfation. Sulfated GAGs are also
associated to a much higher degree than unsulfated ones,23

underlining the importance of this factor.
If the GAG was included in the matrix by crosslinking it to

preformed fibrils, the immobilized amount was a function of the
available amino groups as well as on concentration of GAG and
EDC41 and in the range of 8% (w/w) for CS and 6% (w/w) for
HS.26,42

Interactions with growth factors. An interesting possible function
of aECM is the inclusion of non-collagenous components that
have the ability to bind growth factors and cytokines. Pure
collagen matrices could be shown to interact with TGF-β with
a slower release and a stabilizing effect on growth factor (GF)
activity as compared with titanium, indicating a protective
effect.43 The release of other GFs (bFGF, HGF and PDGF-BB)
is also retarded, most effectively for bFGF.44 Including other
ECM components like the collagen-binding domain I of the
proteoglycan perlecan can increase this ability. Collagen/perlecan
fibrils bound significantly more BMP-2 than collagen alone and
sustained a better release with 7% vs. 47% of the initially bound
amount after 3 d.45

Instead of whole proteoglycans, it often makes sense to use the
GAG chains. These are not only more easily accessible and have a
smaller effect on immune response and inflammation, but it has
also been shown that many GAGs can specifically interact with
GFs. Including heparin in collagen matrices impacts the release of
VEGF.46 These matrices appear to have three differently bound
subpopulations of VEGF. Fifteen to twenty-five percent of the
total amount are non-bound and responsible for the burst release,
10–20% may be non-specifically adsorbed to the collagen matrix,
while the rest is bound to the heparin molecules, probably
released with them and responsible for the enhanced angiogenic
potential of heparinized collagen.47 The activity of BMP was also
shown to be improved by sulfated GAGs, possibly through
retaining the growth factor in a soluble state.48

Behavior in vitro. The effect of ECM on cells has been studied
extensively; in this review the focus is on those studies that are
related to bone cells and tissues.

The surfaces of biomaterials can influence cell behavior through
several mechanisms. With artificial ECM, biochemical interac-
tions can be expected to be the most important ones, but

morphological and mechanical parameters may also play a role.
If the ECM is used as a coating (as opposed to a three-
dimensional scaffold) mechanical aspects will hold less import-
ance. Morphological aspects, on the other hand, will have to be
taken into account, as fibril morphology can be severely affected
by adding non-collagenous components, as described above. It is
not easy, though, to distinguish the influence this may have on
cells from the influence of biochemical changes, as composition
and texture of the aECM depend on each other. That the effect of
morphology is probably of a much lesser degree than the effect of
the biochemical changes can be deduced from the fact that
morphological changes of the collagen fibril induced by variations
of the assembly buffer system have no significant effect on cell
response.3

aECM with a specific interaction profile. All proteins of the
ECM such as the collagens, proteoglycans and glycoproteins are
able to specifically interact with cell receptors, which is to a large
part the basis of their function. Collagen had a long history as a
cell adhesion substrate, both as a coating (of monomers or fibrils)
or as a 3D scaffold. On titanium it promotes adhesion of
osteoblastic cells from fetal rat calvaria, though not the further
differentiation of the osteogenic precursor stages included in this
population,37,49 and prevents glyoxal-induced apoptosis.50 By
including other ECM components, with different cell interaction
profiles in the collagen matrix, it should be possible to achieve a
broader effect spectrum through changing mechanical and
biochemical properties of the fibrils. An increase in collagen
type III in the matrix adsorbed to titanium for instance induced
an increased collagen synthesis and a decrease in alkaline
phosphatase (ALP) activity and calcium phosphate deposition in
rat calvarial osteoblasts, while on collagen type I the situation was
reversed.15 This effect may be based on the role collagen type III
plays in the early phase of intramembraneous fracture healing
while collagen I only appears later and is associated with matrix
mineralization.11 Collagens I, III and V all promote attachment
and spreading of fibroblasts if used as coating on rigid substrates,51

on pliable substrates, though, the collagen V and I have different
effects, with I promoting and V impairing fibroblast spreading.52

Adding glycoproteins or proteoglycans instead of other collagen
types is essentially of higher interest, as these multifunctional,
multidomain proteins can convey a large number of ECM cell
interactions. It is not very common, though; apart from
fibronectin, mainly laminin and, to some extent elastin have
been utilized. As they bind to a cell adhesion receptor set different
from collagen, including them changes the mechanism of cell
adhesion to the collagen matrix. Depending on whether collagen
or collagen/FN is used, different integrin receptors are engaged
and activated.15 This activates other signaling pathways, which in
turn lead to other cell responses.

