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ABSTRACT: Down syndrome (DS) is the most common
chromosomal condition associated with intellectual disability and
is characterized by a variety of additional clinical findings. The
pathogenesis of DS and the differences between the sexes are not
clear. In order to identify differentially expressed proteins that
might be employed as potential biological markers and elucidate
the difference in pathogenesis between different genders of T21
fetuses, providing clues for individualized detection and treatment
is essential. Amniocyte samples of T21 males, T21 females, CN
males, and CN females were collected by amniocentesis. The
quantitative value of the peptide corresponding to each sample was
determined through quantitative analysis by mass spectrometry. We
identified many differentially expressed proteins between T21
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fetuses and CN fetuses/T21 males and CN males/T21 females and CN females/and T21 males and T21 females. These differential
proteins are associated with many important biological processes and affect the development of multiple systems, including the heart,
hematopoietic, immune, reproductive, and nervous systems. Our results show sex-specific modulation of protein expression and
biological processes and provide new insights into sex-specific differences in the pathogenesis of DS.

B INTRODUCTION

Down syndrome (DS) is the most common chromosomal
condition associated with intellectual disability and is charac-
terized by a variety of additional clinical findings. It occurs in
approximately 1 of 800 births worldwide." A third copy of
chromosome 21, trisomy 21, has long been recognized as the
cause of DS. Life expectancy in children with DS has increased
significantly over the past decade, but children with DS remain at
a higher risk of neonatal and infant mortality than children
without DS (1.65 vs 0.36% and 4 vs 0.48%).>

The incidence and presentation of DS vary depending on
ethnic background and geographic region. The range and
severity of DS phenotypic features vary from person to person.
Some of the most noticeable characteristics of the DS phenotype
include mental retardation and an increased incidence of
congenital heart disease, hypothyroidism, diabetes, leukemia,
and an increased risk of developing Alzheimer’s-like dementia by
the age of 40.”" Furthermore, patients with DS show multiple
defects in both numbers and functions of the B-cell compart-
ment.’

Pregnancy progression and fetal development involve
complex fetomaternal physiological processes that rely on
intricate interactions between multiple genes and proteins.’
Therefore, multiple genes and other factors working in concert
are expected to be responsible for the major DS phenotypes.’
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Despite the high prevalence of DS and early identification of the
cause, there are many studies on the pathogenesis of DS.
However, its specific pathogenesis is still unclear, and specific
treatments have consequently been practically unavailable.

In humans, differences in the pathogenesis and prevalence
between males and females are being continuously identified in
many diseases.” Although sex disparities in brain function,
cardiac homeostasis, heart disease, and humoral immune
responses to immunization and infection are well documented,
the science that explains these differences remains poorly
understood.” Very few studies have evaluated gender differences
in DS, and differences in the pathogenesis and prevalence
between T21 males and T21 females are also not clear.

Amniotic fluid cells are the most readily available fetal cells.
Amniotic fluid can be divided into two major components:
supernatant fluid and free-floating fetal cells called amniotic fluid
cells (also known as amniocytes). Amniocytes are shed from all
three germ layers of the fetus, and some of these cells that
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Figure 1. Quantity distribution of differentially expressed proteins in different comparison groups. (a) Quantity distribution of differentially expressed
proteins between T21 fetuses and CN fetuses (b) and between T21 female and CN female, T21 male and CN male, T21 male and T21 female, and CN
male and CN female. (c) Quantitative volcanic map of differentially expressed proteins in T21 female and CN female group, (d) T21 male and CN
male group, (e) T21 male and T21 female group, and (f) CN male and CN female group.

originate from embryonic and extra-embryonic tissues show
stem cell-like properties.” Proteomic analysis of amniotic fluid
cells may be more responsive to consistent changes in multi-
source cells than single-source cells.

Here, we utilized proteomics analysis to obtain a panel of
proteins found to be differentially expressed in amniocytes
between the following five groups: (1) trisomy 21 (T21) fetuses
and chromosomal normal (CN) fetuses (containing male and
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female), (2) T21 males and CN males, (3) T21 females and CN
females, (4) CN males and CN females, and (5) T21 males and
T21 females.

