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Abstract: Pituitary adenomas, although predominantly benign, can lead to significant clini-
cal complications due to endocrine imbalances and mass effects on adjacent structures. Tra-
ditional research has focused on intrinsic factors like genetic mutations and hormonal dys-
regulation; however, emerging evidence implicates environmental pollutants—particularly
urban air contaminants—in pituitary tumorigenesis. This review consolidates current
findings on how chronic exposure to pollutants such as benzene, di(2-ethylhexyl) phthalate
(DEHP), and polychlorinated biphenyls (PCBs) may trigger neuroinflammation, disrupt
the hypothalamic–pituitary–adrenal (HPA) axis, and alter pituitary cell proliferation and
hormone secretion. We explore mechanistic pathways involving inflammatory cytokines,
oxidative stress, and microenvironmental modifications that contribute to neoplastic trans-
formation and tumor progression. Epidemiological studies, supported by in vitro experi-
ments, suggest that air pollutants not only initiate the development of pituitary adenomas
but may also enhance the secretory activity of functioning tumors, potentially increasing
their aggressiveness. Given the escalating global burden of air pollution and its far-reaching
public health implications, further investigation is essential to elucidate these complex
interactions. Advancing our understanding in this area could inform preventive strategies
and therapeutic interventions aimed at mitigating the environmental impact on pituitary
tumor behavior.

Keywords: pituitary adenoma; air pollution; neuroinflammation; hypothalamic–pituitary–
adrenal axis; endocrine disruption; public health

1. Introduction
The World Health Organization (WHO) estimates that ambient and indoor air pollu-

tion contributes to over 8 million deaths each year, combined. As mentioned, air pollution
has been associated with diseases of the central nervous system (CNS), as well as neu-
roinflammation and abnormal neuropathological processes [1]. Research in both humans
and animals demonstrates that neuroinflammation arises in response to various inhaled
pollutants [2]. Growing evidence implicates air pollution as a chronic environmental factor
in neuroinflammation, reactive oxygen species (ROS) production, and neurological injury,
all of which can contribute to CNS pathology [3–5].

Direct evidence regarding primary brain tumors as a result of exposure to specific
chemical agents is limited. This is in contrast to agents associated with tumors of the
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lung, colon, stomach, breast, uterus, and liver [6,7]. Furthermore, studies related to CNS
tumors tend to largely deal with occupational risks rather than being based on investigating
exposure to specific agents. Occupation in the electrical and electronic fields, oil refining,
rubber, airplane manufacture, machining, farming, and pharmaceutical and chemical
industries has been associated with increased CNS tumor risk [8]. Some culpable agents
included benzene and other organic solvents, lubricating oils, acrylonitrile, vinyl chloride,
formaldehyde, polycyclic aromatic hydrocarbons, phenol and phenolic compounds, and
both ionizing and non-ionizing radiation [9].

Several studies were conducted on short- and long-term air pollutant exposure in
rat and mouse brains. The brains of the experimental animals showed an overexpres-
sion of neuroinflammatory and/or tumor markers related to the development of primary
brain tumors or neurogenerative conditions such as Alzheimer’s disease [9,10]. How-
ever, the knowledge and studies on pituitary tumors’ environmental dependence are still
very limited.

Pituitary adenomas are predominantly benign pathological entities arising from the
anterior pituitary gland and account for approximately 10–15% of primary brain tumors.
They are generally classified as either functioning or non-functioning tumors, depending on
the presence or absence of pathological hormone secretion [11]. Despite their benign nature,
they may be associated with significant clinical sequelae, including hormonal dysregulation,
visual deficits, pituitary apoplexy, and other symptoms related to mass effect on adjacent
structures or invasive growth. While substantial progress has been made in understanding
the endocrine mechanisms, genetic mutations, and clinical progression of these tumors,
there is growing interest in the role of environmental factors in tumorigenesis. Among
these, air pollution has emerged as a potential key contributor [12].

