
   Chapter 11   
 Cell Defence and Survival        

  Abstract   Central to immune defence mechanisms is the role of transcription factor 
nuclear factor kappa B (NF-κB). This is a complex biochemical topic with ever 
more controls revealed. NF-κB determines the production of proinflammatory 
cytokines and chemokines. Pharmacologists step in with possible means of control. 
Other systems involved in defence include the cyclooxygenase 2 (Cox-2) enzyme 
and perioxisome proliferator-activated receptors. Insulin receptor activation needs 
to be seen in context. The mTOR  system directs uptake of nutrients by cells. 
mTOR is suppressed by rapamycin, whose usage is now quite considerable in the 
control of transplant rejection.  

  11.1 Transcription Factor NF-kappa  

 Nuclear factor kappa B (NF- k B) was identified in 1986 as a transcription factor (TF) 
that binds to the enhancer of the B cell immunoglobulin- k  light chain gene. NF- k B 
proteins are cell homologues of viral v-Rel . NF- k B functions as homo- and het-
erodimers (p50/p65) (Fig. 11.1a) that share a 300-amino acid DNA binding domain 
at the amino terminal called the Rel homology domain (RHD) (Fig.  11.1b ), which 
allows nuclear localization and dimerization  [1] . These units are held in the cell cyto-
plasm bound to an inhibitory unit I-kappa B (I k B). The I k B proteins have ankyrin 
repeats that attach to the RHDs. When the I k B units are phosphorylated on two serine 
residues, they are ubiquitinated and degraded by the 26S proteasome. Thus, the I k Bs 
are removed, and the RelA (p65) RHDs then move rapidly into nuclei to cause activa-
tion of target genes [2–4]. In the nuclei, the dimeric Rel homology domains bind to 
a decameric DNA sequence 5 ¢ GGGRNNYYCC-3 ¢ , where R indicates A or G, Y is 
C or T, and N is any base. The ability of the dimers to recognise slightly differing 
DNA targets means that a whole range of genes is regulated differentially.        

 Accordingly NF- k B is a family of TFs that play a crucial role in the immune and 
inflammatory responses of cells and in cell survival  [5–  7] . Various stimuli activate 
NF- k B  [8,   9] : (a) proinflammatory cytokines interleukin 1 (IL-1) and tumour 
necrosis factor- a  (TNF a ), (b) oxidants like H 
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 O 

2
 , (c) ceramide, (d) protein kinase 
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  Fig. 11.1a    Activation of nuclear factor kappa B ( NF- k B ) by inflammatory stimuli. Microbial 
products or cytokines that induce NF- k B trigger phosphorylation of unit I-kappa B ( I k B ) kinase 
( IKK ) - a  and - b . The heterodimers IKK a  or - b  then bind to the regulatory IKK g , Nemo, and each 
heterodimer [1] phosphorylates the I k B inhibitory proteins, so that they undergo proteasomal 
degradation. NF- k B p50, p65 is then freed and will move into the nuclei. With regard to the role 
of ubiquitination  [2,   3] , it regulates three steps: (a) degradation of the inhibitor I k B, (b) processing 
of the NF- k B precursors and (c) Traf 6  ubiquitination, which activates the IKK. Proteasomes are 
implicated in NF- k B activation: (a) in generation of p50 from the precursor p105 and (b) in the 
degradation of I k B a . Types I and II interferons induce immunoproteasomes in which the reactions 
are much quicker. Calpain activates NF- k B since it degrades the PEST (proline, glutamate, serine, 
threonine) sequence in the inhibitor I k B a.         b   Structures of nuclear factor kappa B ( NF- k B ) family 
members. All five NF- k B members are related through the conserved Rel homology domain ( RHD ), 
which contains sequences for DNA binding, dimerization, inhibitor association and nuclear localiza-
tion. The members c-Rel, RelA and RelB contain a C-terminal transactivation domain ( TAD ). The 
function of the TADs is enhanced by phosphorylation and acetylation. The second group (the p105/
p50 and p100/p52) arises as precursors p100 and p105 that are partially proteolysed by the 26S 
proteasome to yield the mature p52 and p50 units. They contain C-terminal sequences with inhibi-
tory ankyrin ( ANK ) repeats, and this means that they can also function as unit I-kappa B ( I k Bs ) and 
retain Rel proteins in the cytoplasm. The five to seven ankyrin repeats of inhibitory I k B proteins 
interact with NF- k B dimers and mask their nuclear localization signals ( NLSs )  
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B (Akt), (e) protein kinase C (PKC)  [10]  and (f) viruses. Intracellular oxidants  [11, 
  12]  help the I k B inhibitors to be dissociated from the NF- k B units. Hence, intracel-
lular reductants like glutathione and thioredoxin have differential roles in the redox 
regulation of target proteins, and S-nitrosylation can inhibit NF- k B DNA binding 
 [13] . Yet, within nuclei it is the more reducing environment there that enables 
NF- k B RHDs to bind onto the DNA. 

 As you will now expect, zymosan proinflammatory agent stimulates NF- k B, 
causing release of IL-8 so that neutrophils are attracted  [14] . That process can be 
inhibited by nitric oxide (NO) or by IL-10 inhibition of NF- k B  [15] . Examination of 
synovial tissue in rheumatoid arthritis shows marked expression of NF- k B1 at sites 
adjacent to the cartilage-pannus junction. NF-kB activation upregulates chemokines 
and adhesion molecules and neutrophils and macrophones are then recruited. 

 Extra comment about Nemo (I k B kinase- g , IKK g ) is appropriate as this is a 
developing field  [16] . Nemo has two coiled domains, CC1 and CC2, and a leucine 
zipper. Nemo interacts with many proteins involved in NF- k B activation. It is 
polyubiquitinated but on differing lysine residues according to the stimulus  [17] . Its 
potential is also influenced by sumoylation and phosphorylation. 

  11.1.1 The Classical Canonical NF- k B Pathway 

 The IL-1 b  and TNF a  cytokine receptors connect via upstream kinases to the activation 
of NF- k B  [17,   18] . The two IKK kinases  a  and  b  have an activation loop like that 
of the mitogen-activated protein kinase kinase (MAPKK) proteins, which bears two 
serines that are phosphorylated in response to IL-1 or TNF a . Cytokine IL-1 can 
activate either IKK b  or the IKK a . 

 As shown in  Fig. 11.1a  , serine-threonine kinases IKK a  and IKK b  form homo- 
or heterodimers in conjunction with stabilising protein Nemo (the NF- k B essential 
modulator), also termed IKK g   [4,   19] . Binding of Nemo to Lys63-polyUb-RIP1  
forms the active kinase complex IKK g , IKK b -P , IKK a -P  that phosphorylates the 
inhibitor unit I k B a   [20] , which then dissociates and is destroyed by ubiquitination. 
Accordingly, NF- k B as p50/RelA is free to enter nuclei. Oscillations in intranuclear 
NF- k B coupled to cycles of phosphorylation of RelA and I k B are required for 
NF- k B-dependent gene expression  [21] . As revealed in Table  11.1 , NF- k B acti-
vates a range of genes relevant to inflammation and innate immunity. There are 
genes for the cytokines and chemokines and for regulation of the cell cycle, 
survival, adhesion and invasiveness. Both apoptotic and antiapoptotic genes are 
induced. Genes with a role in feedback regulation of the NF- k B, such as I k B a  and 
A20, are induced early.  What does A20 protein do?  It inhibits the IKK complex, it 
inhibits RIP  ( Fig. 12.5 ), and it inhibits TAK1  kinase. By inhibiting RIP, A20 stops 
TNF a -induced NF- k B activation, a step that requires Richard TAXIBI [21b].     