This is the first study to report sex-specific proteomic changes
in amniocytes of T21 fetuses to the best of our knowledge. The
identified differentially expressed proteins could be used as
potential biological markers to uncover differences in patho-
genesis between T21 fetuses of different genders. Investigating
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Figure 2. Gene ontology analysis of the differential proteins. (a) Biological process, cellular component, and molecular function difference of the
differential expressed proteins in T21 fetuses and CN fetuses group, (b) T21 female and CN female group, (c) T21 male and CN male group, (d) CN

male and CN female group, and (e) T21 male and T21 female group.

the pathogenesis of DS is critical for developing more effective
individualized screening, diagnosis, and treatment strategies.

B MATERIALS AND METHODS

Ethics Statement. Written informed consent was obtained
from the patients and healthy control donors before the blood
samples were drawn. All procedures performed in studies
involving human participants were in accordance with the
ethical standards of the institutional and/or national research
committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

Amniocyte Culture. This study was performed at the
Prenatal Diagnosis Center of West China Second University
Hospital, Sichuan University, following a study protocol
approved by the University Hospital. A total of 23 T21
(including 13 males and 10 females) and 29 CN (14 males and
15 females) amniocyte samples were collected by amniocentesis
from women at 18—25 weeks of gestation, undergoing prenatal
diagnosis. The amniotic fluid cells were a fraction of the cells
obtained for cytogenetic analysis and chromosome microarray
analysis. Before cytogenetic analysis and CMA, all samples were
subjected to a quantitative fluorescent polymerase chain
reaction to rapidly detect abnormal numbers of chromosomes
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13/18/21 and sex chromosomes. 21-Trisomy cells and CN cells
were grown in T-25 cm? flasks for approximately 14—21 days in
BIO-AMF TM-3 (complete culture medium for human
amniotic fluid cells and chorionic villi samples (Biological
Industries, ref 01-196-1B). The cells were then harvested.

Cell Lysis Protocol and Proteomics Analysis of
Amniocytes. T21 male amniocyte samples (n = 13), T21
female amniocyte samples (n = 10), CN male amniocyte
samples (n = 14), and CN female amniocyte samples (n = 15)
were pooled together. Cell lysis and proteomics analyses were
performed by PTM-Biolabs (HangZhou) Co., Ltd., and detailed
materials and methods are shown in the Supporting Information
Materials and Methods.

The quantitative value of the peptide corresponding to each
sample was determined using mass spectrometry quantitative
analysis, and each protein corresponded to multiple peptides.
The p-value was calculated using the two-sample and two-tail ¢-
test method after the quantitative value of the specific peptide
corresponding to the protein in the two samples was calculated
using log 2 (to make the data conform to normal distribution).
When the p-value was <0.05, the change in the differential
expression level was more than 1.3 as the threshold for
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Figure 3. Subcellular structure and distribution of differentially expressed proteins. (a) T21 fetuses and CN fetuses group, (b) T21 female and CN
female group, (c) T21 male and CN male group, (d) T21 male and T21 female group, and (e) CN male and CN female group.

significant upregulation and less than 1/1.3 as the threshold for
significant downregulation.

B RESULTS

Identification and Quantification of Proteins. In this
project experiment, 350,964.0 secondary spectra were obtained
through mass spectrometry analysis. The number of available
spectrograms was 103,763, and the utilization rate was 29.6%. A
total of 53457.0 peptides were identified by spectrogram
analysis, among which the specific peptide was 51684.0. A
total of 6541.0 proteins were identified, of which 5543.0 were
quantifiable (quantifiable proteins indicated that quantitative
information was available in at least one comparison group).
The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the iProX partner repository'® with
the data set identifier PXD032883.

Identification of 105 Differentially Expressed Proteins
with Important Biological Functions between T21 and
CN Fetuses. We identified 105 differentially expressed proteins

between T21 fetuses and CN fetuses. In contrast to CN, there
were 39 proteins with higher expression and 66 proteins with
lower expression in the amniocytes of T21 fetuses (Figure la
and Table S1). The differentially expressed proteins were CPA1,
SHTN1, TTYH3, OLEM4, TCF25, PTTGIIP, IGKC,
SFTPA1, FBN1, UMOD, IMUP, GC, AFP, SERPINAI, and
others.