Air pollution is a complex mixture of harmful substances that includes particulate
matter (PM2.5 and PM10), volatile organic compounds (VOCs), nitrogen oxides (NOx),
sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO) [13]. The major sources of
these pollutants include vehicle emissions, industrial manufacturing processes, fossil fuel
combustion, agricultural activities, and residential heating. Fine particulate matter (PM2.5),
in particular, can penetrate deep into the respiratory tract and enter the bloodstream,
contributing to systemic inflammation and oxidative stress. VOCs and NOx are prominently
generated by traffic emissions and industrial solvents, while ozone is a secondary pollutant
formed through photochemical reactions involving sunlight and precursor gases. Although
persistent organic pollutants such as DEHP and PCBs are not classified as primary airborne
pollutants, their inclusion in this review highlights the mechanistic pathways of endocrine
disruption relevant to pollutant exposure more broadly. These insights complement the
discussion on classic air pollutants implicated in systemic and neuroendocrine dysfunction.

In urban environments, the adverse effects of air pollution on cardiovascular and
respiratory health are well documented. However, recent evidence also implicates air
pollution in neuroendocrine dysfunction and potential tumorigenesis within the central
nervous system [12]. The hypothalamic–pituitary axis, due to its critical regulatory func-
tions and proximity to highly vascularized brain regions, may be particularly susceptible
to the harmful effects of these pollutants [14].

The objective of this review is to provide an overview of the potential relationship be-
tween air pollution and pituitary adenoma pathogenesis, acknowledging the limited direct
evidence in this emerging field. We aim to summarize existing studies, propose potential
mechanisms, identify knowledge gaps, and integrate evidence from in vitro, in vivo, and
epidemiological research. This review emphasizes the need to explore mechanisms linking
environmental exposures to tumor development, addressing a critical gap in the current
understanding. Articles were selected based on their relevance to the proposed mechanistic
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links between environmental pollutant exposure and pituitary tumorigenesis. Priority was
given to peer-reviewed original research articles, in vitro and in vivo experimental studies,
and systematic reviews published between 2000 and 2024, although seminal studies outside
this range were included to provide historical context. The search strategy emphasized
studies exploring both epidemiological associations and biological mechanisms, including
inflammatory signaling pathways, endocrine disruption, and hypothalamic–pituitary axis
dysregulation. Reference lists of key articles were manually screened to ensure comprehen-
sive coverage of relevant findings.

2. Hypothalamic–Pituitary–Adrenal (HPA) Axis and
Pituitary Pathophysiology

The normal physiological function of the hypothalamic–pituitary–adrenal (HPA) axis
is the integration of signals from the central nervous system and peripheral organs to
maintain endocrine homeostasis [15]. Hormones released from the hypothalamus, includ-
ing corticotropin-releasing hormone, thyrotropin-releasing hormone, and gonadotropin-
releasing hormone, play a key role in this process. These hormones travel through the
hypothalamic–hypophyseal portal system to act upon cells within the anterior pituitary
gland, a highly vascular structure that produces several key hormones: adrenocorticotropic
hormone (ACTH), thyroid-stimulating hormone (TSH), luteinizing hormone (LH), follicle-
stimulating hormone (FSH), growth hormone (GH), and prolactin. Each of these hormones
significantly contributes to feedback loops with peripheral endocrine organs, regulating
metabolism, the stress response, and other vital physiological processes [15]. In addition,
the neurohormones oxytocin and antidiuretic hormone (ADH) are synthesized in the hy-
pothalamus and stored in the posterior pituitary gland prior to secretion into the systemic
circulation. Given the complex interplay between the hypothalamus and pituitary, disrup-
tion via inflammation or cellular proliferation may lead to endocrine abnormalities [16].