For laminin (or laminin derived peptides) in combination with
collagen, a positive effect on neuronal cell growth has been
shown.53 In human mesenchymal stem cells (hMSC) it activated
an ERK dependent pathway and induced an osteogenic pheno-
type.54 Other ECM proteins have also been shown to influence
hMSC. The cells bind to them with different integrin sets, res-
pectively, and with varying affinities (FN . collagen I . collagen
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IV . vitronectin . laminin-1). Osteogenic differentiation was
highest on vitronectin and collagen I, while almost none occurred
on fibronectin.55 Of the two, vitronectin induced enhanced focal
adhesion formation, activated FAK (focal adhesion kinase) and
paxilling, and reduced the activity of ERK (extracellular signal
regulated kinase) and PI3K (phosphoinositide 3 kinase) pathways.
Collagen, on the other hand, reduced focal adhesion formation,
reduced FAK and paxillin activation, and increased ERK and
PI3K activation.56 Collagen and vitronectin are recognized by
different integrin subsets (a2β1 for collagen, avβ3 and avβ5 for
VN), which indicates the importance these interactions may have
in regulating cell behavior.57

There are only comparatively few studies that deal with
collagen/proteoglycan matrices and their effect on cells. The main
influence of PGs is, unlike that of the glycoproteins, not based on
the direct interaction with cell adhesion receptors, but rather with
other cell surface receptors, and on their ability to bind growth
factors and cytokines. Decorin and biglycan in a collagen matrix
for instance are able to influence cell adhesion, as they accelerate
and enhance the formation of focal adhesions in osteoblastic
cells.3,20 They also promote proliferation of human osteoblastic
cells. Interestingly this effect is species specific, as rat osteoblas-
tic cells did not respond in this way. Also, biglycan inhibited
collagen synthesis only in rat osteoblasts and had no effect on
human cells.58 This illustrates that not only ECM composition
should be considered carefully, but also the intended target cells.

The effect of growth factors can also be modulated by the
matrix, either enhancing or reducing cellular responses. While on
collagen TGFβ reduced cell proliferation and raised collagen
synthesis, on collagen/biglycan there was a stronger reduction
in proliferation and on collagen/decorin a stronger increase in
collagen synthesis.20 BMP-2 in combination with collagen and
perlecan (the domain I fragment) supported chondrogenic
differentiation in mouse embryonic mesenchymal cells.45

aECM with an unspecific interaction profile. aECM that interact
with their surroundings based on more unspecific mechanisms
can also be created. A very common approach is based on
including GAGs as components that bear a large negative charge,
which determines their binding behavior. Tissue applications
include skin, peripheral nerve, muscle, cartilage and bone. The
effects of the matrices appear to be on cytoskeletal organization,
protein expression and differentiation.

In application for bone, CS is often chosen as the GAG moiety
as it is synthesized by both chondrocytes and bone cells. In bone
CS can speed up the mineralization process and consequently
bone repair, while in cartilage it is known to stimulate PG pro-
duction, inhibit cartilage cytokine production and to induce
apoptosis of articular chondrocytes. Like all GAGs it is anti-
inflammatory and it inhibits extracellular proteases involved in
the metabolism of connective tissues.59

Similar to proteoglycans, CS in collagen matrices promoted the
formation of focal adhesions, probably due to the comparatively
high density of negatively charged sulfate groups of the GAG.
Negative charges have been shown to improve early cell adhe-
sion.60,61 The mechanism may be based on an improved binding
of Ca2+, which is required for the formation of focal adhesions.62

Charge may not be the only regulating feature, though, as there is
also a dependence on CS type: CS-A and -B but not -C stimulated
focal adhesion formation if combined with collagen II.40

For most cells, e.g., chondrocytes and endothelial cells,
collagen/GAG matrices increased proliferation,63 an effect that
can be potentiated by adding VEGF.41,46

