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A B S T R A C T

Ecuadorian p�aramo ecosystems (EPEs) function as water sources, contain large soil carbon stores and high levels
of biodiversity, and support human populations. The EPEs are mainly herbaceous p�aramo (HP). To inform policy
and management and help drive ecological science toward a better understanding of the HP ecosystem, and the
relationships among its multiple ecosystem services, we asked: (1) What is the state of the HP regarding its land
use/land cover (LULC)?; and (2) Is the HP being pushed away from its natural state or it is regenerating? To
answer these questions, we assessed the LULC in central EPEs using Landsat 8 imagery, Object-Based Image
Analysis (OBIA) and a Classification and Regression Trees (CART) algorithm. Results show that two-fifths of the
paramo ecosystem remain as native HP (NHP) and two-fifths as anthropogenic HP (AHP). Although the anthropic
alteration of the pedogenesis of young paramo soil leads to the establishment of AHP, we found evidence of
regeneration and resilience of the NHP. The results of this study will be useful to scientists and decision-makers
with interest in p�aramo ecosystems in central Ecuador. The proposed methodology is simple, fast, and could be
implemented in other landscapes to establish comprehensive monitoring systems useful in landscape assessment
and planning.
1. Introduction

P�aramos are neotropical high-altitudemountain ecosystems dominant
between 3000 and 4700 masl (above the upper forest line) and cover a
surface area larger than 7,500,000 ha extending from Costa Rica to the
northern Andes of Colombia, Ecuador, Venezuela, and Perú [1, 2, 3].
Ecuadorian p�aramo ecosystems (EPEs) cover a surface area of 1,833,834
ha, about 5 % of the national territory [2], and extend from the northern
boundary with Colombia to the southern border with Perú, through the
Andean corridor, and extending 600 km down across the spine of the
Andes (about 180 km wide and 600 km length). EPEs function as
important water sources with large soil carbon stores and high levels of
biodiversity and have long supported human populations. EPEs are home
to approximately 628 endemic plant species, which is equivalent to 15%
of all of the endemic flora and 4% of the total flora of the country. Sev-
enty five percent of the endemic species are threatened, and 48% are in
cía).
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protected natural areas [4]. EPEs can yield 506–933 mm of water per
year [1], equivalent to 2/3 of the annual rainfall within the region. Thus,
EPEs supply domestic water for many of the major cities in Ecuador. Due
to a high retention of soil organic matter, EPEs topsoil can store up to 143
tons C/ha [5], representing a vital global carbon reservoir. Although
volcanic ash soil covers approximately 0.85% of the world's land area,
they contain approximately 5% of the global soil carbon [6], roughly 12
times more of the amount stored under the same land area of the world's
forest soil.

Changes in land use/land cover (LULC), such as conversion to agri-
culture and clearing for timber plantations and pasture, threaten the EPEs
via soil degradation and climate change. Rising temperatures and rainfall
pattern changes directly and indirectly influence soil evolution (pedo-
genesis) of young Andosols soils, altering carbon storage capacity and
carbon release from humified soil organic matter (SOM) [7]. Thus, the
effects of changes in climate and LU on SOM in volcanic ash soil are
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ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:vgarcia@unach.edu.ec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2019.e02701&domain=pdf
www.sciencedirect.com/science/journal/24058440
www.heliyon.com
https://doi.org/10.1016/j.heliyon.2019.e02701
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2019.e02701


V.J. García et al. Heliyon 5 (2019) e02701
substantial [8]. Similarly, complications persist in the mapping of
extensive areas in the p�aramos due to abrupt changes in humidity, alti-
tude, temperature, and topography.

The conservation of ecosystem services provided by EPEs in the face
of environmental and anthropic changes has become a key priority.
However, when determining conservation strategies, it is critically
important to be able to identify when the ecosystem is about cross a
threshold from a desirable to an undesirable stable state with a loss of
resilience [9]. Thus, knowledge about the p�aramo ecosystem resilience
has direct implications for the p�aramo ecosystem management, where
LULC is a huge issue. Although many technological tools combine arti-
ficial intelligent algorithms and satellite imaginary for LULC monitoring,
there are few examples that extend the use of these technologies to assess
system resilience, such as within EPEs.

As the p�aramos are sensitive to disturbances, a better understanding of
natural responses of the EPEs to LULC and climate change could have
significant implications for land management decisions [3], as well as for
global climate change, adaptation and mitigation. Changes in LULC are
pervasive, rapid, and can have a significant impacts on humans, the
economy, and the environment [10]. LULC changes contribute to p�aramo
ecosystem fragmentation and impact climate and weather conditions
from local to global scales, reduce biological diversity, increase soil
erosion, and alter other important ecosystem services, leading to the
disruption of socio-cultural practices, and increasing natural disasters
[11]. Accurate LULCmapping is of paramount importance for continuous
monitoring of the changes and determining biotic and abiotic factors
contributing to resilient p�aramo ecosystems [9]. Sustainable develop-
ment of the EPE will falter without data. Therefore, there is a need for the
establishment of comprehensive monitoring systems that utilize remote
sensing data to assess changes in LULC and combine this information
with knowledge of EPE function to inform spatial planning and achieve
long-term conservation goals [12]. In this study, a classification based on
objects is proposed as a viable alternative in the complex Andean land-
scapes. Geographic Object-Based Image Analysis (OBIA) refers to an
approach that studies geographic entities through delineating and
analyzing image-objects rather than individual pixels. Image-objects are
visually perceptible ‘objects’ within the image, typically represented by
clusters of similar neighboring pixels that share a commonmeaning [13].
OBIA not only overcomes the “salt-and-pepper” effect associated with
other techniques, but also it adds additional information on spectra,
geometry, context, and texture that may be useful in classification. For
these reasons, OBIA has been used widely in image-based land cover
classification [14].

