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Abstract

The activity-regulated cytoskeleton-associate protein Arc (or Arg3.1) is specifically linked to

memory formation and a number of cognitive disorders, including Alzheimer’s disease and

schizophrenia. Since the discovery of Arc in 1995, extensive research has been conducted

on the protein to identify its function and mechanisms of action, with solving the structure of

Arc as a major goal. However, the Arc protein tends to self-oligomerize in vitro, and is diffi-

cult to crystallize. These properties have hindered efforts to obtain the structure of the full-

length, whole protein Arc. As an alternative approach, we and others, have sought to solve

the structures of various subdomain proteins of Arc, including the N-lobe, C-lobe, and capsid

domain (N-lobe + C-lobe). In this study, we characterized the C-terminal tail of Arc using

integrated bioinformatic and structural biology techniques. We compared the sequences of

Arc proteins in different mammal species and found that the amino-acid composition in the

C-terminal tail region has a significantly higher degree of variation rate than the rest of the

protein. Structural prediction programs suggested that the C-terminal tail is structurally dis-

ordered. Chemical shift analysis based on solution NMR spectra confirmed that the C-termi-

nal tail has a random coil (disordered) structure, and the tail starts from the residue D357.

Furthermore, the NMR spectra showed that the C-terminal tail has minimum (if any) interac-

tion with its neighboring capsid domain in Arc. This study fills gaps in our specific under-

standing of the structural nature and functional contributions of the Arc C-terminus.

Introduction

Long-term memory is believed to be encoded in long-term synaptic plasticity, which requires

rapid synthesis of new mRNAs and proteins. While examining newly synthesized biomole-

cules during memory formation, two research groups independently discovered the 3.1 kb

mRNA that encodes the activity-regulated cytoskeleton-associate protein Arc (or Arg3.1) [1,

2]. The Arc gene belongs to the immediate-early gene family, which mediates prompt tran-

scriptional responses to neuronal activities [1]. Arc mRNA and protein are mostly expressed

in the hippocampal and parietal cortex neurons that are responsible for learning and
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memory formation [3]. In these neurons, Arc mRNA selectively accumulates at regions that

contain recently activated synapses, and migrates away from inactive synapses [4]. Similar to

its mRNA, Arc protein tends to accumulate at activated synapses, and is especially enriched

in the postsynaptic density [5]. The distinctive pattern of Arc’s selective accumulation at acti-

vated synapses suggests its connection with memory formation. Indeed, during behavioral

learning, Arc was quickly and robustly induced in rat brains, and was used to mark neuronal

networks involved in learning [6, 7]. Arc-knockout mice showed substantial deficits in long-

lasting memories for implicit and explicit learning tasks, but their short-term task acquisi-

tion memories were not affected [8]. Moreover, antisense inhibition of Arc expression in rat

hippocampi resulted in impaired long-term synaptic potentiation and long-term memory

consolidation [9]. Extensive research has been conducted on the Arc protein to identify its

functional mechanism at the molecular level. Studies have shown that Arc can interact with

endocytic machinery, especially with dynamin and endophilin, to regulate neuronal traffick-

ing of AMPA receptors [10]; Arc can interact with the γ-secretase subunit, presenilin, to reg-

ulate β-amyloid generation [11]; Arc binds to CaMKII and localizes at silenced synapses

[12];Triad3A can bind and ubiquitinate Arc and cause its rapid degradation [13]; the nuclear

transportation of Arc is regulated by its nuclear localization, retention, and exportation

domains [14]; Arc bears a capsid domain and can form retroviral capsid-like structures to

transfer mRNA [15–17].