In populations of osteoblastic cells derived from fetal rat
calvaria, the interaction with glycosaminoglycans appears to
promote the further osteoblastic differentiation3 even more than
collagen without GAG.64 A comparable effect can be seen for
hMSCs where expression of osteoblastic markers and calcium
phosphate-deposition is increased even without the presence of
differentiation additives.65,66

aECM that interact with growth factors. GAG containing
matrices may also be able to interact with a number of soluble
factors that play a role in osteogenic differentiation, as many of
them require GAG side chains to facilitate their interaction to
their cell surface receptors.67 If these chains are also present in the
matrix, they can compete with the cell surface GAGs for GF
binding, modulating their effects. These effects are dependent
upon the GAG in the matrix. Heparin stimulated only minerali-
zation and ALP activity, while CS-E additionally affected collagen
deposition. Anti-BMP antibodies significantly reduced CS-E
induced mineralization, which indicates a close interaction of
BMP and the CS.68 Oversulfated CS can bind even more BMP-4
than the normally occurring types,69 stimulating osteoblastic
differentiation in MC3T3 cells.68

If hyaluronic acid is the GAG included in the matrix, responses
tend to be somewhat different. While small HA amounts (2.5%
wt) promoted cell adhesion and growth, larger ones (over 5% wt)
inhibited it.70 They also decreased the migration of hematopoetic
stem cells.33 Chondogenesis in MSC was supported, but added
TGF-β had no further effect,71 probably because no interaction as
with the sulfated GAGs is possible.

Behavior in vivo. Many experiments have been conducted
using collagen, either as a scaffold or as a coating for implant
materials. As with the studies on cell response, the focus here will
be on these studies that utilized collagen and other ECM
molecules as implant coatings in bone. A very common approach
for bone relevant materials is the use of mineral phases, but this
moves into the specific subtopic of biomineralisation and will,
despite their indisputabel relevance for bone applications, not be
considered here.

One caveat concerning the experiments discussed here has to
be mentioned: complex aECM consisting of more than one
component have only very seldomly been used for in vivo
experiments. For this reason many of the results presented below
deal with single component coatings only.

aECM with a specific interaction profile. Used most often by far
is collagen type I. Other collagen types such as III have shown
effects on osteoblastic cells, and in a goat model collagen type III
appeared to be more effective in less dense bone after 5 and
12 weeks.72 After 6 months (mandible of minipigs), though, no
differences could be seen between I and III anymore; both
coatings had given rise to significantly higher bone contact
compared with the uncoated, sandblasted control.73
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Another common application of collagen is the use as a carrier
for growth factors. GFs are potent regulators of tissue repair, but
still have to be used in very high amounts to achieve the desired
effects. The amounts that can be adsorptively immobilized to
collagen coatings are much smaller than this, but despite pro-
mising cell culture results often have no significant effect in vivo.74

Including growth factor binding ECM proteins in the collagen
matrix may be of use in this respect.

Glycoprotein and proteoglycans have only very rarely been
used in animal experiments. Between collagen and collagen/
decorin matrices adsorbed on titanium and implanted in the
mandible of minipigs no significant differences could be
detected.75 Experiments in rats, on the other hand, indicated
that different ECM components can elicit different tissue res-
ponses. Coated onto porous ePTFE discs and implanted into
the adipose tissue, fibronectin gave rise to an extensive inflam-
matory response with limited angiogenesis and neovascularisation,
collagen IV to a significant peri-implant angiogenic response
but little neovascularisation, and laminin-1 to both peri-implant
angiogenesis and a coordinate neovascularization of the porous
interstices of the biomaterial.76 The mechanism of the response
to FN seems to be based on stimulation of the cytokine res-
ponse which increases monocyte/macrophage recruitment and
differentiation into giant cells. Collagen IV, on the other hand,
functions as an angiostatic factor. It supports blood vessel
maturation in the peri-implant region, but not endothelial cell
migration and invascularisation. Laminin, lastly, seems to have the
widest effect, inducing both angiogenic factors and supporting
early as well as late angiogenic events.76

Structural aspects—that is not only which components are
included in a coating, but also the way they are presented to the
cells—may also be of importance: collagen/solubilized elastin
scaffolds induce angiogenesis and show no calcification in rats, as
opposed to collagen/fibrillar elastin.39

aECM with an unspecific interaction profile. For collagen/
glycosaminoglycan matrices there is again a larger body of in vivo
data. These matrices are usually crosslinked to limit the other-
wise inevitable desorption,26 but independent of this, their effect
on bone tissue appears to be in the early stages of healing.