The subcellular localization of the differentially expressed
proteins was mainly extracellular (Figure 3a). The cellular
component categories of these proteins were cell, organelle, and
extracellular region (Figure 2a), and the proteins mainly existed
in vesicles, extracellular exosomes, extracellular organelles, and
extracellular regions (Figure 6a).

Dysregulated proteins are involved in many important
biological processes, including cellular processes, single-
organism processes, biological regulation, responses to stimuli,
and metabolic processes (Figure 2a), and these differentially
expressed proteins were mainly associated with animal organ
development, neurogenesis, regulation of cell development, and
positive regulation of cell differentiation (Figure Sa).

https://doi.org/10.1021/acsomega.2c05152
ACS Omega 2022, 7, 35981-35992


http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c05152/suppl_file/ao2c05152_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05152?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05152?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05152?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05152?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c05152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega http://pubs.acs.org/journal/acsodf

a T21 vs CN
B
£
| I |
.l.|..|||. | |I

T e—— [T e—

T P
1 1 i

| LR — [ E—

[P PRTRA— -

b T21 female vs CN female C T21 male vs CN male
I i
} k)
,ilIaIl Hai. Ii II .iiI III IIi. Ii | ||Ii|
8 ¢ 5 ¢ 8 nm‘(oam.q.;,u,w, iiéii'&iie;w;m.}“‘uSAEGOQ.‘.;i
E Tqm-—---—-- E.«--—. I E E
0 - H an
14 ] H -
H H . . g
B Pl ] u
==, [ oo
d CN male vs CN female e T21 male vs T21 female

. i

i i

. R i o o I
: " a0 categories E:; E oo O
E . e g
| |} ||
| I —, | LT rm— [} Hn
B R i - H
e e e e

[~ [LAp———— B o

T 101 swyaeshos s wetbosion s v, ey

Figure 4. Clusters of orthologous groups of differentially expressed proteins. (a)T21 fetuses and CN fetuses group, (b) T21 female and CN female
group, (c) T21 male and CN male group, (d) CN male and CN female group, and (e) T21 male and T21 female group.

Molecular function-based enrichment results are shown in activity (enzyme inhibitor activity, serine hydrolase activity,

Figures 3a and 7a, where the differentially expressed proteins peptidase regulator activity, and endopeptidase regulator
participated in binding [including receptor binding, cell
adhesion molecule (CAM) binding, receptor for advanced activity), and molecular function regulator. The study of clusters

glycated endproducts (RAGE) receptor binding], catalytic of orthologous groups of proteins showed the enrichment of
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Figure S. Bubble diagram of enrichment and distribution of differentially expressed proteins in go functional classification—biological process. (a)
T21 fetuses and CN fetuses group, (b) T21 female and CN female group, (c) T21 male and CN male group, (d) CN male and CN female group, and

(e) T21 male and T21 female group.

differentially expressed proteins in signal transduction mecha-

nisms and defence mechanisms (Figure 4a).
In Addition to the Co-alternation Proteins, ldenti-

fication of More Differentially Expressed Proteins with
Important Biological Functions between T21 Males and

CN Males Group/T21 Female and CN Females Group.
Interestingly, in the T21 male versus CN male groups, except for
the co-increased and co-decreased proteins shown above, the
expression of other 222 proteins was also significantly different,

including 173 proteins with increased expression and 49
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Figure 6. Bubble diagram of enrichment and distribution of differentially expressed proteins in go functional classification—cellular component. (a)
T21 fetuses and CN fetuses group, (b) T21 female and CN female group, (c) T21 male and CN male group, (d) CN male and CN female group, and

(e) T21 male and T21 female group.

proteins with decreased expression only in amniocytes of T21
male fetuses (Figure 1b,c, and Table S2), such as MARCKSL1
(0.749), HMGA2 (0.756), AKAP12 (0.756), HMGB3 (0.65),
CRYAB (3.556), PLOD2 (1.876), UAP1 (1.482), AMIGO2

(1.309), CRNN (3.404), and SPRR2D (3.197). The o

amniocytes of
ther 230
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proteins showed significant differences in levels between T21
females and CN females; the expression level of 84 of these

proteins was increased and that of 146 proteins was decreased in

T21 female fetuses (Figure 1b,d and Table S3),

such as HPX (0.55), APOAL1 (0.652), IGHG4 (0.288), PTGDS
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Figure 7. Bubble diagram of enrichment and distribution of differentially expressed proteins in go functional classification—molecule function. (a)
T21 fetuses and CN fetuses group, (b) T21 female and CN female group, (c) T21 male and CN male group, (d) CN male and CN female group, and

(e) T21 male and T21 female group.