Solving the structure of Arc could help provide insight into its functions at the residue-spe-

cific level. The Arc protein in most mammal species has around 396 amino-acid residues; it

tends to self-oligomerize in solution in vitro [18], and is difficult to crystallize. These properties

have hindered the effort to obtain the structure of the full-length Arc as a whole protein using

the traditional x-ray crystallography and solution NMR methods. As an alternative method to

obtain Arc’s structure, scientists have produced various subdomain proteins of Arc and solved

their structures, respectively. For example, Zhang et al. produced the N-lobe subdomain of rat

Arc (Arc207-277) and solved the crystal structure of the N-lobe complexed with the peptides

derived from TARPγ2 or CaMKIIα. They found that the N-lobe folds into a four-helix bundle,

and the peptide binds to a groove of the helix bundle that is formed by its N-terminal β-strand,

the loop connecting α-2 and α-3 helices, and the N-terminus of the α-3 helix. They also pro-

duced the C-lobe subdomain of Arc (Arc278-370) and solved its crystal structure, which folds

into a five-helix bundle. They further proposed that the two-lobe arrangement of Arc resem-

bles the capsid domain of the retrovirus-like gag protein [15]. Later, Hallin et al. produced a

full-length rat Arc protein by extracting the protein from inclusion bodies, and identified the

relative positions of the subdomains of Arc using the small-angle X-ray scattering (SAXS)

method. They found that Arc’s coiled-coil subdomain (Arc26-130) lies above its bi-lobe subdo-

main (Arc210-361), and its N- and C-terminal tails lie at opposite ends. They also found that

ligand binding to Arc’s N-lobe did not cause major conformational changes to the rest of the

protein [19]. Furthermore, Nielsen et al. produced the capsid domain of rat Arc (Arc206-364)

that includes the N-lobe and the C-lobe, and solved its structure using the solution NMR

method [20]. Recently, Cottee et al. and Erlendsson et al. studied the structure of Arc in fruit

fly (Drosophila) using the x-ray crystallography and cryo-electron microscopy methods [21,

22]. Different from rat and other mammal species, the fruit fly has two copies of Arc protein:

Arc1 and Arc2; Arc1 has 254 amino-acid residues and Arc2 has 193 amino-acid residues. Both

Arc1 and Arc2 have a capsid domain, whose structure closely resembles the structure of the

capsid domain of Arc in rat [21, 22]. In addition, Arc1 has a C-terminal tail, which is absent in

Arc2. The tail contains a Cys-His zinc finger motif, and it can form an anti-parallel single-

knuckle zinc finger with an adjacent Arc1 C-terminal tail [22]. However, the Arc protein in

mammals does not have the zinc finger motif in its C-terminal tail.
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In this study, we characterized the C-terminal tail of Arc in mammal species using the rat

Arc protein as an example. We compared the sequences of Arc proteins in different mammals

and found that the amino-acid composition in the C-terminal tail region has a significantly

higher degree of variation rate than the rest of the protein. Structural prediction programs sug-

gested that the C-terminal tail is structurally disordered. Chemical shift analysis based on solu-

tion NMR spectra confirmed that the C-terminal tail has a random coil (disordered) structure,

and the tail starts from the residue D357. Furthermore, the NMR spectra showed that the C-

terminal tail has minimum (if any) interaction with its neighboring capsid domain in Arc.

Since the C-terminus of Arc in mammals has been relatively understudied, this study provides

new information about a region of the protein that needs to be considered in the analysis of

Arc structure-function relationships.

Materials and methods

Alignment of Arc protein sequences

The Arc protein sequences from different mammal species (human, chimpanzee, Rhesus monkey,

rat, mouse, water buffalo, cattle, goat, and Arabian camel) were downloaded from the PubMed

protein database (www.ncbi.nlm.nih.gov/pubmed) and compared with each other using the

LALIGN algorithm [23]. In the alignment figure, the non-conserved amino-acid residues in the

Arc protein sequence were highlighted in yellow color (the minority groups of residues were

highlighted). The sequence segments and amino-acid residues that were found important for Arc

functions were labeled above the protein sequence. The position of the secondary structures

(mainly α-helices) in the Arc capsid domain (Arc206-364) were also labeled in the alignment figure.