One of the main effects of GAG seems to be on inflammation
and foreign body response. If either CS or HS are included in a
collagen matrix, there is only a transient inflammatory response
and a reduced foreign body reaction in rats,26 and macrophage
activity was reduced significantly.77 GAGs also may play a role in
inducing and promoting angiogenesis: collagen with heparin or
HS showed improved angiogenesis over collagen alone.26,41 The
vascularisation was improved only in the periphery and probably
transiently,42 but adding VEGF could further increased the
angiogenic potential.41 With bFGF the scaffolds were vascularized
through the whole matrix and remained so over the entire
implantation period of 10 weeks, considerably promoting the
generation of new tissue.42 Interestingly, bFGF in combination
with collagen alone had similar effects (e.g., transient and
peripheral vascularization) to the collagen/HS matrix without
growth factor. This seems to indicate that HS acts synergistically
with bFGF.

Including GAGs also led to positive results in the osseous
integration of implants, although this is probably due to a
different mechanism. Collagen coatings with CS on titanium give
a higher bone volume and bone implant contact than collagen
alone in the minipig mandible,78 with the main effect taking place
in the early healing phase.75 There may be qualitative differences,
too, compared with pure collagen coatings, as the extraction
torque of collagen/CS implants in the sheep tibia was higher than
for collagen and resembled that of hydroxyl apatite coatings,
despite the fact that after two months the differences in bone
apposition were no longer significant.79

The improved bone apposition for collagen and collagen/CS
coatings may be due to the quicker appearance of relevant cell
types compared with uncoated, grid blasted implants. Also,
osteoblast activity was higher on both coatings.77 This indicates
an increase in bone remodelling in the early stages of healing,
which leads to an improved bone implant contact after four
weeks: 89% for collagen/CS, 76% for collagen and 62% for
uncoated implants.80

Surface topography may also play a not insignificant role: In the
foxhound mandible, for instance, the bone implant contact of
both machined and acid-etched titanium samples was improved
through a collagen/CS coating, but the effect was much more
obvious for the machined surfaces.81

aECM that interact with growth factors. The ability of GAGs to
bind growth factors is another interesting aspect. Both BMP-2
and BMP-4 are known to induce bone formation when released
from a three dimensional collagen carrier, but unphysiologically
high amounts (often in the mg range) have to be used. Collagen/
heparin matrices have the ability to enhace the BMP effect
on osteoblastic differentiation, probably through protecting the
growth factors from degradation, and possibly by inhibiting BMP
antagonists.82

With two-dimensional coatings the situation is somewhat
different, as only much lower amounts can be immobilized due to
the reduced surface area. As a consequence either no BMP effect
could be seen,81 or, surprisingly, even a detrimental one. Bone
implant contact in the minipig mandible was 40% for collagen/
CS, but if a small amount of BMP-4 was included it was reduced
to 27%.83,84 The reason for this is unclear, but is serves to
illustrate the fact that much still needs to be uncovered to fully
understand how the ECM and soluble factors interact with each
other as well as with cells and proteins of the host tissue in the
process of healing.

Outlook

Up to now, only a few of the components that make up the
ECM in vivo have been utilized in the construction of aECM,
which is often due to difficulties in attaining them in sufficient
quantities. So far not used components or combinations of
components thus still offer much potential in constructing
defined microenvironments. Other promising approaches are
the incorporation of engineered proteins and protein fragments,
or GAGs with modified sulfation patterns. Both could enhance
specific functionalities over the naturally occurring levels. In
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GAGs the sulfation impacts the interaction with growth factors,69

so that modified GAGs might be used either in GF carriers
to immobilize higher amounts of growth factor, or can perhaps
even be sufficiently engineered to exploit their ability to act
synergistically with soluble factors.

The effect of mechanical cues on cells may also depend
more on matrix composition than commonly assumed, as the
adhesion receptors, especially the integrins, are probably

involved in the whole plethora of mechanotransduction
phenomenons.85

A better understanding of the complex mechanism behind the
observed effects of the extracellular matrix will be instrumental
for significant progress in this field, and the developments in
many areas of relevant research such as molecular medicine, cell-
matrix interactions or glycomics, to name only a few, hold much
promise for the future.
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