Regarding functioning tumors, prolactinomas are the most common subtype and cause
hyperprolactinemia, resulting in symptoms like galactorrhea, menstrual irregularities, and
infertility, among others. Somatotroph adenomas secrete growth hormone, leading to
acromegaly in adults or gigantism in children. Corticotroph adenomas produce excessive
ACTH, causing Cushing’s disease. Less common functioning adenomas include thyrotroph
adenomas (excess TSH) and gonadotroph adenomas (excess LH/FSH). Non-functioning
adenomas typically present with symptoms related to mass effect or invasive behavior.
Compression of the optic chiasm may result in visual field deficits, while extension into
adjacent structures, including the cavernous sinus or sphenoid bone, can contribute to
headache or other neurological symptoms [11].

When considering the development, progression, and clinical behavior of pituitary
adenomas, the surrounding tumor microenvironment (TME) has been found to play a
critical role [17]. The TME is composed of communities of stromal cells, immune cells, and
vascular networks which interact directly and indirectly with each other and with adjacent
tumor cells. Immune cells in particular are known to be involved in pituitary adenoma
invasiveness. For example, tumor-associated macrophages are pivotal in secreting cytokines
such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF), which act to
promote proliferation and angiogenesis [18]. Elevated MMP (matrix metalloproteinase)
activity facilitates extra-cellular matrix degradation, while cytokines promote proliferation
and therefore may enable tumor invasiveness. Another key feature enabling these processes
is hypoxia. As pituitary tumors grow, their expansion often surpasses their vascular supply,
resulting in hypoxic regions. This upregulates hypoxia-inducible factor 1-alpha (HIF-1α),
promoting angiogenesis and metabolic reprogramming to sustain tumor survival and
proliferation [19]. Concurrently, oxidative stress within the hypoxic TME induces genomic
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instability, further driving tumor progression. These microenvironmental adaptations
create a dynamic environment that fosters tumor growth and invasion.

3. Inflammatory Effects on Pituitary Adenoma Microenvironment and
the HPA

Chronic inflammation induced by environmental pollutants, including airborne par-
ticulate matter, may contribute to dysregulated cellular proliferation in pituitary tissues.
Exposure to airborne toxins and pro-inflammatory mediators can trigger oxidative stress,
DNA damage, and epigenetic modifications, leading to genetic instability and aberrant
cell cycle control [20]. This inflammatory microenvironment may interact with inherent
genetic predispositions, amplifying oncogenic signaling pathways. Well-known genetic
mutations linked to adenoma development, such as MEN1, AIP, and GNAS (see list of
abbreviations), may be influenced by chronic inflammatory stimuli, further driving uncon-
trolled pituitary cell proliferation [21]. Additionally, the dysregulation of cell cycle proteins
such as cyclin D1, along with an increased expression of anti-apoptotic proteins, further
contribute to unchecked cellular growth and tumorigenesis [22]. These mechanisms, com-
pounded by inflammatory and hypoxic conditions, may foster neoplastic transformation
and tumor progression.

Immune cell infiltration and cytokine release within the TME drive chronic inflamma-
tion, promoting tumor growth. Elevated expression of endothelin-1 (ET-1), a vasoconstrictor
peptide with pro-angiogenic and pro-tumorigenic effects, has been observed in various
tumors. A study by Weindl et al. demonstrated that ET-1 acts as a significant growth factor
in meningiomas, promoting cellular proliferation through the endothelin A receptor. While
specific studies on ET-1 expression in invasive pituitary macroadenomas are limited, the
role of ET-1 in tumorigenesis suggests potential implications for pituitary adenomas [23].
An additional factor to consider is the role of inducible nitric oxide synthase (iNOS), which
is upregulated in pituitary adenomas under inflammatory conditions, enhancing vascular
permeability and promoting tumor progression through hypoxia and oxidative stress [24].
Inflammatory cytokines, including IL-1β, IL-6, and TNF-α, amplify these effects by upreg-
ulating ET-1 and iNOS and activating pathways such as JAK/STAT and NF-κB, driving
cellular proliferation, angiogenesis, and resistance to apoptosis [25].