To inform policy and management and foster a better understanding
of the herbaceous p�aramo (HP) ecosystem service provisioning we asked:
(1) What is the state of the HP regarding its LULC?; and (2) Is the HP
being pushed away from its natural state or it is regenerating? To achieve
these objectives, we used the OBIA framework, CART algorithm, and
Landsat 8 images to analyze the state of the p�aramo ecosystems and
generate an up-to-date database by mapping LULC in central EPE. We
performed data mining of LULC objects and developed a classification
decision tree (CDT) with six important predictive variables with the
lowest misclassification rate. The run of the complete data set through
the CDT model written in a PHYTON code, led to the distribution of the
different LULC in the study area. The proposed methodology is simple,
fast, and could be implemented in other landscapes to establish compe-
tent comprehensive monitoring systems useful in landscape assessment
and planning.

2. Materials and methods

2.1. Study area

The study area is located in the province of Chimborazo (Central
Ecuador). Chimborazo is situated 135 km south of Quito and extends
between the coordinates: 78� 390 W and 1� 390 S, defined between the
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UTM coordinates South Zone 17, Datum WGS84 (X ¼ 694531; Y ¼
9840051) and (X ¼ 789975; Y ¼ 9714929) (Fig. 1). The province of
Chimborazo has an approximate surface area of 649,970 ha, of which
273,660 ha (42.1 %) belongs to the p�aramo ecosystem (Fig. 1). Chim-
borazo has irregular topography that is in an altitudinal range of 143 to
6,263masl. Soils are mostly Andosols. The climate has a daily seasonality
that can be expressed as “winter every night and summer every day,”
with notable temperature variations from 2 �C and 20 �C according to the
isotherms of the National Institute of Meteorology and Hydrology of
Ecuador [15]. However, the climate is generally cold, which contrasts
with the high UV radiation that is felt mainly at noon when the sky is
clear. Usually, there is a bimodality in terms of rainfall, with peaks of rain
around April and greater dryness around July–August. For this study, we
segmented the area into 81 regions of 10 � 10 km2 (10,000 ha) each one
and processed each region individually (Fig. 1).

2.2. The herbaceous p�aramo

The Ministry of Environment of Ecuador (MEE) defines EPEs ac-
cording to vegetation types, precipitation, and soils. Although one can
find wetland, forest, water body, and snow, the p�aramo ecosystem in the
province of Chimborazo is mainly of the type of HP. Within the herba-
ceous class groups, the HP covers the largest area (more of 90 %) of
mountain ecosystems located in glacial valleys, slopes and subglacial
plains, and its soils are rich in organic matter. The humid herbaceous upper
montane p�aramo that is in volcanic enclaves presents relatively low hu-
midity and soils with a low concentration of organic carbon. The flood-
plain herbaceous p�aramo has a positive water balance and soils have
anaerobic conditions that inhibit organic matter decomposition (organic
carbon up to 50%). Finally, the subnival humid herbaceous p�aramo located
in periglacial slopes in shallow entisoles soils and exhibits low retention
capacity or water regulation [16].

2.3. Workflow

The LULC classification methodology had 5 major stages: image
preprocessing, OBIA framework implementation, attribute extraction,
data mining, and classification and analysis (Fig. 2).

Image preprocessing included downloading Landsat 8 images, pan-
sharpening, and radiance and reflectance correction. The OBIA frame-
work implementation included image segmentation and object genera-
tion. Attribute extraction comprised the extraction of the maximum,
average, and minimum values of the reflectance, spectral indices and
ancillary data for each object. Data mining of the classification scheme
involved sampling 466 random objects and the extraction of its attribute
values; finding the CDT and evaluation of its performance; and evalu-
ating the classifier learnability of the sample and the classifier validation
to obtain an estimate of classifier performances. Through sample mining,
we performed feature selection to rank the importance of features (pre-
dictor variables). The classification and analysis include a phyton code
generation for the classification of each object in the categories under
study.

2.4. Landsat-8 OLI images

The study of the total area was completed using two images captured
by the Landsat 8 satellite. The scenes of the studied area were captured
on 2016/11/20 with the following tags: (1) LC80100612016325LGN01
and LC80100622016325LGN01; (2) Time of the year: summer; (3) Path/
Row: 010/061 and 010/062; (4) Sun Azimuth (degrees): 130.33674 and
128.09132; (5) Sun Elevation (degrees): 60.56479 and 61.31854; (6)
Scene center time: 15:26:38 and 15:27:15; (7) Cloud cover: 19% and
25%; (8) Sensors: OLI_TIRS; and, (9) Datum – projection: WGS 84 - UTM
ZONE 17s.

Although the United States Geological Survey provides Landsat-8
images which have a level of preprocessing L1T, these images have a
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systematic radiometric and geometric correction by incorporating
Ground Control Points (GCP) [17], and are also ortho-rectified through
the Digital Elevation Model (DEM). The geometric accuracy of the
Landsat 8 images was verified by using the topographic charts and base
cartography of rivers and roads, at a scale of 1:50000, georeferenced in
the UTM Datum WGS84 projection, of the Ecuadorian Military
Geographical Institute, [18].

2.5. OBIA framework

The image of each scene was processed in ArcGIS following the
workflow suggested by Urbanski [19] for converting Landsat-8 OLI im-
ages into a land cover map using OBIA classification:

(1) Create a pan-sharpened composite from Landsat 8 data and pan-
sharpened 15 � 15 m channels with preserved DN values. For
pan-sharpening, the smoothing-filter based intensity modulation
technique is used [20]. DN ¼ Digital number (quantized and
calibrated standard product pixel values). Combinedmultispectral
band: Band 4 (red), Band 3 (green), Band 2 (blue), and Band 8
(panchromatic). Tool: Pan-sharpened composite (Lansat 8).

(2) Using pan-sharpened DN channels created channels with atmo-
spherically corrected radiance at the Earth surface (Learthrad).