(0.341), TSPAN1 (1.889), TOP2A (1.888), and MFAP2

(1.806).

From our research, it is clear to see that the protein expression

showed sex differences. The subcellular localization

of the

differentially expressed proteins in the female group was mainly
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in the cytoplasm, and some of the different proteins were in the
endoplasmic reticulum, the differentially expressed proteins in
the male group were mainly extracellular, and no proteins were
located in the endoplasmic reticulum (Figure 3b,c).

https://doi.org/10.1021/acsomega.2c05152
ACS Omega 2022, 7, 35981-35992


https://pubs.acs.org/doi/10.1021/acsomega.2c05152?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05152?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05152?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05152?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c05152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

The dysregulated proteins’ biological processes were enriched
in cellular processes, single-organism processes, biological
regulation, stimuli response, and so on. Additionally, in the
T21 male versus CN male group, a few differentially expressed
proteins were associated with biological adhesion and
locomotion (Figure 2b,c). Meanwhile, differentially expressed
proteins in the male group were involved in animal organ
development, secretion, neutrophil-mediated immunity, hemo-
stasis regulation, myeloid leukocyte activation, antimicrobial
humoral response, skin development, and so on (Figure Sb).
Differentially expressed proteins in the female group partici-
pated in animal organ development, secretion, neutrophil-
mediated immunity, cell migration, and others (Figure Sc).

Molecular function-based enrichment analysis is shown in
Figure 2b,c, where the differentially expressed proteins
participated in binding, catalytic activity, and molecular function
regulator. The specific molecular functions of the two groups
were different; the proteins in the female group were associated
with immunoglobulin receptor binding, anion channel activity,
enzyme regulator activity, and others. The proteins in the male
group were associated with RAGE receptor binding, DNA
binding, bending, and carboxylic acid binding (Figure 7b,c).

In the cellular component of the category (Figure 2b,c),
enrichment included cell, organelle, and extracellular regions.
Except for vesicles, extracellular exosomes, extracellular
organelles, and others, the cellular components of the differ-
entially expressed proteins in the female group also participated
in the immunoglobulin complex, extracellular matrix compo-
nent, and proteinaceous extracellular matrix (Figure 6b). The
cellular components of the differentially expressed proteins in
the male group also participated in platelet alpha granules,
extracellular matrix, plasma membrane, and cell periphery
(Figure 6b).

The study of clusters of orthologous groups showed the
enrichment of differentially expressed proteins between T21
females versus CN females and T21 males versus CN males in
signal transduction mechanisms, general function prediction
only, post-translational modification, protein turnover, and
chaperones (Figure 4b,c).

Of note, these dysregulation proteins were involved in
neurodevelopment (Figure S1), growth (Figure S2), heart
development (Figure $3), hematopoietic (Figure $4), immunity
(Figure SS), and reproduction (Figure S6).

More Differentially Expressed Proteins Identified in
T21 Male versus T21 Female than CN Male versus CN
Female Group. In the CN male versus CN female group, only
83 proteins showed highly significant differential expression. In
contrast to CN females, there were 46 proteins with increased
expression and 37 proteins with decreased expression in CN
males (Figure 1b).

Compared with T21 females, the increased proteins were 121
in T21 males, and only 27 proteins were co-upregulated in both
T21 males versus T21 females group and CN males versus CN
females (Tables S4—S6). Meanwhile, the decreased proteins
were 210 in T21 males, and only 16 proteins were co-
downregulated in both T21 males versus T21 females group and
CN males versus CN females (Tables S4—S6). The differential
protein expression between males and females was more obvious
in the T21 group (Figure le,f). In T21 male and CN male,
compared with T21 female and CN female, the variation trend
of some proteins is consistent, such as TACSTD2 (0.515/
0.758), MISP (0.518/0.743), PALLD (0.53/0.752), AKR1C1
(1.998/2.216), ADIRF (1.547/1.398), and others. TMSB4X,

which escapes X inactivation, is involved in cell proliferation,
migration, and differentiation. The CN male/CN females ratio
was 0.419, and the expression of TMSB4X in males was about
half that in women, conforming to the escape of X chromosome
inactivation. The expression of TMSB4X significantly decreased
only in T21 females but not in T21 males.