 NF- k B is a key participant in multiple processes affecting the immune system 
and inflammation. It can interact with other TFs like  Interferer Regulatory Factors 
(IRFs), signal transducers and activators of transcription (STATs) and the p53. Such 
promiscuity might explain the many roles of NF- k B in cell functions and fate  [22] . 
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Hydrogen peroxide (from ROS) prolongs nuclear localization of NF-κB in 
activated cells [22b]. Fortunately, there is control by heat shock proteins HSP70 
and HSP90  which regulate the IKK complex [22c].

 NF- k B plays a crucial role in inflammatory processes .  Activation of p38 mitogen-
activated protein kinase (MAP) kinase is well recognised to activate NF- k B  [23] . If 
a single injection of lipopolysaccharide (LPS) is given intraperitoneally to mice, there 
is transient NF- k B activation in lung cell types. When the LPS is infused by a 
pump, there is widespread NF- k B activation and neutrophilic infiltration that 
begets lung injury following release of cytokine IL-8 ([MIP2] of mice) (Table  11.1  ). 
Since the search is on for means of controlling ARDS (adult  respiratory distress 
syndrome), an inhibitor of NF- k B could be found to reduce the lung inflammation. 
As for natural restraints PIAS   [24]  or MK2   [25]   or Cezzare [22b] or CYLD  deu-
biquitinating enzyme  [26]  block NF- k B activation. In resting neutrophils, RhoA 
GTPase inhibits the NF- k B to prevent TNF a  production, and yet in LPS-stimulated 
neutrophils RhoA activates NF- k B and supports TNF a  formation  [27] .      

  11.1.1.1 The Roles of Subunits: subtle feedback control mechanisms 

 The various homodimers and heterodimers of NF- k B are kept inactive by associa-
tion with cytoplasmic inhibitory proteins  [28] . They are I k B a , I k B b  and I k B e  and 
also the p105 and p100 precursors of p50 and p52 . Are there roles for the  a -,  b -, 
 g -subunits of the IKK complex?  [29] . IKK a  is a histone H3 kinase that moves into 
nuclei to associate with the promoters of NF- k B-responsive genes  [30,   31] . IKK a  

 Table 11.1    Common genes activated by nuclear factor kappa B (NF- k B)  

 Class  Target gene 

 Immunoreceptors  Immunoglobulin  k  light chain 
   Interleukin 2 receptor  a -chain 
   Major histocompatability complex class I/II 
   Platelet-activating factor receptor 
   Tissue factor 
 Cell adhesion molecules (CAMs)  Endothelial leucocyte adhesion molecule 1 (ELAM-1) 
   Vascular cell adhesion molecule 1 (VCAM1) 
   Intercellular cell adhesion molecule (ICAM1) 
 Cytokines and growth factors  Tumour necrosis factor- a  (TNF a ) 
   Interleukin 1 b  (IL-1 b ), IL-2, IL-6, IL-8, IL-12 
   Transforming growth factor- b  
   Granulocyte colony-stimulating factor (G-CSF) 
 Chemokines  Monocyte chemotactic peptide 1 (MCP-1) 
   Macrophage inflammatory proteins (MIPs) 1 a , 1 b  
 Acute-phase proteins  C-reactive protein (CRP) 
   Lipopolysaccharide-binding protein (LBP) 
 Others  Nitric oxide synthases (NOSs) 
   Cyclooxygenase 2 (Cox-2) 
   Phospholipase A2 (PLA2) 
   Metalloproteinases 
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contributes to NF- k B DNA binding on gene promoters; thus, it derepresses IL-8, 
cIAP2  and more. Yet, it creates a negative feed-back loop for NF-kB and macrophage 
activation  [32, 32b, 33] . In fact, IKK a  resolves inflammation by switching off the 
canonical pathway. By accelerating turnover of cRel and RelA, IKK a  attenuates 
IKK b  driven NF- k B activation and so inflammation. It can also promote adaptive 
immunity via the non-canonical pathway  [33] . 

 When Nemo/IKK g  shuttles into nuclei, it creates feedback by repression of NF- k B 
gene expression. Nemo binds to other proteins like RIP and A20, and it regulates 
the IKK-related kinases IKK e  and TBK1 (TANK binding kinase 1), which regulate 
interferon regulatory factors IRF3 and IRF7 . 

 As for IKK b , it can increase the activity of hypoxia-inducible factor 2 a  (HIF2 a ) 
[33b], so linking hypoxia to innate immunity and inflammation, and it activates a 
subset of (IFN g )-stimulated genes. For sure IKK b  promotes the canonical pathway 
of NF- k B activation (Fig. 11.1a)  [29] . IKK b  promotes the MAP kinases and cell 
proliferation (e.g. in skin keratinocytes)  [29] . All the actions are tissue specific. Yet, 
IKK b  exerts negative control over the production of IL-1 b   [34] .    Furthermore in 
some situations IKK b  can suppress M1 host defence macrophages, so that it is anti-
inflammatory[34b], but it promotes M2 immune regulation macrophages [34c].

  11.1.2 The Alternative Noncanonical Pathway 

 There is an alternative means of NF- k B activation  [35] . Lymphotoxin, BAFF (B 
cell-activating factor), CD40L or RANKL (receptor activator of NF- k B ligand) 
activate NIK (NF- k B-inducing kinase), and it then acts on IKK a  homodimer, 
whose target is NF- k B2, p100. Phosphorylation-dependent ubiquitination of the 
p100 is only partial. The N-terminal p52 is released and joins with RelB to enter 
the nuclei (Fig. 11.2). This alternative path via p52/RelB enables BAFF (BLys) to 
activate B lymphocytes. The alternative path essentially provides organogenic 
chemokines  [4]  for the development of lymphoid tissue  [36]  and adaptive immunity. 
The NF- k B2 is also required for establishment of thymic central tolerance through 
an Aire-dependent pathway  [37] . AIRE  is the autoimmune regulator gene, and 
NF- k B2 is required in medullary thymic epithelial cells. 