The HPA axis is particularly vulnerable to inflammation due to its vascularization and
regulatory functions. Cytokines like IL-1β and TNF-α can cross the blood–brain barrier
(BBB) in regions with incomplete barriers, such as the median eminence, or act via the
vascular endothelium to influence hypothalamic neurons. These cytokines activate toll-
like receptors (TLRs) and downstream NF-κB signaling, increasing corticotropin-releasing
hormone (CRH) production. Elevated CRH overstimulates the HPA axis, resulting in
hypercortisolism and systemic hormonal imbalances.

An overexpression of inflammatory mediators such as IL-6 and TNF-α also disrupts
the release of hypothalamic and pituitary trophic hormones and activates the JAK/STAT
and MAPK pathways in anterior pituitary cells, leading to a dysregulated secretion of
ACTH, GH, and prolactin [26,27]. Chronic inflammation and oxidative stress further impair
pituitary responsiveness to hypothalamic signals, with increased iNOS expression causing
nitric oxide-mediated damage and reducing hormonal output.

Chronic brain inflammation, white matter abnormalities, and microglia activation
may result from exposure to air pollution, increasing the risk of autism spectrum disorders,
neurodegenerative diseases, stroke, and multiple sclerosis [1]. Several theories have been
proposed regarding the direct impact of air pollutants on the CNS. One theory suggests that
respiratory exposure to air pollutants induces oxidative stress, increasing the permeability
of the epithelial wall and triggering the release of pro-inflammatory cytokines, promoting
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auto-reactive T cell activation and enhancing their migration into the CNS via the blood–
brain barrier (BBB) [28–31].

According to the neuroinflammation hypothesis, increased cytokines and reactive
oxygen species in the brain mediate the harmful effects of urban air pollution on the
CNS. Microglia, a prominent source of cytokines and reactive oxygen species in the brain,
contribute to progressive neuronal damage in various neurodegenerative diseases and
are activated by inhaled urban air pollutants through both direct and indirect pathways.
A key mechanism by which microglia respond to various forms of air pollution is the
MAC1-NOX2 pathway, suggesting a potential common pathway [2]. Air pollution can
contribute to toxic microglial activation by triggering the cycle of reactive microgliosis
through three mechanisms: (1) components of air pollution may directly activate microglia;
(2) cytokines from the peripheral systemic inflammatory response may activate microglia;
(3) particles or adsorbed compounds derived from the periphery may directly damage
neurons and cause reactive microgliosis [5]. A summary figure, Figure 1, is shown below.
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Figure 1. Air pollution enters the bloodstream and triggers inflammation, upregulating inflammatory
cytokines, including TNF-α, IL-6, and IL-1β. The cytokines activate microglia and particles directly
stimulate microglia, which in turn directly propagates CNS and HPA axis inflammation. The
cytokines also upregulate iNOS and ET-1, as well as stimulating numerous inflammatory pathways,
including JAK/STAT, MAPK, TLR, and NF-κB, which cause hormonal dysregulation affecting trophic
hormones and directly affecting anterior pituitary hormone production.

4. Air Pollution and Pituitary Tumors
The first description of environmental pollutants’ detrimental effects on the pitu-