Prediction of disorder probability of Arc structure

Three algorithms, DISpro [24], IUPred [25], and PONDR-FIT [26], were used to predict the

structurally ordered and disordered regions in Arc. The protein sequence of rat Arc (NCBI ID:

NP_062234.1) was submitted to and analyzed by each of the three algorithms. As results, the

disorder probability of each amino-acid residue in Arc was plotted against the amino-acid resi-

due number of Arc. The sequence segments that have lower disorder probability values

(< 0.5) are suggested to be structurally ordered (having structural domains), and the sequence

segments that have higher disorder probability values (> 0.5) are suggested to be structurally

disordered (having random coil structures).

Production of Arc subdomain proteins

The DNA fragments encoding three rat Arc subdomain proteins (Arc280-396, Arc208-396, and

Arc208-363) were respectively cloned into a pET32 vector using PCR methods. The pET32 vec-

tor adds a histidine-tag, a thioredoxin fusion protein, and a TEV cleavage sequence to the N-

terminus of the produced Arc subdomain proteins. The DNA plasmids containing Arc subdo-

main sequences were transfected into BL21(DE3) cells, and the cells were grown in 13C-15N-

labeled Spectra-9 media (Cambridge Isotope Laboratories, Inc.) at 37˚C in a shaking incuba-

tor. When the optical density (OD600) of the cell culture reached 0.8, the temperature of the

incubator was decreased to 20˚C, and 1 mM of IPTG (isopropyl-β-d-thiogalactoside) solution

was added to the cell culture to induce protein expression. The cells were harvested 17 hours

after the addition of IPTG using centrifugation, and they were lysed on ice using sonication.

The lysed cells were centrifuged at 10,000 rpm, and the supernatant after centrifugation was

loaded to an AKTA Prime FPLC instrument (GE Healthcare, Inc.). The Arc subdomain pro-

teins were purified from the supernatant using the nickel affinity, size-exclusion, and ion-
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exchange chromatography columns. Finally, the histidine-tag, thioredoxin fusion protein, and

TEV (tobacco etch virus) protease cleavage sequence were removed from the Arc subdomain

proteins using TEV protease.

NMR

The NMR samples contained 500 μM of 13C-15N-labeled Arc subdomain proteins in a buffer

with pH 7.0 containing 10 mM of Na2HPO4, 50 mM of NaCl, 2mM of TCEP, 0.05% of NaN3,

and 10% of D2O. NMR experiments were performed on a Bruker 600 or 800 MHz spectrome-

ter equipped with TCI triple-resonance cryogenic probes using standard Bruker pulse pro-

grams. 1H, 13C, and 15N backbone resonances were assigned using standard triple resonance

experiments, such as TROSY, HNCA, HNCACB, CBCA(CO)NH, and HN(CO)CA. All of the

3D experiments were collected with 16 transients at 293 K. All of the spectra were processed

using the Topspin software (Bruker, Inc.) and analyzed using the Computer-Aided Resonance

Assignment (CARA) software [27].

Chemical shift calculation

The chemical shift of the α-carbon of each amino-acid residue in Arc280-396 was extracted

from its NMR-HNCA spectra. The chemical shift was compared to the standard chemical shift

of the α-carbon of the same amino-acid residue in a random coil structure. The difference in

chemical shift (ΔCα, ppm) of each amino-acid residue was calculated and plotted against the

amino-acid residue number of Arc280-396. The continuous and significantly positive ΔCα values

(> 0.05) suggest that the corresponding sequence segments have an α-helix secondary struc-

ture. The continuous and significantly negative ΔCα values (< -0.05) suggest that the corre-

sponding sequence segments have a β-strand secondary structure. The discrete and

insignificant ΔCα values (between -0.05 to 0.05) suggest that the corresponding sequence seg-

ments have a random coil structure.