 Whenever Rankl stimulates osteoclastogenesis, the NF- k B2 p100 path is impli-
cated  [38] . Acting on receptor rank  on bone stromal cells, Rankl stimulates their 
NFATc1  and c-fos so that osteoclasts are formed. This activation is reinforced by 
Ca 2+ -calmodulin (CaM) stimulation of NFATc and of CaM kinase IV, which stimulates 
cAMP response element-binding protein (CREB) on the promoter for osteoclast 
marker genes. NIK has been shown by the study of mouse knockouts to control 
the activities of lymphocytes and osteoclasts in inflammatory arthritis  [39] . NIK −/−  
mice have no peripheral lymph nodes, defective T and B cells and impaired 
Rankl-induced osteoclastogenesis. One might also be interested that when ultra-
violet light acts on skin to cause immunosuppression by induction of Treg cells, 
Rankl on keratinocytes first stimulates Rank  on Langerhans cells. Vitamin D 

3
 , 

which is immunosuppressive, also induces Rankl  [40]  .         
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  11.1.3 More about NF- k B Control 

 All NF- k B activation pathways share the proteasome-mediated step (Fig.  11.1  ) 
that causes the degradation of the inhibitory proteins. Posttranslational modifi-
cations like phosphorylation  [42] , acetylation  [43]  or prolyl isomerization 
modulate the activity of the p65 (or p50) subunits. Thus, acetylation of multiple 
lysine residues by p300/CBF  acetyltransferases (Fig. 4.8) modifies the behav-
iour of NF- k B components. Acetylation works as an intranuclear molecular 
switch  [44] . Acetylation of p65 stops inhibition by I k B a  and controls nuclear 
NF- k B. Oxidative stress, via its formation of H 

2
 O 

2
 , which enhances degradation of 

I k B a , enhances NF- k B activity [22b]; thus, macrophages have increased pro-
duction of cyclooxygenase 2 (Cox-2), prostaglandin E2 (PGE2), and matrix 
metalloproteinase 1 (MMP-1)  [45] . 

 Activation of NF- k B-inducible genes (Table  11.1 ) usually takes place by means 
of the p65/p50 DNA binding heterodimers of the classical pathway. Significant fluc-
tuation in p50 levels can alter the abundance and composition of NF- k B complexes 
within  a cell. When animals or cells are exposed to repeated small doses of LPS, the 
output of cytokines via NF- k B activation is thwarted, and the animals or cells show 
 endotoxin tolerance . The explanation is that p50/p50 homodimers are formed instead 
of the p65/p50, and the consequence is suppression of NF- k B-inducible genes  [46] . 
p65 has a transactivation domain, whereas p50 does not. p50/p50 homodimers (as 
produced by IL-10 or by protein kinase A) are inhibitory. Cells that are tolerant to 
endotoxin still respond to LPS with the degradation of I k B and nuclear translocation 
of p50 and p65. Yet, they cannot form IL-1 b . In such cells, it was found that RelB 
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 Fig. 11.2    Comparison of the canonical and alternative paths of nuclear factor kappa B ( NF- k B ) 
activation. Nemo also connects IKK complexes with IKK ε and TBK1 kinases. Monarch-1 sup-
presses the noncanonical NF- k B2 activation by causing proteasomal degradation of NF- k B-
inducing kinase ( NIK ). In T lymphocytes, the NF- k B2/p100 is a late-acting negative-feedback 
molecule affecting T cell receptor activation of the NF- k B  [41]   
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represses inflammatory gene expression  [47] . Alternatively, in endotoxin tolerance, 
mobilization of Toll-like receptor 4 (TLR4) into lipid rafts is curtailed  [48] . 

 p53 turns out to be a buffer of the innate immune system because p53 works as an 
antagonist of NF- k B to dampen chronic inflammation. p53 null  macrophages show 
very high release of cytokines IL-1, IL-6 and IL-12 in response to LPS or IFN g . In 
fact, p53 downregulates Stat1  and proinflammatory cytokines  [49] . In some cells, like 
leucocytes, I k B z  negatively regulates intranuclear NF- k B activity  [50] . We have 
noted how LPS exposure can attenuate TNF a  gene transcription because NF- k B p50 
homodimers bind to the TNF a  promoter. In addition, LPS induces Bcl-3 (B cell 
lymphoma 3), which is an anti-inflammatory regulator  [32b,51] . Bcl-3 is only located 
in cell nuclei, and it associates with p50/p50 homodimers and acts as a negative regu-
lator of TLR signalling  [52] . Bcl-3 reduces transcription of proinflammatory 
cytokines. It mediates some of the anti-inflammatory activities of IL-10 (Sect. 12.16) 
Bcl-6 is another transcriptional repressor protein. Repression by Bcl-6 is cell-type 
specific. Bcl-6 negatively regulates the expression of the NF- k B1 p105/p50 subunit. 
In macrophages, it negatively regulates the chemokines monocyte chemotactic pep-
tide 1 (MCP-1) , MCP-3 and MIP-1  [53] . Indeed, in Bcl-6 −/−  mice there is florid T 
helper lymphocyte Th2-mediated inflammation. Bcl-6 is essential for formation of 
germinal centres and for a normal antibody response  [54] . Bcl-6 suppresses p53 
expression in germinal centre B lymphocytes. Bcl-6 interacts with TF Miz-1  to sup-
press p21 and thus to allow proliferation of germinal centre B cells  [55] . Activating 
mutations or chromosomal translocations that affect Bcl-6 are relevant to B cell lym-
phomas  [56,   57] . The t (3;14) translocation affecting Bcl-6 is part of diffuse large B 
cell lymphoma (DLBCL). 

 One should consider the pharmacological means of control of NF- k B (Table 11.2). 
Commensal gut bacteria like  Bacteroides  reduce the activity of NF- k B in gut 

 Table 11.2    Mediators and drugs that inhibit nuclear factor kappa B (NF- k B)  

 Physiological 
 Interleukins 10 and 13 transforming growth factor- b  
 IKBNS  inhibitor, heat shock proteins HSP70 and HSP90, Nemo-binding domain peptide, CYLD  
 Cyclic adenosine monophosphate (cAMP), glucocorticoids, oestrogen, melanocortins 
 Nitric oxide late in macrophage activation a  S-nitrosylation  [9]  
 T suppressor lymphocytes (Treg) tumor suppressor p53 
 Pharmacological 
 Cyclopentenone prostaglandin 15-deoxy-PGJ2 , and the EETs, prostaglandin E2 (PGE2) 
 Salicylates, acetylsalicyclic acid, sulindac (nonsteroidal anti-inflammatory, NSAID), sulfasala-

zine, mesalamine 
 Antioxidants: vitamin E,  N -acetylcysteine, taurine-chloramine, lipoic acid 
 Lipoxin A4, pyrolidinedithiocarbamate, conjugated linoleic acid (CLA) 
 PPAR g  agonists like the thiazolidinediones (TZDs) and PPAR a  
 Immunosuppressant cyclosporin 1,25(OH)2 vitamin D 

3
  alcohol 

 ACE inhibitors, statins-HMG-CoA reductase inhibitors 
 Flavonoids, silymarin, green tea polyphenols, curcumin, capsaicin, flavopiridol 
 Deoxyspergualin, geldanamycin, retinoids, vitamin D analogues 
 Proteasome inhibitors: velcade, lactacystine, epoxomycin, peptide aldehydes 

 a Early in macrophages, nitric oxide induces NF- k B, but later it inhibits it 
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mucosal epithelial cells. Actually,  Bacteroides  species activate perioxisome prolif-
erator-activated receptor- g  (PPAR g ) receptors, which take RelA out of cell nuclei of 
the gastrointestinal (GI) epithelium. Hence, cytokine production via NF- k B is 
suppressed  [58] . Clearly, inflammatory reactions at the gut mucosa can cause much 
trouble. Hence, note that local GI macrophages show downregulation of their 
TREM1 (triggering receptors expressed on myeloid cell 1)-activating receptors. 
TREM would amplify cytokine-induced responses. This is explained by the local 
environment, in which there is plentiful IL-10 (suppressive cytokine) and trans-
forming growth factor- b  (TGF b )  [59] . 