itary dates back to the late 1950s, when Iannacone and Cicchella (1958) identified his-
tological changes associated with benzene intoxication in rats [32]. More recently, a
modest increase in the incidence of pituitary tumors was reported in the population
of Seveso (Italy), exposed thirty years earlier to intermediate-to-high concentrations of
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2,3,7,8-tetrachlorodibenzo-p-dioxin, a toxic and carcinogenic agent released in an industrial
accident in 1976 and known to activate the aryl hydrocarbon receptor, whose interaction
with aryl hydrocarbon receptor-interacting protein has been associated with the develop-
ment of familial pituitary tumors [33,34]. In a study by Cannavò et al. (2010), a significantly
higher rate of acromegaly was observed in a highly industrialized area near Messina (Italy)
compared to more distant regions and the general population, with no link to genetic or
familial predisposition. The involvement of environmental pollutants in the pathogenesis
of somatotropinomas was then hypothesized [35]. Tapella et al. (2017) demonstrated
in vitro that the pollutants benzene (BZ) and di(2-ethylhexyl) phthalate (DEHP) can inter-
fere with normal rat pituitary cell proliferation and promote changes in gene expression
at the aryl hydrocarbon receptor (AHR) and in aryl hydrocarbon receptor-interacting
protein (AIP) levels, providing a link between epidemiological and genomic findings in
pituitary tumors [36]. A study by Fortunati et al. aimed to identify the effects of pollu-
tants, including benzene (BZ), bis(2-ethylhexyl) phthalate (DEHP), and polychlorinated
biphenyls (PCBs), on the function of a GH-producing pituitary adenoma cell line (GH3)
by analyzing gene and protein expression. Notably, they found that all of the studied
pollutants increased GH production and secretion [33]. This is particularly significant as it
represents the first demonstration that exposure to BZ, DEHP, and PCBs can enhance GH
production in GH-producing adenoma cells. The proposed mechanistic link between air
pollution exposure and pituitary dysfunction is illustrated in Figure 2, which highlights
how environmental pollutants such as TCDD, PCB, DEHP, and benzene may activate AHR
in somatotroph cells, leading to increased GH secretion and potentially influencing the
pathogenesis and aggressiveness of somatotropinomas (Figure 2).
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Figure 2. Schematic illustration depicting the proposed mechanistic link between air pollution
exposure and growth hormone dysregulation in pituitary tumorigenesis, mediated through endocrine
disruption at the level of the pituitary gland. Environmental pollutants, including TCDD, PCB, DHEP,
and benzene, activate AHR and AIP in somatotroph cells, leading to increased GH secretion, which
may contribute to tumor progression pathophysiology.

Consequently, the authors suggest that air pollution may alter the behavior of func-
tioning pituitary adenomas, potentially making them more aggressive. Fortunati et al. also
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demonstrated that these pollutants can modulate the expression of somatostatin receptor 2
(SSTR2), along with the transcription factors (e.g., ZAC1 and FOXA1) involved in somato-
statin analog (SSA) and estrogen hormone signaling [33]. The observed increase in FOXA1
expression could contribute to increased GH secretion by these cells, and together with the
effect on ZAC1, it suggests that air pollutants may directly affect transcription regulators,
thereby modulating cell function at multiple levels.

In addition to oxidative stress and AHR-mediated signaling, several classical molec-
ular mechanisms may underlie pollutant-induced tumorigenesis. These include direct
DNA damage or indirect genotoxicity via reactive metabolite formation, epigenetic modi-
fications such as altered DNA methylation, and a dysregulation of pathways controlling
cell proliferation and apoptosis. The disruption of nuclear hormone receptors, including
estrogen and thyroid receptors, further contributes to endocrine imbalance and altered
cellular homeostasis. While direct evidence linking these mechanisms to pituitary adenoma
development is limited, their involvement in other endocrine and CNS tumors supports
their plausibility and highlights key targets for future mechanistic investigation.

5. Public Health Implications, Challenges, and Future Directions
Although epidemiological studies are limited, recent reports suggest a link between

environmental factors and pituitary adenomas, with an increased prevalence observed
in highly industrialized areas and potentially following toxic spillage [34,36]. Tapella
et al.’s study is the first to demonstrate that pollutants can induce proliferation in normal
pituitary cells, bridging the gap between epidemiological and genomic findings in pituitary
tumors. Their findings suggest that benzene and 2-ethyl-phthalate activate the AhR/AIP
pathway, leading to enhanced proliferation in normal rat pituitary cells [35]. Experimental
data support the findings of Tapella et al., highlighting an association between endocrine
pollutants and their effects on cell lines derived from rat pituitary neoplasms, particularly
estrogen-sensitive somatotropes (GH3) and mammosomatotropes (MtT/E-2) [35]. Other
pollutants, including bisphenol A, genistein, o,p′-DDT, cadmium, and endosulfan, have
also been shown to promote proliferation in these cell lines [37–41].