Results

The amino-acid residue composition of Arc C-terminal tail is highly

divergent

In this study, we aligned and compared the sequences of Arc proteins in different mammal

species. The alignment result revealed the conserved and non-conserved amino-acid residues

(Fig 1). It is noticeable that the amino-acid composition in the C-terminal tail region has a sig-

nificantly higher degree of variation rate than the rest of the protein. Specifically, the variation

rate is 39.1% in the C-terminal sequence segment Arc351-396 (the residue variations highlighted

in green color); whereas, the average variation rate is 12.3% in the rest of the protein (the resi-

due variations highlighted in yellow color). It is commonly believed that the more functionally

important regions in a protein are more structurally ordered (having structural domains), and

their sequence compositions are more conserved during biological evolution; on the other

hand, the less functionally important regions have more disordered structures (having random

coil structures) and their sequence compositions are less conserved during evolution. The high

degree of variation rate of amino-acid composition in Arc351-396 could suggest that this region

is less functionally important and is more structurally disordered. As a comparison to the C-

terminal tail region, the variation rate of amino-acid composition of Arc’s N-lobe (Arc207-277)

is only 7.0%. The N-lobe is involved in Arc’s interaction with several other proteins, and it has

a highly ordered structure. Furthermore, the alignment result revealed some features of Arc

protein, such as the phosphorylation sites S84 and S170, that are common among mammal
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species. This information adds to our understanding of how the sequences of Arc proteins

from different animal classes compare with one other [18].

The C-terminal tail of Arc is predicted to be structurally disordered

Three prediction algorithms (DISpro, IUPred, and PONDR-FIT) were used to analyze the pro-

tein sequence of Arc (Fig 2). These algorithms predict each sequence segment’s probability of

Fig 1. Sequence alignment of Arc proteins in different mammal species. The sequence of Arc proteins in different mammal species

were aligned and compared with each other. The non-conserved amino-acid residues in the protein sequences were highlighted in green

color (in the C-terminal sequence segment Arc351-396) or yellow color (in the rest of the protein). The alignment result shows that the

amino-acid residue composition in the C-terminal tail region of the Arc protein (~ Arc351-396) is highly divergent compared to the rest of

the protein. The purple bars above the protein sequence indicate the sequence regions that are important for Arc’s nuclear

transportation (NRD, NES, NLS) [14] and degradation (PEST) [28]; the orange bars indicate the sequence regions that are important for

Arc’s interaction with other proteins (these proteins’ names were labeled before/above the orange bars) [10, 11, 13, 15, 20, 29–33]; the

colored letters indicate Arc’s phosphorylation sites (red “P”) [31, 34], putative phosphorylation sites (green “P”) [1, 2], ubiquitination

sites (blue “U”) [13], and mutation site (brown “M”) [30]; the yellow-red ribbons indicate the α-helix secondary structures in Arc’s

capsid domain [15, 20]. (See the Discussion section for more detail).

https://doi.org/10.1371/journal.pone.0239870.g001
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being structurally ordered or disordered. A disorder probability value higher than 0.5 suggests

that the corresponding sequence segment of a protein tends to be structurally disordered;

whereas, a disorder probability value lower than 0.5 suggests that the corresponding sequence

segment tends to be structurally ordered. All three prediction algorithms consistently pre-

dicted that the C-terminal tail region of the Arc protein (approximately Arc356-396) has high

disorder probability values (> 0.5), suggesting this region is likely to be structurally disordered.

As a comparison to the C-terminal tail region, the prediction algorithms consistently predicted

that the sequence segment Arc210-350 has low disorder probability values (< 0.5), suggesting

this region is structurally ordered. Indeed, the sequence segment Arc210-350 largely overlaps

with the structurally ordered capsid domain (Arc206-364). In addition, the prediction algo-

rithms consistently predicted that the N-terminal tail and the middle region of the Arc protein

have high disorder probability values (> 0.5), suggesting they could also be structurally

Fig 2. Prediction of structural disorder probability of Arc protein. The disorder probability of each amino-acid

residue in Arc was plotted against the amino-acid residue number of Arc. The C-terminal tail of Arc was consistently

predicted to have larger disorder probability values (> 0.5) by three prediction algorithms. The larger disorder

probability suggests that the corresponding sequence segment is structurally disordered (having random coil

structure).