 Enhanced NF- k B activity occurs in the gut mucosa in inflammatory bowel 
diseases. In Crohn’s disease, there is high expression of the immunoproteasome so 
that there is enhanced processing of the p105 → p50 and enhanced degradation of 
inhibitor I k B a . Then p50/c-Rel is important for IFN g  induction of proteasomes via 
IL-12-driven Th1 cell responses  [60] . 

 Phosphorylation of cRel is needed for antiviral responses. Accordingly, TBK1 
(Tank binding kinase-1) and IKK e  phosphorylate the C-terminal of cRel so that 
p50/cRel can bind at NF- k B sites  [61] . TBK also phosphorylates IRF3. This means 
that interferors IFNα /β are induced (Chap. 14) [62].   

  11.2 How to Inhibit NF- k B  

 Anti-inflammatory cytokines IL-10 and IL-13 suppress the activation of NF- k B. 
Unlike many cytokines, IL-10 does not activate the NF- k B. Heat shock proteins 
inhibit NF- k B by stopping the degradation of I k B  [22c] . There is accumulating 
information on drugs and antioxidants like N-acetylcysteine  [63] , resveratrol of red 
wine or the polyunsaturated fatty acid (PUFA) conjugated lineoleic acid (CLA) 
 [64]  that inhibit NF- k B activation and thus have anti-inflammatory properties. 

 Those with therapeutic inclinations will be interested in physiological mediators 
and drugs that can be used to inhibit NF- k B (Table 11.2). The immunosuppressant 
cyclosporin stops RelA activation and so reduces IL-2 formation by T lymphocytes 
 [65] . Decoy deoxynucleotides or negative mutants of NF- k B are used by the biochem-
ist. A recent review of pharmacological aspects of NF- k B  [66]  listed inhibitory pep-
tides for NF- k B that have been used in anti-inflammatory exploration. The 
cyclopentenone 15-deoxyPGJ2  is anti-inflammatory by virtue of its ability to modu-
late TFs  [67] . It also acts to potentiate nitric oxide (NO), stopping neutrophil ingress. 

 In this amazing list of diverse agents, note that T regulatory (suppressor) lym-
phocytes act, in part, by inhibition of NF- k B. Thus, Li et al.  [68]  demonstrated how 
suppressor lymphocytes stop the presentation of CD86 on antigen-presenting cells 
(APCs). I k BNS is an inhibitor that binds to nuclear Rel/p65. It accounts for nega-
tive selection of thymocytes  [69]  and T lymphocytes or macrophages [32b]. 

 Dendritic cells (DCs) use NF- k B for their maturation, and they use NF- k B to 
help form Th1 lymphocytes and CD8 cytotoxic T cells. NF- k B p50-RelA determines 
the differentiation of DCs and their survival, and their formation of IL-12 depends 
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on NF- k B p50-cRel  [70] . Not surprisingly, we know of numerous microorganisms 
that are able to subvert NF- k B activation to gain entry into the body  [71] . 
Conversely, if there is p38 MAP kinase activation, that will lead to NF- k B induc-
tion of inflammatory genes  [72] . NF- k B supports adaptive immunity and the elimi-
nation of microbial invaders. 

 Glucocorticoids, on that list, are immunosuppressive agents. Their glucocorticoid 
receptors (GRs) suppress the activity of CREB-binding protein (CBP)/p300 induce 
corepressors like histone deacetylase 2 (HDAC2)  [73] . Similarly, PGE2 is anti-
inflammatory by virtue of the fact that it enhances the expression of I k B a , and inef-
fectual p50/p50 homodimers form  [74] . It turns out that 1,25(OH)2 vitamin D 

3
  and 

1,24(OH)2D2 inhibit TNF a  expression by macrophages. What is more, these forms 
of vitamin D increase the activity of I k B a ; thus, they inhibit NF- k B activity  [75] . 

 Obviously, using PPAR g  and - a  agonists (Fig 4.14) is a way of dealing with 
inflammation. PPAR a  knockout mice show augmented inflammation. In them, 
there is marked expression of TNF a  and IL-1 b  and expression of Fas ligand in the 
course of carrageenan-induced paw oedema or carrageenan-induced pleurisy  [76] .  

  11.3 Gene Knockout or Transgenic Experimental Animals  

 The involvement of effector molecules in physiological or pathological processes can 
now be elucidated or confirmed by the use of gene knockout (ko) or transgenic (tg) 
mice, into which an extra gene is inserted. Already, examples have been mentioned. 
Mouse models that lack almost all the known genes for G protein  a -subunits have 
been generated to give insight into G protein signal pathways. G a q-deficient platelets 
fail to aggregate in response to thrombin, adenosine diphosphate (ADP) or thrombox-
ane A2 (TxA2) due to lack of agonist-induced phospholipase C activation. Mice 
lacking G a q have increased bleeding times and are protected against thromboembo-
lism. Mice with knockout of gene granulocyte-macrophage colony-stimulating factor 
(GM-CSF) develop silting of the lungs by “alveolar proteinosis”, which is a clear 
indication of the cause of this rare condition. Transgenic mice that overexpress phos-
pholipase A2, which generates leukotrienes and platelet-activating factor (PAF) ( Fig. 
6.2b ) , develop exuberant atherosclerosis. They show enhanced oxidation of their 
plasma low-density lipoprotein (LDL). Mice that lack neutrophil elastase (NE) can-
not clear infections with intracellular bacteria  [77] . Mice deficient in cathepsin G 
succumb to  Staphylococcus aureus   [78] . The subtleties of NF- k B controls are gradu-
ally being elucidated by techniques like this (cf.  [79] ). B lymphocytes with RelA −/−  
deficiency were killed easily by exposure to TNF a  since they had reduced expression 
of Flice  (i.e. caspase 8) and of Bcl-2 antiapoptotic protein. Clearly, NF- k B enables B 
cell survival by eliminating the effects of TNF a  toxicity. This may remind one that 
c-Flip , inhibitor of the extrinsic apoptotic pathway, is known to promote NF- k B sig-
nalling and cell survival  [80] . RNA interference (RNAi) is a mechanism for sequence-
specific posttranscriptional inhibition of gene expression acting on double-stranded 
RNA molecules. Small interfering RNAs can be applied to mammalian cells. Thus, 
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RNAi was used to show how phospholipase D (PLD-1) colocalises with actin fila-
ments at the adhesive surfaces of macrophages  [81] . RNAi has been used to assess 
the role of p50 NF- k B1 protein in the maturation of monocyte-derived DCs. siRNA  
for p50 reduces the transcription of IL-12 p40. Absence of NF- k B1 p50 or of c-Rel 
leads to impaired survival of DCs and lack of IL-12 production. IL-12 production in 
macrophages is blocked when the IFN g  receptor or the TNFRI  are removed by gene 
deletions in mice. NF- k B2, p52, derived from precursor p100, when eliminated in 
knockout mice, results in DCs with enhanced RelB activity. Enhanced RelB is 
accompanied by enhanced MHC class II molecule expression on APCs and an 
increased ability to induce CD4 lymphocytes (Table  11.3  ) .       