Learthrad ¼ðDN�MþAÞ �
�
Lminrad � 0:01

ESUN � cosθs
πd2

�
(1)

The DN values are converted to radiance using radiometric rescaling
coefficients from Landsat 8 MTL metadata file. Top of the Atmosphere
(TOA) spectral radiance is calculated using band-specific multiplicative
(M) and additive (A) rescaling factors. Atmospheric correction is
Fig. 1. Stud

3

performed using dark object subtraction method assuming one percent
minimum reflectance. The one percent deducted from minimum radia-
tion is calculated from formula where: cos θs ¼ cosine of the solar zenith
angle in degrees, ESUN ¼ Mean solar exo-atmospheric irradiances, d ¼
Earth-Sun distance in astronomical units [19]. Tool: Radiance atmo-
spheric corrected (Lansat 8).

(3) Using pan-sharpened DN channels created channels with atmo-
spherically corrected reflectance at the Earth surface.

Rearth ¼
�
DN � 0:0002� 0:1

cosθs

�
�
�
DNminimum � 0:0002� 0:1

cosθs
� 0:01

�
(2)

Calculation of spectral reflectance starts with the conversion of DN to
TOA reflectance. Then the one percent minimum reflectance is estimated,
and the reflectance at the Earth surface is calculated. The Lowest Valid
Value is determined using the absolute minimum value in the band [19].
Tool: Reflectance atmospheric corrected (Lansat8).

(4) From reflectance, images perform segmentation, creating a poly-
gon layer of segments. Partition the scene into a set of discrete
regions or objects that are internally more uniform than when
compared to their neighboring object. The segmentation is per-
formed using the hybrid linkage region growing algorithm, which
works in 2 steps. In the first step, multispectral slopes are calcu-
lated and converted to the edge map using an adequate threshold.
This edge raster map is thinning by extraction of pixels with local
“slope maxima” [21]. We selected the segmentation scale after a
series of interactive “trial and error” test and visual validation
[22]. Tool: Segmentation (Lansat8).
y area.
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(5) Descriptive attributes extraction. Extract from raster pixels of
objects and assign to each segment their statistics (mean, standard
deviation, maximum, minimum) [19]. Tool: Extraction from
raster (OBIA).

2.6. Ground truthing and known LULC

LU is characterized by the arrangements, activities, and inputs
people undertake in a specific land cover to produce, change, or
maintain it. Land cover (LC) is the observed biophysical cover on the
Earth's surface [23]. For this study, the LULC data were divided into
five classes: NHP, AHP, forest (FRS), water bodies (WTR), and snow
(SNW). Ground truthing was conducted to provide field data to vali-
date LULC class. . Data was collected at 466 locations (objects)
randomly located in the study area and geographic coordinates of
LULC object were recorded using a hand-held global positioning
system device. The LULC classes based on visual observation of the
imagery are shown in Fig. 3. Training objects for each class were
randomly selected within the study area using well-known class
locations.

2.7. Object-based features (predictor variables)

The object-based features used in this study to complete the OBIA
classification were retrieved from the Landsat 8 bands and the DEM. The
mean of the ground reflectance values at Bottom-of-Atmosphere for all
the pixels within an object were labeled as Reflectance basic spectral
information. We tested 18 candidate features, including the Reflectance
basic spectral information, 12 spectral vegetation indices (SVIs) derived
from multispectral bands, and five indices derived from DEM (Table 1).
The band algebra was used through the Math Band tool, from ENVI, to
generate the indices detailed in Table 2 according to their corresponding
Landsat 8 bands.
Fig. 2. Flowchart depicting the essential
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The SVIs were used as predictor variables as opposed to the image
band because the SVIs carry information about the spectral signature of
the vegetative material, which image band by itself does not. The SVIs
derived from information provided by remote sensors is the primary
source of information for monitoring and assessing the vegetation cover
of the land surface [24, 25].

2.8. Data processing

The CART algorithm available in the SPM®8 software suite from
Salford Systems San Diego, USA was used for data mining. CART is a
non-parametric, rule-based machine learning method that attempts to
inductively discover the relationship between input attributes (predic-
tor variables) and a target attribute. The method divides the predictor
variable into different regions so that the target variable can be pre-
dicted more accurately. The discovered relationship is represented in a
structure referred to as a decision tree (DT). The DT describes a hidden
pattern in the dataset and which can be used for classification and to
differentiate objects of LULC within the area of study by mapping the
input space into a predefined class. Also, CART automatically chooses
the best variables and split point by reducing the squared of the abso-
lute error criterion. CART automatically handles variable selection,
variable interaction modeling, nonlinear relationship modeling,
missing values, outliers, and it is not affected by the monotonic trans-
formation of variables [26, 27].

A DT is a non-parametric rule-based hierarchical model of decisions
and their consequences. Thus, a DT is a graph that uses nodes and branch
connecting nodes to illustrate a course of action and various outcome
[26]. The critical issues on a DT are:

(1) The node at the top of the tree is called the root node (a node with
a no incoming branch).
stages in this classification scheme.



Fig. 3. Typical characteristics of the LULC class identified from field testing and recognized in Landsat 8 imagery. (a) and (b) Water (WRT); Watercourse and water
bodies. River, small lakes, and reservoirs. The water class includes the lacustrine system and adjacent areas with high flood susceptibility. (c) and (d) Forest (FRS)
dominated by coniferous plants, mostly Pinus spp. Mixed vegetation which has a scattered distribution, mostly shrubs. Forest with close and open canopies more than
12 m height. (e) and (f) Native herbaceous paramo (NHP) ecosystem dominated by Calamagrostis spp. (g) and (h) Anthropogenic herbaceous paramo (AHP) ecosystem
that has been disturbed or transformed by human LU. Crop field, pasture, bare soil, built-up areas/infrastructure, roads, burned areas, and regenerated herbaceous
p�aramo with species association and altered phenology. (i) and (j) Snow (SNW) class corresponds to areas with an altitude higher than 3827 masl in which there are
precipitation deposits of small ice crystals, with geometric shapes that are grouped in flakes resulting in highest reflectance values.
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(2) A node that has no sub-branch is terminal. Also known as “leaves”
or “decision” nodes.

