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ABSTRACT

Introduction: ROS1 fusions areoncogenicdrivers in1%to3%
of NSCLCs. The activity of immune checkpoint inhibitor
(ICI) monotherapy or in combination with chemotherapy
(chemotherapy with ICI [chemo-ICI]) in these tumors and their
immunophenotype have not been systematically described.

Methods: In this multi-institutional retrospective study,
tumor programmed death-ligand 1 (PD-L1) expression and
tumor mutational burden (TMB) were evaluated in patients
with ROS1-rearranged NSCLC. Time-to-treatment discon-
tinuation (TTD) and objective response rate (ORR)
(Response Evaluation Criteria in Solid Tumors [RECIST]
version 1.1) were calculated for patients treated with ICI or
chemo-ICI in the metastatic setting.

Results: A total of 184 patients were identified. Among 146
assessable cases, PD-L1 expression was less than 1% in 60
(41%), 1% to 49% in 35 (24%), and greater than or equal
to 50% in 51 tumors (35%). Of 100 (92%) TMB-assessable
tumors, 92 had less than 10 mutations per megabase.
TMB was significantly lower for ROS1-rearranged tumors
(n ¼ 97) compared with tumors with EGFR (n ¼ 1250) or
KRAS alterations (n ¼ 1653) and all other NSCLC tumors
(n ¼ 2753) evaluated with Memorial Sloan Kettering-
Integrated Mutation Profiling of Actionable Cancer Targets
(median TMB ¼ 2.6 versus 3.5, 7.0, and 6.1 mutations per
megabase, p < 0.001). Among patients treated with ICI,
median TTD was 2.1 months (95% confidence interval
[CI]: 1.0–4.2 mo; n ¼ 28) and ORR 13% (2 of 16 RECIST-
assessable; 95% CI: 2%–38%). Among patients treated
with chemo-ICI, median TTD was 10 months (95% CI: 4.7–
14.1 mo; n ¼ 11) and ORR 83% (5 of 6 RECIST-assessable;
95% CI: 36%–100%). There was no difference in PD-L1
expression (p ¼ 0.91) or TMB (p ¼ 0.83) between re-
sponders and nonresponders.

Conclusions: Most ROS1-rearranged NSCLCs have low
PD-L1 expression and TMB. The activity of ICI in these
tumors is modest. In contrast, chemo-ICI can achieve
meaningful activity.

� 2021 The Authors. Published by Elsevier Inc. on behalf of
the International Association for the Study of Lung Cancer.
This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Keywords: Non–small cell lung cancer; ROS1 fusion; Im-
mune checkpoint inhibitors; Tumor mutational burden; PD-
L1

Introduction
With multiple effective therapies approved in recent

years, NSCLC provides a paradigm for precision medi-
cine. Although targeted therapies against sensitizing
EGFR,1 BRAF,2 MET exon 14,3 ALK,4,5 ROS1,6,7 RET,8 and
NTRK9 alterations are highly active in patients with
advanced disease, therapeutic resistance is inevitable.
The optimal sequence of later-line standard systemic
options after disease progression on targeted therapies
is unclear. Immune checkpoint inhibitors (ICIs) may be
perceived as more attractive options for patients with
programmed death-ligand 1 (PD-L1)–expressing tumors
or tumor mutational burden (TMB)-high NSCLCs than
combination regimens, such as platinum doublet or
chemoimmunotherapy (chemotherapy with ICI [chemo-
ICI]). Elucidating the activity of these nontargeted
treatments in oncogene-driven tumors may help inform
clinicians in optimally sequencing regimens.

ROS1 fusions are oncogenic drivers identified in at
least 22 diverse adult and pediatric cancers,6 including
NSCLC, gastrointestinal cancers, Spitzoid neoplasms, in-
flammatory myofibroblastic tumors, and gliomas. Given
the annual global incidence of NSCLC, ROS1 fusions are
most common in this tumor type despite comprising
only 1% to 3% of cases.10,11 ROS1 tyrosine kinase in-
hibitors (TKIs) are the standard first-line treatment for
metastatic ROS1-rearranged NSCLCs and are being
investigated in other ROS1-rearranged cancers.12 In
treatment-naive NSCLCs, crizotinib13-15 and entrectinib7

achieve high response rates (overall response rate
[ORR] ¼ 69%–77%) and prolonged progression-free
survival (PFS) (range: 19–21 mo). Next-generation
TKIs, such as lorlatinib,16 repotrectinib,17 and tale-
trectinib,18,19 are active in TKI-treated NSCLCs. Although
none are yet approved in this setting, lorlatinib use is
supported by the National Comprehensive Cancer
Network guidelines.20 Lastly, chemotherapy is active in
ROS1-rearranged NSCLCs, with response rates of 45% to
60% and median PFS of 5 to 23 months6,21-23 for
pemetrexed-inclusive regimens.