  11.4 The Control of Cyclooxygenase 2  

 Various pathways help to stimulate the expression of Cox-2, such as ROS, tumour 
promoters, growth factors, oncogenes, and cytokines. Her2/Neu  related to the epi-
dermal growth factor receptor (EGFR) does this in breast cancer. Also, in breast and 
colon cancers there is activation of NFAT (nuclear factor of activated T cells), 
which leads to Cox-2 induction and so formation of PGE2. Tumours with elevated 
Cox-2 will be invasive  [82] . Indeed, typical metastatic gene products are Cox-2, 
intercellular cell adhesion molecule 1 (ICAM1), vascular endothelial growth factor 
(VEGF), and metalloproteinase 9 (see Chap. 18). 

 Generally, transcription of Cox-2 gene is promoted by PKC, Ras signalling, and 
especially MAP kinase induction of NF- k B and C/EBP  and factors that stimulate 
activator protein 1 (AP-1)  [83,   84]  ( Fig. 11.3 ) . This is similar to induction of 
cytokines. Consider the situation when  Helicobacter pylori  causes chronic gastritis. 
Study of TFs in gastric epithelial cells showed Cox-2 promoter induction by 
NF- k B, AP-1 and C/EBP (NF -IL-6)  [85] . In Fig.  11.3 , note the canonical TATA 
motif and several important enhancer elements affected by transactivators. 
Proinflammatory mediators can activate ribosomal S6 kinase (RSK), which 
enhances C/EBP b  binding to the Cox-2 promoter. Sphingosine-1-P , by stimulation 
of NF- k B, also stimulates Cox-2 activity  [86] .        

 Cox-2 expression in neutrophils is promoted by ROS induction of NF- k B in 
response to cell membrane events  [87] . Likewise, when monocytes interact with 

 Table 11.3    How nuclear factor kappa B (NF- k B) supports antiapoptosis/cell survival  

 NFkB supports: 
 Inhibitor of apoptosis proteins 1 and 2 and c-FLIP , which inhibit caspase 8 
 Protein A1 and Bcl-Xl , which stop mitochondrial release of cytochrome C 
 A20 protein, which thwarts (a) IKK, (b) RIP  and (c) TAK1 (Fig. 11.2)  
 XIAP 
 GADD45 b , which inhibits JNK 
 FHC, which stops ROS stimulation of JNK 

  FHC  ferritin heavy chain,  GADD45  growth arrest and DNA damage 45,  IKK  unit I-kappa B 
kinase,  JNK  Jun N-terminal kinase,  ROS  reactive oxygen species,  XIAP  X chromosome inhibitor 
of apoptosis TAK1 = transforming growth factor b–activated kinase 1. 
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platelets or P-selectin-coated surfaces, there is activation of NF- k B and so Cox-2. 
In a second phase, IL-1 stabilizes the Cox-2 messenger RNA (mRNA), which it 
does by silencing of the binding protein ARE ; thus, there is enhanced translation 
 [88] . Induction of Cox-2 in macrophages is also biphasic and requires C/EBP b  and 
C/EBP d  TFs  [89] . Conserved elements in the macrophage Cox-2 gene promoter as 
revealed by analysis after exposure to LPS are –CRE2/NF- k B-C/EBP/AP-1/CRE1/
E-box–TATA. The E-box mediates transcriptional repression, whilst the other  cis -
elements are activating. At 6 h after LPS administration, Cox-2 gene transcription 
was completely dependent on phospho-c-Jun along with the p50 of NF- k B  [90] . 
One can compare this information with the details of the promoter for Cox-2 in 
airway smooth muscle cells. 

 With regard to the discussion in Chap. 4 (Sect. 4.3.1), one can expect that there 
will be histone acetylation on H3/H4 at the Cox-2 promoter and phosphorylation of 
H3 histones. 

 There are different patterns of histone H4 acetylation induced by IL-1 b  or by 
bradykinin. Whereas IL-1-induced transcription utilises NF-IL-6, NF- k B and CRE, 
bradykinin uses CRE  [91] . Induction of Cox-2 in macrophages is complicated. 
Normally, any response to NF- k B activation is rapid. Full Cox-2 expression in 
macrophages is delayed since there first has to be induction of TNF a  by IFN g   [92] . 
In mesangial cells, TGF b  is able to stimulate Cox-2  [93] . When mouse macro-
phages respond to virus or double-stranded RNA (dsRNA), there is selective induc-
tion of Jun N-terminal kinase (JNK) and p38 and therefore activation of NF- k B that 
activates Cox-2  [94] . 

 As a lesson, consider how the peptidoglycan of bacterial cell walls stimulates 
TLR2 receptors; hence, there is NF- k B activation that activates Cox-2, and PGE2 
is produced. This PGE2 then acts on EP2/EP4  surface receptors of the macro-
phages, so that cAMP is produced and protein kinase A is activated, which then 
accounts for Ser276 phosphorylation on the p65 of NF- k B. The consequence is that 
peptidoglycan elicits the secretion of IL-6  [95] . PGE2 induction of Stat3 is opera-
tive in this process  [96] .  
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 Fig 11.3    Transcription factors affecting the cyclooxygenase 2 ( Cox-2 ) promoter. (as in airway 
smooth muscle cells) C/EBP = CCAAT/enhancer binding protein  
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  11.5 PPAR g  and PPAR a  in Inflammation and Immunity  

 Transactivation of a particular gene requires a large complex of proteins ( Figs. 
4.8, 4.19 ). In their inactive state, PPARs are complexes in the cell cytoplasm along 
with corepressor proteins. On activation, they dissociate and move into the nuclei, 
where PPARs form heterodimers with retinoid X receptors ( Fig. 4.14 ). PPAR g  
receptors are highly expressed in macrophage-derived foam cells in atheroma. 
It was found that PPAR g  receptors are involved in the differentiation of monocyte 
macrophages, and that PPAR g  receptors help to regulate their inflammatory activi-
ties  [97] . In macrophages, PPAR g  serves as a stimulus for the anti-inflammatory 
action of carbon monoxide. 

 PPAR g  will promote the survival of lymphocytes since they suppress ROS by 
boosting antioxidants, and they attenuate any decline in adenosine triphosphate 
(ATP)  [98] . Yet, fatty acid ligands for PPAR g  can inhibit proliferation of activated 
T lymphocytes through inhibition of IL-2 formation and induced T cell apoptosis. 
The PPAR g  associates with NFAT, so the DNA binding and transcriptional activa-
tion of the IL-2 promoter is blocked. Also, PPAR g  receptors are expressed on DCs, 
and PPAR g  ligands inhibit the release of IL-12  [99] . DCs treated with synthetic 
PPAR g  ligands have reduced ability to stimulate lymphocytes. People are getting 
excited about the potential use of PPAR g  ligands in conditions like rheumatoid 
arthritis  [100] . PPAR g  agents will decrease synovial production of TNF a , IL-6, 
IL-8, metalloproteinases  [101]  and no doubt IL-12 (Fig. 12.12). 