(3) A node with an outgoing branch is referred to as an “internal
node.” In a DT, each internal node considers a single attribute
(predictive variable) and splits this according to the value of the
attribute (range). Each split divides one node into two subsets (a
binary split).

(4) Pruning involves removing a subset node from a DT. Each termi-
nal node is assigned to one class representing themost appropriate
target value. Alternatively, each terminal node may hold a prob-
ability vector indicating the probability of the target attribute has
a particular value.

The CART algorithm automatically grows a large tree. Also, the CART
algorithm automatically prunes the large tree upward, and uses either a
test sample or cross-validation to prune subtrees. The final tree results in
Table 1
Features used for classification.

Object features Description

Reflectance basic spectral information
(Landsat 8 bands B2, B3, B4, and B8).

The average of the ground REFLECTANCE
values at Bottom-of-Atmosphere for all the
pixel within an object.

Spectral vegetation indices derived
from Landsat 8 bands B2, B3, B4, B5,
B6, and B7.

EVI2, WDRVI, SAVI, NDVI, NDWI, VARIg,
NDSI, BI, NDMI, NBR, NBR2, and NDBI.

Topographic indices derived from
DEM.

ALTITUDE, SLOPE, CURVATURE, TWI
(Topographic Wetness Index is an
indicator of the effect of local topography
on runoff flow direction and
accumulation), and ASPECT.
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the lowest error. All variables are considered for each split, but not all
variables are necessarily used. Only variables that maximize the splitting
criterion at any given split are used (the important variables). CART build
up DTs with only six important predictor variables at a time, and the
number of nodes ranges from 5 to 27. We chose the DT that led to the
smallest error with the small number of nodes. CART randomly used 80
% (373) of the ground truth data for learning and 20% (93) for validation
and made up a confusion matrix for learning and validation. For the sake
of clarity and completeness, a binary cross-tabulation was performed to
assess the DT performance categorizing each class in agreement with the
equation in Table 3.

3. Results

3.1. Knowledge discovery

3.1.1. Importance of predictor variables
The importance of the variables in the classifier performance

decreased with the following trend: Reflectance > VARIg > Altitude >

SAVI > BI > EVI2 > NDWI > NDVI > NBR > NDMI > NBR2 > NDBI >
Slope (Fig. 4). Fig. 4 also shows the six predictive variables (Emphasized)
used by the final CDT shown in Fig. 6. The CDT in Fig. 6 led to the
smallest error with the smallest number of nodes. Variables CURVA-
TURE, TWI, ASPECT, WDRVI, and NDSI showed little importance and
provided limited information for classifier performance.

3.1.2. Decision tree
CART randomly built out 1500 sub-DTs, each one with one subset of

variables, and ran the 466 ground truth data down the smaller trees and
computed the errors for each tree as a function of the node numbers. The
predictor's subset that led to the sub-DT with the lowest test error is



Table 2
Spectral vegetation Indices derived from Landsat 8 OLI bands.

Spectral Vegetation
Indices

Formulation Description

NDVI: Normalized
Difference
Vegetation Index

ðNIR� RÞ =ðNIR þ RÞ The higher the index,
the higher the
chlorophyll content [28]

SAVI: Soil-Adjusted
Vegetation Index

ð1þLÞ ðNIR� RÞ
ðNIRþ Rþ LÞ : L ¼ 0.05

Accounts for the effect
of soil reflectance [29]

NDWI: Normalized
Difference Water
Index

ðG� SWIR1Þ =ðG þ SWIR1Þ Used mapping water
[30]

WDRVI: Wide
Dynamic Range
Vegetation Index

ð0:05 � NIR� RÞ =ð0:05 �
NIR þ RÞ

More sensitive to leaf
area index. Enable a
robust characterization
of crop physiological
and phenological
characteristic [31]

VARIg: Visible
Atmospherically
Resistant
Vegetation Index
green

ðG� RÞ =ðG þ R� BÞ Lineally sensitive to
vegetation fraction, it
exhibits a good
correlation with
nitrogen contents [32]

EVI2: Enhanced
Vegetation Index 2

2:5� ðNIR� RÞ
ðNIRþ 2:4� Rþ 1Þ

Provide greater
sensitivity in regions
with high biomass while
minimizing the
influence of the soil and
the atmosphere [33].

NDSI: Normalized
Difference Snow
Index

ðG� NIRÞ =ðG þ NIRÞ It is useful for snow
mapping [34]

BI: Bare Soil Index ½ðSWIR1þ RÞ � ðNIRþ BÞ�
½ðSWIR1þ RÞ þ ðNIRþ BÞ�

The difference amount
bare soil areas, lands,
vegetation, is marked
using the BI [35]

NDMI: Normalized
Difference Moisture
Index

ðNIR� SWIR1Þ =ðNIR þ
SWIR1Þ

NDMI is for the
detection of vegetation
water content [36]

NBR: Normalized
Burn Ratio

ðNIR� SWIR2Þ =ðNIR þ
SWIR2Þ

NBR allows
discrimination of
burned and unburned
areas [37]

NBR2: Normalized
Burn Ratio 2

ðSWIR1� SWIR2Þ =ðSWIR1 þ
SWIR2Þ

NBR2 is useful for
postfire recovery
assessment [38].

NDBI: Normalized
Difference Built-up
Index

ðSWIR1� NIRÞ =ðSWIR1 þ
NIRÞ

Mapping built-up areas
[39]
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highlighted in Fig. 3, and the sub-DT error as a function of the number of
nodes is shown in Fig. 5. Thus, the sub-DT with the smallest error has 14
nodes (Fig. 6), and it is referred to as the final CDT.