Despite the relatively small number of studies directly evaluating the effects of air
pollution on pituitary adenoma pathogenesis, it is well known that air pollution poses
significant health risks in many different areas, and it is clear from the reports detailed in this
review that the pituitary gland and HPA axis are not spared. Air pollution is associated with
a wide range of noncommunicable diseases affecting various organ systems, including lung
cancer, chronic obstructive pulmonary disease (COPD), cardiovascular diseases, stroke, and
other malignancies, such as bladder cancer and childhood leukemia [42]. Particulate matter
(PM2.5 and PM10) and gaseous pollutants like ozone, nitrogen oxides, and sulfur dioxide
can penetrate the respiratory system, leading to acute and chronic respiratory conditions,
including asthma and bronchitis [43]. Neurological impacts are also significant, with air
pollution linked to cognitive decline, dementia, and neuropsychiatric disorders through
mechanisms involving neuroinflammation and disruption of the blood–brain barrier [44].
The systemic effects of air pollution are mediated through complex pathways involving
oxidative stress, inflammation, and neuroendocrine regulation, which can exacerbate pre-
existing conditions and lead to multi-organ damage [45,46].

It is currently estimated that nearly one half of the world’s entire population is po-
tentially exposed to increasing levels of air pollution, and current research on the effects
of climate change on air pollution predicts that air quality will further worsen as global
temperatures rise [47,48]. In high-pollution areas, such as Nanjing, China, a study found
that a 10 µg/m3 increase in particulate matter (PM) concentration was significantly asso-
ciated with increased hospital outpatient visits for endocrine, digestive, urological, and
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dermatological diseases. Specifically, the increase in PM concentration was associated
with a 0.59% increase in endocrine-related visits, highlighting the systemic impact of air
pollution on endocrine health [49]. In contrast, studies in regions with lower pollution
levels, such as the United States and Canada, have also documented adverse health effects
at levels below current air quality standards. The Health Effects Institute (HEI) found
positive associations between long-term exposure to fine particulate matter (PM2.5) and
increased mortality, even at concentrations below the U.S. National Ambient Air Quality
Standards. This suggests that even low levels of air pollution can have significant health
impacts, including on cardiovascular and respiratory morbidity [50].

Following inhalation, volatile organic compounds such as benzene and particulate-
bound toxins like PCBs and TCDD are absorbed through the respiratory epithelium and
enter systemic circulation [3,5]. Lipophilic pollutants readily cross the blood–brain barrier
either directly or through pollutant-induced vascular inflammation [3,5]. Toxicokinetic
studies have demonstrated that compounds like benzene undergo hepatic metabolism
via cytochrome P450 enzymes [51], generating reactive intermediates capable of inducing
oxidative stress and DNA damage [51–53]. Similarly, DEHP and PCBs disrupt endocrine
homeostasis through nuclear receptor interactions [54,55]. Dose–response relationships for
these pollutants suggest that the environmental exposure levels commonly encountered in
urban regions may approach biologically active thresholds [53,54]. Epidemiologic data link
chronic exposure to benzene concentrations of 1–5 ppb with increased risks of endocrine
dysfunction [54], while PM2.5-associated pollutants correlate with neuroinflammatory and
endocrine effects even at low concentrations [55]. Mechanistic studies further demonstrate
pollutant activation of AHR signaling in pituitary cell lines, promoting hormone secretion
and proliferative signaling [33,35].

While occupational exposure limits such as Threshold Limit Values (TLVs) and Permis-
sible Exposure Limits (PELs) have been established for select pollutants like benzene and
DEHP, direct studies on pituitary-specific toxicological thresholds are lacking. Biomarkers
of exposure, including trans, trans-muconic acid for benzene and MEHP for DEHP, pro-
vide evidence of systemic uptake, but their relevance to pituitary accumulation remains
uncertain. Additionally, the potential for synergistic effects among co-exposures is bio-
logically plausible yet uncharacterized in the context of pituitary tumorigenesis. These
gaps underscore the need for future toxicological studies that specifically evaluate pituitary
susceptibility to complex environmental exposures.