 Both PPARs and liver X receptors of the nuclear-receptor superfamily function in 
combination with the GRs to repress inflammatory response genes  [102] . NCoR 
(nuclear receptor corepressor) and SMRT  corepressor complexes, which are able to 
interact with NF- k B and AP-1, maintain the repression of inflammatory response 
genes (cf. Fig.  11.4 ).   PPAR a  receptors respond to a different set of ligands/drugs. 
PPAR a  receptors are also expressed on monocyte macrophages, and ligands can 
induce apoptosis of those cells. PPAR a  receptors dampen endothelial cell inflamma-
tory responses. In aged mice, oxidative stress-induced NF- k B is apparent in many 
tissues. Fortunately, PPAR a  agonists restore the cellular redox balance, so there is 
amelioration of the production of inflammatory cytokines  [103]  since NF- k B is inhib-
ited (cf.  Fig 11.4 ). Fenofibrate has been shown to repress IL-17 expression in cultured 
splenocytes and by Th-17  cells exposed to caecal bacterial antigens. 

Fig 11.4 Perioxisome proliferator-activated receptor-g (PPARg) with glucocorticoids suppresses 
inflammatory genes. NCoR nuclear receptor corepressor, UBCH5 ubiquitin-conjugating enzyme 5
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 Of course, if liver X receptors will suppress inflammatory genes, appropriate 
agonists will have enormous potential. Cytokine release by monocytes in response 
to LPS has been investigated  [104] . As yet, it is not clear how the process operates.  

  11.6 Cell Survival: Akt and Glycogen Synthase Kinase 3  

 Survival of a cell depends on a supply of growth factors from serum and on contact 
with neighbouring cells or adherence to extracellular matrix proteins  [105] . The 
ERK pathway ( Fig. 4.3 ) has the capacity for survival induction but is negatively 
regulated by phosphatases in conjunction with the proapoptotic p38/JNK paths. 
Hence, cancer cells should not emerge. Protein kinase B (Akt) confers the attributes 
of cell survival  [106] . PI3  kinase (PI3K) produces PtdIns(3,4,5)P3  ( Fig. 2.6  ), which 
binds to Akt so that it can translocate to the cell membrane, where it is phosphor-
ylated by 3-phosphoinositide-dependent kinase 1 (PDK-1). When IL-2 acts on 
immune cells, Akt ensures their survival. Either a growth factor like PDGF (platelet-
derived growth factor) or a cytokine like TNF a  will activate Akt, which then associ-
ates with and phosphorylates IKK so that NF- k B is activated. Concurrently, Akt 
suppresses proapoptotic influences  [107] . Akt sequesters the proapoptotic protein 
Bad, it inhibits caspase 9, and it reduces transcription of Fas ligand (cf.  Fig. 8.3 ). 
Conversely, since ceramide-activated PKC z  and protein phosphatase 2A (PP2A) 
negatively regulate the Akt survival pathway  [108] , this explains how ceramide often 
mediates cell apoptosis. Nevertheless, the  a 4-subunit of PP2A (and other phosphatases) 
works to keep apoptosis in check and to maintain cell survival  [109] . 

 It will help to be precise about what Akt can contribute .  Akt can inactivate (a) 
death receptor-mediated apoptosis, (b) mitochondrial-dependent apoptosis and (c) 
p53-induced apoptosis. Akt via Cot serine-threonine kinase activates NF- k B. NF- k B 
supports antioxidant enzymes. Akt phosphorylates glycogen synthase kinase 3 b  
(GSK3 b ), ensuring glucose uptake and metabolism. GSK3 is important in embryonic 
development. When Akt promotes the survival of adult cells, Akt phosphorylates and 
inhibits GSK3  [110]  and thus enables supportive changes in glucose metabolism. 
GSK3 b  is essential for cell survival, but too much or too little will cause apoptosis. 
On the one hand, components of the NF- k B system are phosphorylated by GSK3 to 
promote NF- k B activity. Conversely, if p53 binds nuclear GSK3, it is activated and 
promotes the transcriptional and apoptotic actions of p53  [111] . GSK3 supports for-
mation of proinflammatory cytokines by inducing NF- k B and CREB interaction with 
coactivator CBP. GSK3 inhibitors are thus anti-inflammatory  [112] . 

 Both growth factor and cytokine survival factors for cells, like insulin-like 
growth factor 1 (IGF-1) or IL-3 activate Akt, which phosphorylates Bad at three 
sites, and it then binds 14-3-3 protein, and it (Bad) is sequestered in the cytosol. So, 
apoptosis cannot occur. When macrophages meet endotoxin, they have to survive. 
When LPS interacts with TLR4 receptors ( Figs. 12.2, 12.5 ), RIP links TLR4 to 
PI3K and so to Akt and cell survival  [113] . Monocyte survival derives from surface 
CEACAM1  (CD66a), which connects with PI3K and hence to Akt activation. 
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Insulin  growth factors I and II direct protein anabolism, and they are mitogens. 
Haemopoietic cells that are destined to die when IL-2 or IL-3 is withdrawn are 
protected by IGF-1. IGF-1 is antiapoptotic for many cells  [114] , and in many cancers 
an autophosphorylated IGF-1R (IGF-1 receptor) mediates antiapoptosis. The 
 biochemical scenario is that when IGF-1 acts on its IGF-1R there is recruitment of 
a docking protein insulin receptor substrate 2 (IRS-2) (as for insulin) and that leads 
to activation of PI3K. PI3K activates a PDK-1, and in turn that activates Akt kinase. 
Naturally, the kinase-regulated signalling pathways are controlled by phosphatases. 
One is calcineurin, which will dephosphorylate Bad and so reverse the effect of Akt 
phosphorylation. The other is PTEN (phosphatase as in Fig. 2.6), the product of a 
tumour suppressor gene  [115,   116] . The function of PTEN is to hydrolyze 3-phos-
phorylated inositol phospholipids  [117] . Thus, PTEN acts in opposition to PI3K 
( Fig. 2.6 ). In malignancies, both copies of PTEN are deleted or mutated. Loss of 
PTEN in cells leads to Akt drive, and this is accompanied by resistance of cells to 
apoptotic stimuli  [118] . Hence, cancer is likely to arise. 

 There are other survival kinases, suppressors of Myc-induced apoptosis, called 
the  Pim    kinases   [119] . Myc induces proliferation but also increased apoptosis of 
nonmalignant cells. However, defects in control of apoptosis allow Myc to act as an 
oncogene. Akt or Pim control this. Both Akt and Pim inactivate Bad. Pim kinases 
are implicated in cancers and lymphomas. Pim kinase was discovered by its ability 
to stop Myc-induced apoptosis in a mouse model of lymphoma. Cytokines via Jak -
Stat action (Sect. 12.9) induce Pim kinases (Pim1, -2, -3). 

 This section emphasizes the importance of NF- k B for cell survival. NF- k B 
suppresses apoptosis ( Fig. 8.2 ) since NF- k B supports bcl-2 and bcl-Xl, it sup-
ports the inhibitor of apoptosis proteins cIAPc and xIAP , and c-FLIP  works in its 
favour  [120]  it room. Yet, the JNK cascade can work in opposition to the  
(GADD45) and Xiap proteins, which promote antiapoptosis  [120]  (Table 11.3). 
Likewise, the p38 MAP kinase pathway is proapoptotic  [121,   122] . Actually, 
induction of NF- k B in some cells enables them to stay alive long enough to 
acquire genetic errors. Hence, NF- k B activity can promote carcinogenesis  [5]  and 
help metastases  [123] . Such carcinogenesis is oxygen radical mediated  [124] . Yet 
generally, NF- k B is acting to suppress tumour cell growth for it aids triggering of 
p53 and ARF (Fig. 17.5). However, if cells lose their tumour suppressor genes, 
NF- k B then promotes oncogenesis  [125] .  