3.1.3. Accuracy assessment
Classification results after learning and validation are shown in

Table 4. During the learning process the CDT correctly categorized 344 of
373 ground truth objects (overall accuracy of 93.03 %). Moreover, of 74
WTR objects, 73 were correctly classified (98.65%), and of 83 NHP ob-
jects, 67 were correctly classified (78.31%) (Table 4). After validation,
the CDT correctly categorized 88 of 93 ground truth objects (overall
accuracy of 94.68 %). Moreover, of 14 WTR objects, 14 were correctly
classified (100 %), and of 20 NHP objects, 18 were correctly classified
(90 %) (Table 4).

3.1.4. Decision tree features – binary cross-tabulation
The CDT features derived from the confusionmatrix by a binary cross-

tabulation (Table 3) are shown in Table 5. The overall accuracy per ob-
ject class is above 94 %, and the misclassification rate is below 6 %. The
CDT specificity (the proportion of real negative cases that are correctly
predicted negative) is above 94%. The probability of an informed clas-
sification for each class was above 78 %. The measures of howmuch each
class is marked as a possible cause of the negative ones (the whole set of
6

another class) were above 72 %. Matthew's correlation coefficient be-
tween the observed and the predicted object was above 82 %.

3.2. LULC in the p�aramo ecosystem of the province of Chimborazo

Fig. 7b shows the complete object's data set from the overall scene
through the CDT model (Fig. 6) written in a PHYTON code. This map
shows a predicted distribution of the different LULC in the study area. For
the sake of clarity and comparison, we include the HP distribution re-
ported by MEE in Fig. 7a. We used the ecosystem map of Ecuador as a
baseline and for comparison as it is the official tool for the specialization,
characterization, and definition of ecosystems at the national level. The
Ecosystem Classification System of Ecuador has been established from
continental scales to fine scales (landscape, local); and can be used at
different levels according to the purpose of studies carried out in any
territory [16].

The surface area cover by each category derived from OBIA analysis
for NHP, AHP, FRS, WTR, and SNW was 121,905 ha (44.55%), 105,470
ha (38.54%), 25,749 ha (9.41%), 19,973 ha (7.30%), and 560 ha
(0.20%), respectively. However, in 2012, the MEE reported that there
was 141,827 ha of NHP [16], and there is no report of AHP surface area.

The distribution of LULC for the entire study area and each region is
shown in Table 6. The regions with the largest area of NHP, AHP, FRS,
WTR, and SNW is region 71, with (7,633 ha), 35 (6,970 ha), 11 (2,654
ha), 17 (1,842 ha) and 70 (120 ha), respectively (Table 6). As per, each
region has 10,000 ha of surface area. Thus, 76 % of the surface area of
region 71 is covered by NHP. Region 35 exhibits the largest area of
anthropogenic activities, with 70% of its surface area of AHP. FRST
covers 26 % of the surface area of region 11. WTR covers 17 % of the
surface area of the region 11, and 0.1 % of the region 70 is covered by
snow.

There are eight regions (2, 9, 19, 20_1, 21, 29, 34, 41) where the
difference between the surface area of the NHP reported in the MEE map
and the surface area resulting from our analysis is less than 100 ha
(Table 6). Thus, it can be inferred that the NHP within these regions
remains in the same condition as in 2012. For example, the surface area
of the NHP in region 21 and 29 reported by MEE was 3,805 ha and 4,061
ha, respectively; while our analysis suggests 3,766 ha and 4,044 ha,
respectively. Similarly, there are 5 regions (16, 51, 58, 65, 66) where the
CDT identifies that the HP ecosystem is in an upgrading stage, with all of
these regions increasing in area by 1000 ha or more. This suggests that
the NHP is being regenerated. Region 66 also gained 3,600 ha. On the
other hand, the CDT identified 13 regions (17, 24, 25, 33, 37, 41_1, 44,
47, 49, 69, 75, 76, 77) where the NHP ecosystem is in a downgrading stage,
with all of these regions decreasing in area by 1,000 ha or more). This
suggests that NHP is being converted to other land uses or otherwise lost.
Region 33 lost the greatest area of NHP at 2,500 ha. In summary, the sum
of the all positive difference between the total area given by GEOBIA and
the reported by MEE in each regions suggest a total gain of 14,265 ha,
mean a while, the sum of the all negative differences between the total
area given by GEOBIA and the reported by MEE in each region suggest a
total loss of 34,186 ha. In contrast, regarding the MEE report the results
suggest a total net loss of 19,921 ha (141,827–121,905) of NHP.

4. Discussion

4.1. Important variables

Low relative importance is associated with variables with little rele-
vance for categorization and CDT performance. Predictor variables with
little importance provide limited information and do not reduce the en-
tropy of the information. However, this hierarchical framework must be
taken with caution because the correlation among the variables could
have had an impact on the relative assessment of variables importance,
but do not affect the predictive performance of the CDT [25].

The variable “Reflectance” provided more information –with a



Table 3
Systematic notation in a confusion matrix, the binary cross-tabulation for class “i” and indices used to assess the performance of the decision tree categorizing class “i.”

Confusion matrix Actual Class Predicted Classes
Class 1 .. Class j .. Class n

Class 1 P11 .. P1j .. P1n
.. .. .. .. .. ..
Class i Pi1 .. Pij .. Pin
.. .. .. .. .. ..
Class n Pn1 .. Pnj .. Pnn

Binary cross-tabulation for class “i.” Predicted
positive

Predicted negative

Positive example TPi ¼ Pi;j¼i FPi ¼
Pn

j¼1Pi;j 6¼i

Negative example FNi ¼
Pn

i¼1Pi 6¼j;j TNi ¼ N� TPi � FPi � FNi

TP ¼ True positive; FP ¼ False positive; FN ¼ False negative; TN ¼ True negative; n ¼ total number of classes; N ¼ Total number of objects.
Sensitivity (Recall) ¼ TPi

TPi þ FNi

Represents the likelihood that an object belongs to a class “i” and the classifier accurately assigns it to
class “i” (User accuracy - UA).

Specificity ¼ TNi

TNi þ FPi
Measures how well the classifier can recognize negative samples. The proportion of real negative cases
that are correctly predicted negative.