The subcellular localization of the differentially expressed
proteins in the two groups was mainly extracellular, and some of
the different proteins were located in the endoplasmic reticulum
only in the T21 group (Figure 3d,e).

The biological processes of the dysregulated proteins were
investigated (Figure 2d,e), and they were found to be enriched
in cellular processes, single-organism processes, biological
regulation, and responses to stimuli in both groups. The
biological processes involved in the differentially expressed
proteins in the two groups were significantly different. In the CN
group, the differentially expressed proteins participated in
circulatory system development, regulation of cell migration,
cardiovascular system development, regulation of cell motility,
and so on. In the T21 group, the differentially expressed proteins
participated in animal organ development, secretion, and
response to bacteria (Figure Sd,e).

Molecular function-based enrichment results are shown in
Figure 2d,e, where the differentially expressed proteins
participated in binding, catalytic activity, and molecular function
regulator. The differentially expressed proteins of the CN group
were associated with structural molecule activity, molecular
transducer activity, receptor activity, and others (Figure 7d).
The differentially expressed proteins in the T21 group were
associated with structural molecule activity, receptor binding,
calcium ion binding, enzyme inhibitor activity, and others
(Figure 7e).

In the cellular component category (Figure 2d,e), enrichment
included cell, organelle, extracellular region, and others. Except
for vesicles, extracellular exosomes, extracellular organelles, and
others, the cellular components of the differentially expressed
proteins in the CN group also participated in the mini-
chromosome maintenance (MCM) complex, laminin complex,
complex of collagen trimers, and others (Figure 6d). The cellular
components of the differentially expressed proteins in the T21
group also participated in blood microparticles, basement
membrane, platelet alpha granule lumen, and others (Figure Ge).

In the T21 male and T21 female groups, the study of clusters
of orthologous groups of proteins showed the enrichment of
differentially expressed proteins in post-translational modifica-
tion, protein turnover, chaperones, signal transduction mecha-
nisms, and general function prediction only (Figure 4e). The
differentially expressed proteins were enriched in the extrac-
ellular structures (Figure 4d).

Human development-based enrichment analysis showed that
these dysregulation proteins were involved in neurodevelop-
ment (Figure S7), growth (Figure S8), heart development
(Figure S9), hematopoietic (Figure S10), immunity (Figure
S11), and reproduction (Figure S12).

B DISCUSSION

Several differentially expressed proteins between T21 female
versus CN female, T21 male versus CN male, T21 female versus
T21 male, and CN female versus CN male were identified in our
study. The results suggested that the protein expression patterns
of T21 males and T21 females were significantly different. The
subcellular localization, biological processes, cellular compo-
nents, and molecular functions of the proteins were different.
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These differential proteins are related to the processes of heart
development, hematopoiesis, immunity, neural development,
and reproduction.

Cho’s'' research revealed that over 900 proteins were
dysregulated in amniocytes of T21. The changing trend of
some proteins is consistent with that in our study, such as the
upregulated proteins, CRYAB, PLOD2, UAPI, and AMIGO2,
and the downregulated proteins, HPX, APOA1, MARCKSLI,
HMGA?2, and AKAP12. However in our study, HPX and
APOALI expression varied only in T21 females, while other
differentially expressed proteins were only found in T21 males.
Therefore, gender differences should be taken into account
when studying differential protein expression. Our findings
differ slightly from those of previous studies,"" which could be
due to a variety of factors, the populations recruited, the
experimental methods used, and the gender of the participants
were all different.

Our study found that APP, a chromosome 21 gene that codes
for amyloid precursor protein, was significantly upregulated in
T21 male and T21 female fetuses. Virtually, all adults with DS
show neuropathological changes in Alzheimer’s disease (AD) by
the age of 40 years.'> This association is partially due to the
overexpression of the amyloid precursor protein. Previous
studies reported that increased expression of APP might drive
the development of AD in individuals with DS by increasing the
levels of amyloid-# (Af3).