Simply put, the potential public health implications are astounding, and as further
research better elucidates the relationship between air pollutants and functioning pituitary
tumors, we suspect the impact may be significant. We again emphasize that further research
is necessary to parse out the ways in which air pollutants facilitate neuroinflammation
and pituitary tumorigenesis, and while this may be made more difficult by the immense
number of individual pollutants present in our air today, it is evident that their influence
cannot be ignored.

Moreover, it is important to note that much can be done to mitigate the harmful effects
of air pollution on the pituitary gland, and other body systems for that matter, despite
our ongoing efforts to better understand the underlying relationships. We suggest that
regions with elevated pollution levels adopt stricter air quality regulations, including setting
lower permissible limits for key pollutants, enhancing monitoring systems, and enforcing
penalties for non-compliance. Investment should also be directed toward expanding
clean energy initiatives, such as solar, wind, and hydroelectric power, and incentivizing
industries and households to transition away from fossil fuels. Improved urban planning
is another critical area, including increasing green spaces, implementing emission control
zones, and designing cities to reduce vehicle traffic and promote public transportation,
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cycling, and walking. On an individual level, residents in high-pollution areas can take
proactive measures to protect their health. These include wearing high-efficiency masks
(such as N95 or equivalent respirators) when outdoors, especially during peak pollution
periods, using indoor air purifiers, sealing homes to prevent outdoor air infiltration, and
staying informed about daily air quality reports to adjust activities accordingly. Public
education campaigns can further empower communities by raising awareness of pollution
risks and available protective strategies.

Future studies should build upon the experimental findings detailed herein with
larger sample sizes to help validate and strengthen the associations. Multigenerational
research in exposed areas can be performed to better understand the long-term effects of
endocrine pollutants on pituitary tumor development. Finally, comparisons of the rate of
growth, tumor size, and pathological hormone levels between patients in pollutant-poor
and pollutant-rich areas may further shed light on the magnitude of air pollution’s effect.

Limitations

Given the emerging nature of this research area, several limitations exist within the
discussion and studies cited in this review. We critically discuss the limitations of existing
in vitro, in vivo, and epidemiological evidence, the current lack of definitive causal data,
and key hypotheses that require future investigation. Many of the studies reviewed
were conducted in animal models, which, while valuable for understanding biological
mechanisms, may not fully reflect human physiology or disease processes. As a result, the
applicability of these findings to human populations remains uncertain. Another limitation
is the strength of the evidence supporting a causal link between air pollution and pituitary
adenoma pathogenesis. While several studies suggest a potential association, the evidence
remains inconclusive and does not yet establish a definitive causal relationship. Further
research, particularly longitudinal human studies, is needed to strengthen these findings
and clarify the potential mechanisms involved. The wide range of pollutants and their
complex interactions make it challenging to fully understand their collective impact on
tumorigenesis, underscoring the need for future research to clarify these mechanisms.
Additionally, the differing pollution levels across geographic regions create challenges in
making direct comparisons, highlighting the importance of conducting localized studies.

6. Conclusions
Emerging evidence suggests a compelling link between air pollution and the devel-

opment of pituitary tumors. While traditionally viewed through the lens of respiratory
and cardiovascular harm, air pollution’s potential neuroendocrine effects are becoming
increasingly apparent. Chronic exposure to particulate matter and toxic pollutants may
contribute to endocrine disruption, oxidative stress, inflammation, and even direct mutage-
nesis within the pituitary gland. Although current studies indicate a plausible biological
pathway and epidemiological associations, research remains limited by small cohort sizes,
variable exposure assessments, and a lack of mechanistic clarity. Future investigations must
prioritize longitudinal, population-based studies and explore molecular mechanisms in
greater detail to definitively establish causality. Understanding these connections not only
deepens our knowledge of pituitary tumor pathogenesis but also highlights the urgent
need for environmental health interventions to mitigate broader public health risks. Given
the rising burden of both air pollution and pituitary disorders globally, this intersection
represents a critical frontier in preventive medicine and neuroendocrine research.
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