Precision ¼ TPi

TPi þ FPi

Expresses the likelihood of a class “i” being properly recognized (Producer accuracy - PA).

Accuracy ¼ TPi þ TNi

N
Expresses the probability that a randomly selected object on the map is appropriately classified (Overall
accuracy - OA).

Misclassification rate ¼ FPi þ FNi

N
Informedness ¼ TNi

TNi þ FPi
þ TPi

TPi þ FNi
� 1 Probability of an informed decision about the random condition [40].

Markedness ¼ TNi

TNi þ FPi
þ TPi

TPi þ FNi
� 1 Measures of how much one variable is market as a predictor or possible cause of another [40].

Matthew's correlation¼
TNi � TPi � FPi � FNiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTNi þ FNiÞ � ðTPi þ FPiÞ � ðTNi þ FPiÞ � ðTPi þ FNiÞ

p
A measure of the quality of binary classifications prediction; þ1 value represents a perfect prediction,
0 no better than random prediction and -1 indicates total disagreement between prediction and
observation [40, 41]. Matthew's correlation coefficient is a correlation coefficient between the observed
and predicted classification.
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relative importance of 100%– than any of the SVIs or topographic vari-
ables (Fig. 4). Thus, “Reflectance” significantly determines the CDT
performance. It has been shown that it is crucial to employ surface
reflectance values to achieve accurate and reliable classification results
for large-scale application over which weather conditions can change
significantly [42]. Reflectance value captures the physical and biophys-
ical parameters of LULC objects, and depends on the 3-D complex LULC
objects structure's effects on the reflectance, as well as topographic
Fig. 4. Importance of the predictor variables. The final c
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heterogeneity [14]. However, Berhane et al. [43] found that topographic
heterogeneity from regions of interest did not reduce classification ac-
curacy unless heterogeneity became extreme. In general, overall classi-
fier accuracy trended downwards with increasing heterogeneity, but
remained relatively high until extreme heterogeneity levels were reached
[43].

The VARIg –with a relative importance of 62.54 %–was the second in
importance to “Reflectance”, and higher than that of “Altitude.” Previous
lassification decision tree uses emphasized variables.



Fig. 5. Error curve for the classifier in Fig. 5.

Table 4
The resulting confusion matrix from the learning and validation process.

Confusion matrix – Learning (373) – 80%
Actual class ↓ Predicted class

Water
(74)

Forest
(33)

Native
herbaceous
p�aramo (67)

Anthropogenic
herbaceous
p�aramo (181)

Snow
(18)

Water (74) 73 0 1 0 0
Forest (31) 0 30 0 1 0
Native
herbaceous
p�aramo (83)

1 0 65 17 0

Anthropogenic
herbaceous
p�aramo (167)

0 3 1 162 1

Snow (18) 0 0 0 1 17
Confusion matrix – Validation (93) – 20%
Actual class ↓ Predicted class

Water
(14)

Forest
(7)

Native
herbaceous
p�aramo (19)

Anthropogenic
herbaceous
p�aramo (47)

Snow
(6)

Water (14) 14 0 0 0 0
Forest (7) 0 7 0 0 0
Native
herbaceous
p�aramo (20)

0 0 18 2 0

Anthropogenic
herbaceous
p�aramo (46)

0 0 1 44 1

Snow (6) 0 0 0 1 5
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studies conducted by Gitelson et al. [31] showed that VARIg is sensitive
to the entire range (0–100%) of variation of the vegetal fraction. The
VARIg indicator was developed to estimate crop conditions because it
exhibits a good correlation with nitrogen content (g N/m2) [31].

“Altitude” is a topographic variable derived from DEM scaled to the
spatial resolution of the SVIs. The importance of altitude suggests that the
spatial distribution of the categories of LULC in the study region depends
on topography and related microclimate. In our studied area altitude
varied from 3000 masl to 4730 masl, resulting in a range of microclimate
which impacts plant physiology. “Altitude” was found to be the most
important environmental variable predicting the spatial distribution
forests in mountainous regions as a result of the relationship with alti-
tude, slope, and aspect [25].

EVI2, with a relative importance of 46.02 %, –was fourth in
Fig. 6. The classifie
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importance to “Reflectance”, and its information contribution was higher
than that provided by the NBR2. EVI2 is related to leaf area index and
does not lose sensitivity in areas with dense vegetation and abundant
chlorophyll production [33]. NBR2, with a –relative importance of 33.94
%, is used to evaluate postfire regrowth trajectory and as a means of
identifying long-term impacts of fire on sensitive ecosystems [38]. Our
results indicated that slope has the importance of 22.98 % in the cate-
gorization of LULC in our study region. Slopes range from undulating
r decision tree.



Table 5
Decision tree features. L stands for learning and V for validation.

Water Forest Native herbaceous p�aramo Anthropogenic herbaceous p�aramo Snow

L V L V L V L V L V

Sensitivity (User accuracy) 0.99 1.00 0.91 1.00 0.97 0.95 0.90 0.94 0.94 0.83
Specificity 1.00 1.00 1.00 1.00 0.94 0.97 0.97 0.96 1.00 0.99
Precision (Producer accuracy) 0.99 1.00 0.97 1.00 0.78 0.90 0.97 0.96 0.94 0.83
Accuracy (Overall accuracy) 0.99 1.00 0.99 1.00 0.95 0.97 0.94 0.95 0.99 0.98
Misclassification rate 0.01 0.00 0.01 0.00 0.05 0.03 0.06 0.05 0.01 0.02
Informedness 0.98 1.00 0.96 1.00 0.78 0.89 0.88 0.89 0.94 0.82
Markedness 0.98 1.00 0.96 1.00 0.72 0.87 0.94 0.91 0.94 0.82
Matthew's correlation 0.98 1.00 0.93 1.00 0.82 0.90 0.90 0.90 0.94 0.82

Fig. 7. (a) The native herbaceous p�aramo reported in the Ecosystem map of Ecuador 2012 [16]. (b) The native herbaceous p�aramo and anthropogenic herbaceous
p�aramo predicted by the classifier decision tree in this study.
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(5%) to very steep (70%). It is known that the “Slope” can be relevant in a
spatial distribution of vegetation that requires large amounts of moisture,
and has a significant influence on microclimate [25]. Because “Slope”
affects water conditions in the soil as well as temperature, the slope is one
of the sources of heterogeneity in the landscape controlling the spatial
distribution of the vegetation in mountain regions [25].