  11.7 Insulin Receptors  

 Insulin is a potent anabolic hormone. Whereas glucose elicits proinflammatory 
effects, insulin is anti-inflammatory for its action suppresses NF- k B, AP-1 and 
early growth response 1 (EGR-1) TFs. Of course, insulin is a principal pancreatic 
autoantigen relevant to diabetes  [126] . Yet, one could be interested in how signal-
ling by the insulin receptors compares with other mechanisms discussed in this text. 
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Insulin receptor stimulation in insulin-responsive cells leads to translocation of 
GLUT4  and glucose transport. The insulin receptor is an  a 2 b 2 heterotetrameric 
complex in which two  a -subunits and two  b -subunits are linked by disulphide 
bonds. Insulin binds to the extracellular  a -subunits, and it thereby transmits a signal 
across the plasma membrane that activates the intracellular tyrosine kinase of the 
 b -subunit. The one  b -subunit phosphorylates its partner on specific tyrosine residues. 
Accordingly, the receptor tyrosine kinase induces phosphorylation of IRSs on 
multiple tyrosine residues. These IRS phosphotyrosine residues act as docking sites 
for −SH2 domain containing proteins, including the p85 regulatory unit of PI3K 
( Fig. 2.7 ). Hence, the p110 catalytic unit of PI3K, the lipid kinase unit, will lead to 
glucose transport  [127,   128] . Other proteins that dock at the insulin receptor include 
adaptor proteins Shc  and Grb2 (growth factor receptor-bound protein), leading to 
Ras-MAP kinase signalling for the mitogenic action of insulin, the SHP2  phosphatase 
 [129]  and Cbl (casitas B lineage lymphoma protein). 

 The PI3K (Fig. 11.5) p110 catalytic unit creates phosphoinositides PI(3,4,5)P3 , 
PI(3,4)P2  and PI(3)P  at the plasma membrane (Fig. 2.6). They increase GLUT4 
translocation but do not actually increase glucose transport. That could be mediated 
by AS160 (Akt substrate of 160 kDa)  [130] . The plasma membrane target for the 
GLUT4 vesicle is the t-SNARE  called syntaxin 4. Inactivation of Glut4  in muscle 
leads to raised plasma glucose and glucose toxicity that results in insulin resistance 
 [131] . Insulin action is facilitated by the formation of ROS at multiple signalling 
targets  [132] , but substantial ROS produced in response to TNF a  or dexamethasone 
creates insulin resistance  [133] . 

 There is subtle control by suppressor of cytokine signalling  (SOCS) proteins. 
First, SOCS3 reduces the phosphorylation of IRS-1 and its subsequent association 
with the p85 of PI3K. Second, the SOCS1 and -6 can inhibit insulin receptor tyro-
sine kinase activity, thereby reducing the phosphorylation of IRS-1/2 and the down-
stream events. IRS-1 and IRS-2 are targeted for proteasomal degradation. SOCS1 
and -3 are elevated in rodent models of insulin resistance and diabetes. 

 In adipocytes of obese persons with type 2 diabetes, IRS-2 becomes the main 
docking protein for PI3K  [134] . Local TNF a  acting on the adipocytes is a cause of 

  Fig. 11.5 Scheme for insulin receptor activation.  PDK-1  3-phosphoinositide-dependent kinase 1. 
Active JNK opposes IRS 1, 2 action. In this scheme, phosphatase Src homology inositol polyphos-
phate 5-phosphatase 2 ( SHIP2 ) regulates the PI3  kinase-dependent signalling. Insulin-like growth 
factor 1 receptor ( IGF-1R ) also uses insulin receptor substrate 1 ( IRS-1 ), which can become intra-
nuclear and thereby activate cell cycle genes. This explains the relevance of IGF-1 to cancers  
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insulin resistance  [135] . Ganglioside GM3  on fat cells corresponds to insulin resist-
ance. TNF a -induced insulin resistance involves activation of inhibitory serine 
kinases or tyrosine phosphatases, which inhibit the insulin signalling path. It works 
through H 

2
 O 

2
  generation. Also, there is serine phosphorylation of IRS-1, rather than 

IRS-1 tyrosine phosphorylation, that causes reduced insulin receptor kinase  activity. 
In skeletal muscle, TNF a  inhibits Akt phosphorylation, causing insulin resistance 
 [136] . Ceramide, by blocking insulin stimulation of Akt, leads to insulin resistance 
 [137] . TNF a  can also produces insulin resistance in skeletal muscle by activation 
of I k B kinase inhibitor of NF- k B in a p38-dependent manner  [138] . Most particu-
larly there is upregulated JNK which impairs the action of IRS 1/2 [138b]. 

 Crucially, we now realize that adiponectin receptors mediate antidiabetic meta-
bolic effects. Adiponectin promotes glucose uptake, fatty acid oxidation and 
PPAR a  ligand activities. Adiponectin is decreased in obesity, in type 2 diabetes and 
whenever there is insulin resistance  [139] . There is more interest in adipokines from 
fat stores. The cytokine “resistin” inhibits insulin signalling in liver and muscle in 
mice  [140,   141] . 

 Insulin resistance is essentially due to decreased insulin-stimulated glucose 
uptake into skeletal muscle. The muscle PI3K (with its p110 catalytic unit and p85 
regulatory unit) actually shows increased transcription of the p85 a  and of splice 
variants p55 and p50, and the increase of these subunits must reduce PI3K activity 
by competing for phosphotyrosine targets  [142] . Insulin resistance is accompanied 
by endothelial cell dysfunction, and there is enhanced aggregability of platelets. 
Insulin-resistant macrophages are integral to the problem of metabolic syndrome 
 [143] . When they are controlled by knockout of JNK1, insulin resistance is amel-
iorated, and mice are resistant to high-fat diet-induced obesity  [144] . 

 Colca  [145]  rationalized the complex situation by proposing that insulin resist-
ance is a physiological compensation to excessive oxidative metabolism. A new 
successful set of antidiabetic drugs, the thiazolidinediones (TZDs)  [146] , enhances 
PPAR g -retinoid X receptor heterodimer formation ( Fig. 4.14 ) and offsets insulin 
resistance.  

  11.8   Cross-Talk between Insulin Signalling and 
the Angiotensin II System  

 Insulin and angiotensin II (Ang II) play pivotal roles in the metabolic and circula-
tory systems. Failure in their proper actions leads to diabetes mellitus and hyperten-
sion, respectively  [147] . There is cross-talk at multiple levels between these 
systems that affects the action of antihypertensive drugs used in the control of car-
diac hypertrophy and energy acquisition by heart muscle. Thus, insulin actually 
promotes a significant increase of AT1  receptor protein expression in vascular 
smooth muscle cells (cf.  Fig. 5.10 ). 