https://doi.org/10.1371/journal.pone.0239870.g002
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disordered. The prediction algorithms also consistently predicted that the region centered

around the sequence segment Arc90-120 has low disorder probability values (< 0.5), suggesting

this region could be structurally ordered. However, the exact sequence ranges of the N-termi-

nal tail, the middle region, and the potentially structured region between them were not con-

sistently defined. The prediction result adds to knowledge and complement with the previous

study [18].

The C-terminal tail of Arc has a random coil structure and the tail starts at

residue D357

In order to experimentally determine the structure of Arc C-terminal tail, we produced the
13C-15N-labeled Arc280-396 protein, which includes the C-lobe subdomain and the previously

uncharacterized C-terminal tail. We collected a series of 3D NMR spectra on the protein, and

the α-carbon chemical shift of each amino-acid residue in Arc280-396 was determined from the

NMR spectra (except the first two amino-acid residues and the proline residues). The chemical

shift was compared to the standard chemical shift of the α-carbon of the same amino-acid resi-

due in a random coil structure. The difference in chemical shift (ΔCα, ppm) of each amino-

acid residue was calculated and plotted against the protein sequence of Arc280-396 (Fig 3). The

continuous and significantly positive ΔCα values (> 0.05) suggest that the corresponding

sequence segments have an α-helix secondary structure, such as the five α-helices in Arc280-396

(grey bars, α1-α5) that agrees with the five-helix bundle structure of Arc C-lobe subdomain

[15]. The discrete and insignificant ΔCα values (between -0.05 to 0.05) suggest that the corre-

sponding sequence segments have a random coil (disordered) structure, such as the Arc C-ter-

minal tail Arc357-396 (green bar). Furthermore, the plot does not contain continuous and

significantly negative ΔCα values (< -0.05), which suggests that the Arc280-396 protein does not

have β-strand secondary structure.

The C-terminal tail has minimal interaction with its neighboring capsid

domain

We tested if there is any interaction between the C-terminal tail and the capsid domain adja-

cent to it. We successfully produced the capsid domain protein (Arc208-363), but our attempts

to produce the C-terminal tail (Arc357-396) failed as this disordered protein was degraded

Fig 3. NMR chemical shift analysis of Arc280-396. The chemical shift differences of α-carbon (ΔCα) were plotted against the amino-

acid residue number of Arc280-396. The sequence segments with continuous and significantly positive ΔCα values (> 0.05)

correspond to the five α-helices (grey bars, α1-α5) in the C-lobe region. The C-terminal tail (green bar) has insignificant (-0.05 ~

0.05) or discrete ΔCα values, suggesting this region has a random coil structure. The chemical shift data of Arc280-396 was deposited

in the Biological Magnetic Resonance Data Bank (BMRB) (ID: 50436).

https://doi.org/10.1371/journal.pone.0239870.g003
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during bacterial expression. As an alternative approach, we produced the Arc208-396 protein,

which includes the capsid domain and the C-terminal tail. We collected the NMR TROSY spec-

tra of Arc208-363 and Arc208-396, and compared them with each other (Fig 4). The TROSY spec-

trum of Arc208-363 (blue) almost precisely overlaps with the TROSY spectrum of Arc208-396