Using our six predictor variables, the overall percentage of correct
categorizations of the 93 true ground objects was 94.68 % (Table 4). This
value is acceptable if we consider the heterogeneity of the studied region
and that we only used 373 objects to train the algorithm. In general, these
areas are located in hard-to-reach areas, possess very uneven topography
and extreme climates, and offer little available local information.
4.2. CDT algorithm

Our CDT serves as an exploratory tool for data-driven discovery and
prediction to gain new insights on LULC in central EPEs. Although other
classifiers could achieve better classification results, CDT provides clear
decision rules with fixed threshold values that can be used in future
research without any training phase [44]. It has been shown that the
CART algorithm can provide stable performance and reliable results in
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machine learning and data mining research [45]. It has been used to
identify spectral bands with the highest discriminative capabilities be-
tween classes and lowmisclassification rates [45]. Classification utilizing
the DT algorithm has already been applied in identifying both
field-grown and greenhouse crops from remote sensing data with excel-
lent and robust results [44]. However, the CDT found in this study can
become unstable, as a change in one node affects all of the nodes that are
connected below. Our CDT rules are constrained by the root variable, and
only allows rules to be extracted that are indicated by the “Reflectance”,
the top variable. Nevertheless, this CDT weakness should not be over-
looked. Slight adjustments can help identify seasonal effect on LULC
unit's categorization and improve accuracy. In a hypothetical scenario,
one could identify the best CDT performance based on season, and match
it to the season of data collection. Note, the differences with the Random
Forest algorithm where the performance depends on the performance of
the majorities of DTs.
4.3. Date base and knowledge discovery

Our results indicate that P�aramo ecosystems lost surface area due to
anthropogenic activities. P�aramo residents, mostly indigenous people,



Table 6
The distribution of LULC for the complete study area and each region.

Region Coordinates UTM - zone 17
southern hemisphere

Surface area (ha)

Native herbaceous p�aramo (MEE 2012) Native herbaceous p�aramo Anthropogenic herbaceous p�aramo Forest Water Snow
X Y

2 749121.1 9840957.6 816 906 760 148 110 1
4 779121.1 9840957.6 55 7 1
6 739121.1 9830957.6 2949 1958 2373 86 477 86
7 749121.1 9830957.6 50 943 480 102 449 27
8 759121.1 9830957.6 1895 1497 1665 310 378 0
9 769121.1 9830957.6 494 496 430 152 41 2
10 779121.1 9830957.6 21 199 26 315 87
11 789121.1 9830957.6 1396 483 379 2654 876
12 739121.1 9820957.6 3961 2934 1742 285 381 10
13 749121.1 9820957.6 23 14 58 21
14 759121.1 9820957.6 7 10
16 779121.1 9820957.6 720 2479 362 682 341 2
17 789121.1 9820957.6 3724 1895 461 1978 1842 67
18 739121.1 9810957.6 3840 3702 2831 137 196 3
19 749121.1 9810957.6 230 188 3932 24 309
20 759121.1 9810957.6 34 2047 30 271
20_1 769121.1 9810957.6 321 265 39 44 5
21 779121.1 9810957.6 3805 3766 534 369 237 1
22 789121.1 9810957.6 41 63 8 2 16
24 729121.1 9800957.6 4372 2216 1338 1154 580
25 739121.1 9800957.6 5583 3820 2071 271 185 4
26 749121.1 9800957.6 1337 845 1701 16 239 26
27 759121.1 9800957.6 103 4577 64 528
28 769121.1 9800957.6 1274 746 1064 312 92
29 779121.1 9800957.6 4061 4045 781 328 193 2
30 789121.1 9800957.6 521 414 83 128 78
32 729121.1 9790957.6 778 276 584 1831 361
33 739121.1 9790957.6 6980 4528 3027 385 468 1
34 749121.1 9790957.6 908 957 1949 62 271
35 759121.1 9790957.6 59 6970 24 437
36 769121.1 9790957.6 1447 989 1295 283 139
37 779121.1 9790957.6 3949 2678 1503 704 493 2
38 789121.1 9790957.6 1259 970 98 91 207 1
41_1 749121.1 9780957.6 6003 3874 2637 574 402 2
41 739121.1 9780957.6 955 949 4344 56 203
42 759121.1 9780957.6 758 351 5866 343 861
43 769121.1 9780957.6 2367 3091 752 637 420
44 779121.1 9780957.6 5059 3217 1610 1547 757
45 719121.1 9770957.6 167 19
46 729121.1 9770957.6 5 676 21 118
47 739121.1 9770957.6 3157 980 5084 553 534 2
48 749121.1 9770957.6 52 2811 104 105
49 759121.1 9770957.6 4755 3323 4535 194 624 89
50 769121.1 9770957.6 1629 2163 2429 529 482 1
51 779121.1 9770957.6 2951 3991 2251 1430 515
54 729121.1 9760957.6 496 60 1059 131 376
55 739121.1 9760957.6 1086 226 1799 83 340
56 749121.1 9760957.6 114 2326 0 30
57 759121.1 9760957.6 5540 5054 3131 78 196 10
58 769121.1 9760957.6 2924 4366 3323 133 259
59 779121.1 9760957.6 2341 2091 593 278 229
63 739121.1 9750957.6 291 101 172 25 65
64 749121.1 9750957.6 866 608 613 15 57
65 759121.1 9750957.6 2473 4841 3787 299 219 5
66 769121.1 9750957.6 1953 5373 1408 63 288 4
66_1 779121.1 9750957.6 323 691 145 78 136
68 729121.1 9740957.6 712 391 262 65 54
69 739121.1 9740957.6 3591 1953 1813 210 296 81
70 749121.1 9740957.6 6615 5937 1756 131 70 120
71 759121.1 9740957.6 7162 7633 1527 173 85 10
72 769121.1 9740957.6 3939 4479 671 471 300 0
73 779121.1 9740957.6 434 278 17 731 175
74 749121.1 9730957.6 3678 3183 574 2 7 0
75 759121.1 9730957.6 4722 3525 1203 340 80
76 769121.1 9730957.6 4731 3024 544 1501 461
77 779121.1 9730957.6 1525 406 34 1056 600
77_1 759121.1 9720957.6 886 718 156 85 9
78 769121.1 9720957.6 771 336 147 321 24
79 779121.1 9720957.6 378 53 21 519 250
TOTAL 141827 121905 105470 25749 19973 560
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are engaged in agricultural, livestock, and logging activities. There is not
always a clear line between commercial and subsistence resource use. It
is tempting but unrealistic to assume that residents will only seek sub-
sistence or low-impact activities [46]. In the p�aramo, crop production is
accomplished by removing native p�aramo surface vegetation, cultivation
for 3–4 years, and relocation to other p�aramo areas. The formerly culti-
vated fields are left for regeneration. Alternatively, p�aramo residents
cultivate pasture for livestock activities on previous crop production
areas. Therefore, the natural p�aramo ecosystem can lose or gain surface
area as a consequence of the anthropic activities.