 The insulin signalling system described stems from a balance between tyrosine 
phosphorylation of IRS-1 and the negative effect of IRS-1 serine phosphorylation. 
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Too much of the latter occurs in insulin resistance (Fig.  11.5 ) . In fact, PI3K, ERK 
and JNK as activated by AngII catalyse the serine phosphorylation of the insulin 
receptor and the IRS-1, and indeed of PI3K, impairing insulin-promoted activation 
toward Akt. Hence, in contrast to the effect of insulin, IRS-1/2-associated PI3K 
activity, and thereby endothelial nitric oxide synthase (eNOS) activity, is inhibited 
by Ang II in a dose-dependent manner  [148] . So, insulin-induced vasodilatation is 
thwarted by Ang II. Furthermore, Ang II induces SOCS3  activity to impair signal 
transduction through the Jak2/Stat5 signal pathway  [149] .         

  11.9 Understanding mTOR  

 mTOR is mammalian target of rapamycin. It is an integrator of cellular energy 
status, nutrient and growth factor signals and the coordinator of cell growth and cell 
cycle progression  [150] . TOR directs cell surface expression of various nutrient 
transporters. Amino acids also stimulate mTOR via the class 3 PI3Ks  [151] . Since 
insulin and IGF-1 are anabolic,  Fig. 11.6   shows how those receptors connect via 
IRS proteins to activation of PI3K and hence Akt. In its turn, Akt phosphorylates 
and inhibits substrates like the Foxo (Forkhead TFs), Bad, GSK3 and tuberin or 
hamartin. Tuberin, characteristic of benign tumours called hamartomas as seen in 
tuberose sclerosis  [152,   153] , inhibits TOR, but tuberin is inhibited by Akt. This 
means that Akt activity stimulates glucose uptake and cell growth and proliferation, 
and apoptosis is inhibited. Actually, mTOR exerts negative feedback on PDGF 
receptors  [154] . The TOR pathway requires nutrients like the amino acid leucine, 
and then Tor  complex 1 (mTORC1) activates S6 kinase and promotes the eukaryo-
tic translation initiation factor 4E (eIF4E)   [155] . Additionally, mTORC2 regulates 
polarization of the actin cytoskeleton. Furthermore, should cell ATP levels fall, the 
energy-sensing kinase AMPK  inhibits hepatic gluconeogenesis ( Fig. 1.1 ) because 
it promotes TORC2 phosphorylation, which blocks its nuclear accumulation  [156] . 

  Fig 11.6 Model of the PI3  kinase-Akt-tuberose sclerosis ( TSC )-mammalian target of rapamycin 
( mTOR ) pathway. *Tuberin ( TSC2 ) or hamartin ( TSC1 ) are tumour suppressors. **AMPK , which is 
activated by energy deprivation, stimulates TSC2/TOR complex 2 ( Torc2 ). The eukaryotic transla-
tion initiation factors ( eIFs ) are versatile scaffolds for translation initiation complexes  [139]   
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AMPK is a fuel sensor. In muscle AMPK is activated by exercise  [157] . It is a key 
metabolic regulator in liver, heart and muscle. AMPK is activated by cell cAMP, 
and it will stimulate fatty acid  b -oxidation. That means that if hepatic AMPK is 
inactivated, as occurs in diabetes, there is fatty acid synthesis and development of 
hyperlipidaemia. In T cells, AMPK controls metabolic steps required for cell pro-
liferation  [158] . 

 The tuberose sclerosis 1 and 2 (TSC1-TSC2) protein complex heterodimers 
integrate cues from growth factors, the cell cycle and nutrients to regulate the activ-
ity of mTOR, p70 S6 kinase, 4E-BP1 → eIF4E and ribosomal S6 protein  [159] . As 
you will predict, hypertrophy of cells is achieved by augmentation of their RNA 
and protein content. Formation of mRNA is determined (a) by growth factor  
Ras-ERK -Mnk-1  → eIF4E and (b) by the path mTOR  → p70 S6 kinase. 

 Note that these molecules in Fig.  11.6  do not form a linear signal pathway, but 
they act as agonists and antagonists of each other’s activities. Stimulation of mTOR 
and S6 kinase by amino acids requires participation of a class 3 PI3K called hvps34 
(human vacuolar protein sorting 34)  [160] . PI3Ks promote glycolysis and thus 
production of ATP. As in other situations, PTEN controls PI3K activity. Loss of 
PTEN in mice leads to hyperactive signalling to TOR and disturbance of the control 
of haemopoietic stem cells and a liability to leukaemia  [161] . Understandably, 
mTOR must be implicated in carcinogenesis  [162] .        

 GSK3 b  inhibitors are anti-inflammatory, witness that inhibitors like thiazolidin-
ediones (TZDS)  attenuate carrageenan-induced lung injury  [163] . 

 In T cells, Akt is activated maximally when there is coligation of the TCR and 
CD28 ( Fig. 13.5 ). Moreover, T cells have AMPK a 1, which is rapidly activated with 
TCR triggering via the adapter molecules LAT and SLP76  ( Fig. 13.4 )  [164] . When 
amino acids are supplied, mTOR phosphorylates components of the translational 
apparatus like the eukaryotic initiation factor eIF4E and p70 S6 kinase. Cytokines 
also induce PIM1/PIM2 kinases, which help maintain a high rate of glycolysis and 
protein translation  [165] . 

 Rapamycin is a useful immunosuppressant for allograft transplants. Yet, 
rapamycin does not phenocopy the effects of nutrient or growth factor deprivation. 
Actually, it fails to prevent the early stages of T lymphocyte activation, including 
cell cycle entry and upregulation of cell surface activation markers. Outstandingly, 
rapamycin, by its inhibition of mTOR and thereby of the phosphorylation of S6 
kinase and eIF, prevents cell hypertrophy of a remaining kidney after unilateral 
nephrectomy  [166] . 

 S6 kinase is integral to multiple pathways in which cells are rendered unrespon-
sive to insulin, as during chronic insulin exposure, elevation of free fatty acids and 
perhaps TNF a  exposure. A feedback leads to IRS1/2 serine phosphorylation and 
hence downregulation. Accordingly, there is insulin resistance and impaired cell 
survival. 

 Chronic localised activation of mTOR results from genetic loss of certain 
tumour suppressor genes like TSC1, PTEN in Cowden’s disease and 1KB1  (Peutz-
Jegher’s syndrome)  [167] .  
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  11.10 Alveolar Macrophage Survival  

 Armed as we are now with so much new knowledge, we can tackle the question of 
how alveolar macrophages (AMs) survive so well, even though they are exposed 
continually to chemical pollutants, ROS, inflammatory mediators and microbial 
invaders. In fact, AMs have two survival pathways: (a) the PI3K → Akt pathway and 
(b) ERK activity that leads to inhibition of proapoptotic proteins but good antiapop-
tosis. The Hunninghake group  [168]  investigated how it is that ERK activity leads to 
sustained protein translation initiation via eIF4E or hypophosphorylated (active) 
eIF2 a . Actually, ERK decreases proapoptotic JNK activity by stabilizing MPK7  
dual phosphatase. When JNK activity is low, there is higher activity of phosphatase 
PP1 a . Accordingly, there is hypophosphorylation of translation initiation factor 
eIF2 a , so there is ongoing protein translation that means survival of the AMs.      
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