(grey) (except the latter has additional cross-peaks from its C-terminal tail). In addition, we

compared the NMR TROSY spectra of Arc280-396 and Arc208-396 (Fig 5A), and analyzed their

chemical shifts of the backbone amide resonance (Fig 5B). Arc280-396 includes the C-lobe and C-

terminal tail; Arc208-396 has an additional N-lobe than Arc280-396. The analysis result showed that

the presence/removal of residues 208–279 (N-lobe) did not cause major chemical shift perturba-

tion (CSP) in residues 280–396 (C-lobe and C-terminal), except for residues 282–285 that con-

nect N-lobe and C-lobe (Fig 5B). It suggests that the N-lobe has minimum (if any) interaction

with the C-terminal tail (and the C-lobe). We also compared the chemical shifts of the backbone

amide resonances between Arc280-396 and Arc280-363 (Arc280-396 includes the C-lobe and C-ter-

minal tail; Arc280-363 includes only the C-lobe) (Fig 5C). The comparison result showed that the

presence/removal of residues 364–396 (C-terminal tail) did not cause major chemical shift per-

turbation (CSP) in residues 280–363 (C-lobe), except for residues 362–363 that connect C-lobe

and C-terminal tail (Fig 5D). It suggests that the C-lobe also has minimum (if any) interaction

with the C-terminal tail. Taken together, these data suggest that the C-terminal tail has mini-

mum (if any) interaction with the N-lobe and C-lobe (together they form the capsid domain),

and it does not affect the folding of the capsid domain. This observation agrees with a previous

finding that the C-terminal tail lies outside the core of the Arc protein, which is consisted of the

Arc N-terminus sitting above the capsid domain [19]. However, further experiments are

required to examine the possible interaction between the C-terminal tail and the capsid domain.

Discussion

Arc was discovered in 1995, and it was found to play an important role in synaptic plasticity

and memory formation. Solving the structure of Arc will help understand its functional

Fig 4. Comparison of NMR TROSY spectra of Arc208-396 and Arc208-363. The Arc208-396 protein (grey) has the additional C-terminal tail compared to the Arc208-363

protein (the capsid domain, blue). The presence of the C-terminal tail does not generate noticeable chemical shifts on the capsid domain peaks, suggesting the C-

terminal tail has minimum (if any) interaction with the capsid domain. (The green boxes I, II, and III on the right are enlarged views of the example regions in the

TROSY spectra on the left).

https://doi.org/10.1371/journal.pone.0239870.g004
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mechanism. In this study, we characterized the C-terminal tail of Arc in mammals using the

rat Arc protein as an example. We found that the C-terminal tail of Arc in mammal species

has a significantly higher variation rate in amino-acid composition than the rest of the protein

(39.1% vs. 12.3%), suggesting this region may lack important functional domains and/or

ordered structures. The C-terminal tail was predicted to have high disorder probability, sug-

gesting this region is structurally disordered. The NMR chemical shift analysis of Arc280-396

showed that the C-terminal tail indeed has a random coil (disordered) structure, and the tail

starts from the residue D357. We further tested if the tail interacts with the neighboring capsid

domain and found that it has minimum (if any) interaction with the latter.

In the recently characterized structure of Drosophila Arc1, 240 copies of Arc1 oligomerize

into 12 pentameric and 30 hexameric capsomeres, and these capsomeres further form an ico-

sahedral capsid sphere. Arc1’s 48-residue C-terminal tail locates inside the capsid and below

the capsomeres. The residues 224–252 of two C-terminal tails under each hexameric cap-

somere form anti-parallel zinc fingers; whereas, the other residues in the two C-terminal tails

and the rest copies of C-terminal tail are structurally disordered [22]. The C-terminal tail of

Arc1 also contains 12 basic residues; together with the zinc fingers, they may facilitate Arc1’s

mRNA recognition and binding, similar to the function of the nucleocapsid domain of the ret-

rovirus HIV [22]. For the C-terminal tail of Arc in mammals, it may also locate inside the cap-

sid as the Drosophila Arc1, and it could interfere with the capsid formation of the full-length

Arc as the capsid domain alone was found unable to form the capsid layer [17]. But it lacks the

Fig 5. Changes of the chemical shifts of the backbone amide resonance between Arc280-396 and Arc208-396/Arc280-363. (A) The overlay of NMR TROSY spectra of