GC, which encodes a vitamin D binding protein, is
downregulated in T21 male and T21 female amniocytes. The
protein belongs to the albumin gene family. It is a multifunc-
tional protein found in plasma, ascitic fluid, cerebrospinal fluid,
and on the surface of many cell types. It binds to vitamin D and
its plasma metabolites and transports them to the target tissues.
DS patients may develop reduced bone mass accrual,
predisposing them to fragility, fractures, and osteoporosis.
Stagi et al. demonstrated a very high prevalence of vitamin D
deficiency in different age groups of patients with DS."* In DS
individuals, vitamin D supplementation did not appear to be
sufficient, even if 25(OH)D levels increased significantly after
supplementation. In addition to abnormal bone development,
vitamin D deficiency has been associated with immune system
abnormalities and cardiovascular disease.'* The decreased
expression of vitamin D-binding protein may be a critical reason
for DS patients’ decreased vitamin D levels.

SHTNI1, which encodes shootin-1, was downregulated in
both T21 male and T21 female amniocytes. This protein is a key
molecule involved in neuronal polarization and axon outgrowth,
accumulates at the leading edge of axonal growth cones, and
mediates the mechanical coupling between F-actin retrograde
flow and the CAM L1-CAM."® Hippocampal neurons display
reduced axon length in Ts65Dn mouse brains.'® These results
suggest that SHTN1 downregulation may be a critical reason for
abnormal axon development.

AIBG was downregulated in both T21 males and T21
females, and previous studies have shown that loss of AIBG
leads to cardiac defects in females but not in males. Congenital
heart defects, particularly atrioventricular septal defects
(AVSD), are more common in female patients with DS."”
These results suggest that A1BG is associated with heart disease
in patients with DS.

TMSB4X has a homologue on chromosome Y and escapes X
inactivation, according to GenBank. This gene escapes X
inactivation and encodes an action sequestering protein that
plays a role in regulating action polymerization. The protein is
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also involved in cell proliferation, migration, and differentiation.
The CN male/CN females ratio was 0.419, and the expression of
TMSB4X in males was about half that in women, conforming to
the escape of X chromosome inactivation. The expression of
TMSB4X significantly decreased only in T21 females but not in
T21 males, implying that Trisomy 21 may affect the expression
of genes that are not inactivated on the X chromosome.

Five candidate proteins (CEL, CPA1l, MUC13, CLCAL,
MUCSAC, and AFP) were significantly downregulated in the
DS amniotic fluid samples. This trend is similar to what we
found in amniotic fluid cells of both T21 males and T21 females,
with the following ratios: CEL (0.518 and 0.422), CPA1 (0.549
and 0.298), CLCA1 (0.788 and 0.685), MUCSAC (0.653 and
0.635), and AFP (0.665 and 0.435). The extracellular protein
AFP was used as a biomarker for DS serum screening, similar to
AFP, and the other four proteins were extracellular proteins
(Table S1). These proteins have potential as biomarkers for DS.

The ER is the largest organelle in the cell. It is an important
protein synthesis and transport site, protein folding, lipid and
steroid synthesis, carbohydrate metabolism, and calcium
storage. The multifunctional nature of this organelle requires a
myriad of proteins, unique physical structures, and coordination
with and response to changes in the intracellular environment.
The extra 21 chromosomes dysregulated the ER proteins in T21
females, suggesting that endoplasmic reticulum dysfunction may
be associated with the onset of T21 females.

In addition to the above proteins, other proteins identified in
our study may be involved in the occurrence of DS, and our
results provide a possibility for further exploration of the
pathogenesis of DS. Till date, we have found no proteomic study
of DS amniotic fluid cells based on Gene Ontology (GO)
analysis. Our study reveals a variety of biological processes
involved in the pathogenesis of DS through proteomic GO
analysis for the first time, providing rich information for future
research on the molecular mechanism of the pathogenesis of DS.
In the future, based on the information obtained from our GO
analysis, it will be important and meaningful to study the specific
biological processes involved in DS.

B CONCLUSIONS

In summary, we report amniocyte proteomics in T21 fetuses.
Our results showed sex-specific modulation of protein
expression and biological processes. Comprehensive proteomic
profiling analysis would provide new insights into sex-specific
differences in the pathogenesis of DS. Our results suggest
differences in clinical manifestations between T21 males and
T21 females and provide clues for personalized diagnosis and
treatment of DS.
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