The itinerant LU by the p�aramo resident is due to the short productive
capacity of the Ecuadorian p�aramo soil. These are young volcanic soils,
mostly from the andosol order with low bulk density, high organic car-
bon content, and low nutrient stores. Conversion of the native p�aramo
vegetation alters the pedogenetic trait of the young andosol soils,
resulting in surface hardening and a loss of soil organic carbon to the
atmosphere. Crop yields are highest in the first year after conversion, but
are lower in subsequent years, requiring the use of fertilization to
maintain productivity. After the third or fourth years, agricultural ac-
tivity is unsustainable.

Anthropic activities, including burning LC and livestock grazing,
affect the structure and composition of the NHP and lead to the con-
version to AHP. In areas where there was higher intensity of burning and
grazing, the grasslands have a lower height, have lost biomass, and the
shrub layer is absent. This ecosystem is characterized by dense vegetation
dominated by grasses emanate from basal growing points. Shrubs and
matted straw disappear gradually along the elevation gradient and are
replaced by cushions, rosettes to caulescent, prostrate shrubs and short-
stemmed grasses. The resulting composition and physiognomy of this
AHP differ altitudinally and latitudinally, as well as driven by factors
such as climate, geological history, initial habitat diversity, and the in-
tensity of human influence [16]. These anthropogenic activities hasten
biodiversity loss, climate change, deterioration of ecosystem function,
and ultimately compromises the utility of the land for local communities
and future generations [46].

In our study, the total area of AHP was estimated at 105,470 ha, with
36 regions exhibiting more than 1,000 ha of AHP (Table 6). This result
suggests a long history of p�aramo soil exploitation, together with a sub-
stantial amount of anthropogenic activities. Although this conversion
threatens the livelihoods of the p�aramo residents, this interaction is
complex and conditioned by critical economic, social, and environmental
factors [47]. In contrast, we estimated that 14,265 ha of NHP has re-
generated and is now indistinguishable from unimpacted NHP. Addi-
tional research is needed to confirm the areal extent of the conversion of
AHP back to NHP and assess the ecosystem attributes of these commu-
nities. However, our results could be considered as a sign of NHP resil-
ience. Additional studies on NHP resilience are essential for exploring
NHP's response as well as the adaptability of all p�aramo communities to
global climate change.

The response of the NHP ecosystem functions (productivity, hydric
regulation, carbon sequestration, biodiversity, etc.) to LU change de-
pends strongly the original p�aramo vegetation composition, intensity of
human activities, and changes in climate [48]. Thus, the anthropogenic
activities and the global clime change threatens the future of the NHP
ecosystem. As anthropic pressure on the NHP accelerates, it is critical to
strengthen conservation efforts. It is crucial to protect these valuable
resources using realistically implemented managerial plans and the
establishment of well-defined policies and laws [42]. However, any
policies need to consider and recognize Indigenous Peoples’ rights as
essential to meeting local and global conservation goals [49].

5. Conclusion

The methodology developed in this study could be the foundation for
a comprehensive monitoring system to achieve sustainability goals
related to EPEs. Data mining of LULC objects allowed discovery of a CDT
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with six important predictive variables (Reflectance, VARIg, Altitude,
EVI2, NBR2, and slope). The CDT allows the categorization of the land
use categories of NHP, AHP, FRS, WTR, and SNW with the lowest
misclassification rate (below 6 %). The probability of an informed clas-
sification for each class was above 78 %, and Matthew's correlation co-
efficient between the observed and the predicted object was above 82 %.

Analysis of the LULC database in the Central EPEs showed that two-
fifths of the p�aramo ecosystem remains as native HP (NHP), two-fifths
has been converted to anthropogenic HP (AHP), and one-fifths remains
as FRS, WTR, and SNW. Although the anthropic alteration of the pedo-
genesis of young p�aramo soil led to the establishment of AHP, we found
evidence of regeneration of the NHP, indicating its resilience. Additional
study of NHP resilience is an essential task for exploring NHP's response
to global climate change and the adaptability of all p�aramo communities
to such change. Such assessment depends on the accurate monitoring the
spatial pattern of LULC and on the evaluation of the driving mechanisms
of LULC changes (natural or anthropogenic).

Results of this study will be primarily useful to scientists and decision-
makers with interest in p�aramo ecosystems in central Ecuador. The pro-
posed methodology is simple, fast, and could be implemented in other
landscapes to establish comprehensive monitoring systems useful in
landscape assessment and planning.
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