Arc280-396 (blue) and Arc208-396 (purple). (B) The chemical shift perturbations (CSP) of residues 280–396 when the amide chemical shifts of Arc208-396 and Arc280-396 are

compared with each other. (C) The overlay of NMR TROSY spectra of Arc280-396 (blue) and Arc280-363 (red). (D) The chemical shift perturbations (CSP) of residues

280–363 when the amide chemical shifts of Arc280-363 and Arc280-396 are compared with each other. The CSPs of backbone amides are calculated using the equation

[(ΔH)2+(ΔN)2/5]1/2, where ΔH and ΔN are the changes in the 1H and 15N chemical shifts respectively. The chemical shift data were deposited in the BMRB database

(BMRB ID: 50436 (Arc280-396), 50440 (Arc208-396), and 50441 (Arc280-363)).

https://doi.org/10.1371/journal.pone.0239870.g005
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zinc fingers and basic residue patches for mRNA regulation, and no close homology to its

sequence was found in other retrotransposons or retroviruses either.

To identify the possible functions of the C-terminal tail of Arc in mammals, we reviewed

the previous studies that examined the functions of different sequence segments of Arc. These

studies have shown that, within the C-terminal tail (Arc357-396), residues 351–392 of Arc were

Fig 6. The PEST signal region in Arc C-terminal tail. The C-terminal tail of rat Arc contains a PEST signal region (the green bar that reads “+9.95” in

the upper left plot). This region is largely preserved in the other examined mammal species (the green bars in the other 8 plots). The PEST score plots

were generated using the ePESTfind tool at https://emboss.bioinformatics.nl/cgi-bin/emboss/epestfind.

https://doi.org/10.1371/journal.pone.0239870.g006
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predicted as a PEST signal region (a sequence segment that is rich in P, E, S, T residues) using

the ePESTfind program [35], which may contribute to the protein’s proteasome-dependent

degradation [28]. Although the original PEST signal analysis was conducted on the Arc protein

in rat, our sequence alignment result in this study showed that the PEST signal has been largely

preserved in other mammal species despite the high variation rate of amino-acid composition

at the C-terminal tail (Fig 6). In addition, phosphorylation sites have been identified in the C-

terminal tail at residues T368, and T380 [31, 34]. It was also predicted that this region contains

putative phosphorylation sites by the protein kinase C at residues S390, and by the casein

kinase II at residues T372 and T393 [1, 2]. Among these phosphorylation sites, our sequence

alignment result showed that the sites T380, S390, and T393 are preserved in the mammal spe-

cies; whereas the sites T368 and T372 are only present in rat and mouse.

Furthermore, previous studies have shown that, for the Arc sequence segments that par-

tially overlap with or include the C-terminal tail (Arc357-396), residues 228–380 of Arc share

20% sequence similarity with the 21st and 22nd repeats of the α-spectrin protein [1, 2]; since

these structural motifs of α-spectrin tend to form oligomers [36], the corresponding 228–380

region of Arc may contribute to its self-oligomerization [18], and the Arc oligomers may fur-

ther contribute to memory formation [37]. In addition, residues 155–396 of Arc bind to the

dynamin 2 protein [10] and the clathrin-adaptor protein 2 (AP-2) [30] to regulate AMPA

receptor endocytosis; residues 94–382 of Arc bind with the Triad3A protein, and Triad3A can

ubiquitinate Arc at its residues K268 and K269 to help regulate synaptic strength [13]. Arc was

also found to interact with Tip60 [38], PICK1 (especially its BAR domain, residues 152–278)

[39], GSK3α/β [34], and CaM kinase II [3, 12]; however, the specific sequence segments of Arc

that regulate these interactions have not been identified. Therefore, the C-terminal tail of Arc

may also contribute to Arc’s self-oligomerization process as part of the spectrin-homologous

domain, or in Arc’s interaction with other proteins, such as dynamin 2, AP-2, Triad3A, Tip60,

PICK1, GSK3α/β, and/or CaM kinase II. Taken together, we speculate that, although the C-

terminus is disordered, it may play important functional roles that vary between species.
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