To date, very little is known on the immunopheno-
type and the activity of immunotherapy in ROS1-rear-
ranged cancers. PD-L1 has only been reported in 10
patients across three reports,24-26 and TMB has not been
characterized in a dedicated cohort of ROS1-rearranged
NSCLCs. Only nine cases treated with ICI have been
published,26,27 most of whom had primary progressive
disease (PD); no cases treated with chemo-ICI have
been reported. Lastly, it remains unclear whether high
tumor PD-L1 expression28,29 or high TMB30,31 should
influence ICI therapy selection for these patients. To
address these unmet needs, we launched a multi-
institutional, retrospective study of patients with
ROS1-rearranged NSCLCs. The goal of this endeavor
was to describe the incidence of ICI-predictive bio-
markers and clinical outcomes of ICI as monotherapy or
in combination with chemotherapy in patients with
ROS1-fusion–positive NSCLC.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Materials and Methods
Study Population

Patient eligibility criteria were as follows: (1) path-
ologically confirmed NSCLC; (2) ROS1 fusion positive; (3)
any stage; and (4) treatment at one of the following four
academic centers—Memorial Sloan Kettering Cancer
Center, Massachusetts General Hospital, University of
California Irvine, or University of Colorado. Patients had
ROS1 fusions identified between August 1, 2011, and
September 1, 2020. The study was approved by the
institutional review board at each site, and patients
provided consent. A retrospective review of medical re-
cords for demographic information, pathologic charac-
teristics, medication administration, and radiologic
response was performed.

ROS1 Detection
ROS1 fusions were detected by fluorescence in situ

hybridization or next-generation sequencing (NGS) in a
Clinical Laboratory Improvement Amendments–
approved laboratory. NGS panels used to identify ROS1
fusion were as follows: Memorial Sloan Kettering-
Integrated Mutation Profiling of Actionable Cancer Tar-
gets (MSK-IMPACT) (n ¼ 100); Massachusetts General
Hospital Solid Fusion Assay (n ¼ 10); Foundation Med-
icine (n ¼ 5); Dana-Farber Cancer Institute OncoPanel
(n ¼ 4); Guardant360 Cdx (n ¼ 3); Archer FusionPlex
(n ¼ 3); and one each from OnkoSight, Tempus, Illumina
TruSight, University of Washington Tumor Oncoplex, and
Moffitt Cancer Center.

Immunophenotyping
PD-L1 and TMB were evaluated in ROS1-rearranged

cancers of any stage with sufficient tissue for analysis
as part of routine clinical care. TMB or PD-L1 evaluated
at any point during a patient’s disease course was
accepted. Only one sample was used per patient. If
patients had multiple samples with TMB or PD-L1
evaluated, results from samples with the highest tu-
mor purity were selected. PD-L1 expression was scored
by a pathologist as the percentage of tumor cells with
membranous staining. PD-L1 antibodies used were
Dako 22C3 (Agilent Technologies, Santa Clara, CA),
E1L3N (Cell Signaling Technology, Danvers, MA), and
Ventana SP142 and SP263 (Roche, Rotkreuz,
Switzerland). Tumor PD-L1 expression was categorized
consistent with prospective clinical trials32 as low
(<1%), intermediate (1%–49%), and high (�50%).
TMB was quantified by each respective NGS panel and
defined as the number of nonsynonymous coding mu-
tations per megabase (mut/Mb) of genome covered.
TMB was quantified as low (<10 mut/Mb) and high
(�10 mut/Mb), consistent with the regulatory approval
of pembrolizumab.31 Given the variability in TMB as-
sessments across assays, for comparison of TMB be-
tween ROS1-fusion–positive tumors and ROS1-fusion
wild-type tumors, the largest cohort of ROS1-rear-
ranged NSCLCs with TMB data from a single NGS assay
(MSK-IMPACT)33 was chosen from the same time
period.

To compare the immunophenotypic characteristics of
ROS1 fusion-positive lung cancers to ROS1–wild-type
lung cancers, two control populations were analyzed. For
PD-L1 expression comparison, consecutive cases of ROS1
wild-type NSCLCs with tumor PD-L1 expression avail-
able from molecular profiling in the same time frame as
the ROS1 fusion patients were identified using the NSCLC
MSK-IMPACT cohort from the cBioPortal.34 The goal was
to identify a cohort 2:1 in size relative to the ROS1
fusion-positive cohort. To compare TMB expression, all
lung cancers with known ROS1 fusion status (fusion-
positive or wild-type) by MSK-IMPACT were identified
using cBioPortal.
Therapy Activity
The treatment cohort included any patient with ROS1

fusion-positive NSCLC who had received treatment with
ICI monotherapy or chemo-ICI combination in the met-
astatic setting. Scanning intervals to evaluate treatment
benefit were determined by the provider per standard of
care and were not performed at consistent intervals.
Best response was determined by Response Evaluation
Criteria in Solid Tumors (RECIST) version 1.1 criteria for
response-assessable patients with a baseline and one or
more follow-up imaging studies. ORR was defined as the
proportion of patients with a complete response or
partial response (PR) as their best response to therapy;
response confirmation by a second scan was not
required.
Statistics
PD-L1 and TMB were categorized as noted previ-

ously. ORR on the basis of RECIST version 1.1 was esti-
mated with 95% exact confidence intervals (95% CIs).
Only patients with available RECIST assessments were
included. The relationship between PD-L1 and TMB with
ORR was evaluated with the Wilcoxon ranked sum test
for continuous or ordinal values and Fisher’s exact test
for grouped values. We visually displayed the data with
boxplots and bar charts overall and by treatment cohort
(chemo-ICI and ICI); however, the subgroup sizes were
too small for formal hypothesis testing. We also evalu-
ated the relationship between maximum percent change
in target lesions with PD-L1 and TMB using Spearman’s
correlation and visually displayed using scatter plots
with the line of best fit.



Table 1. Patient Characteristics

Characteristics
All ROS1-Fusion
N ¼ 184

Immunophenotypic
Cohort n ¼ 145

Treatment
Cohort n ¼ 39 p Value

Age, median (range), y 51 (20–89) 56 (31–87) 56 (20–89)
Sex 0.1

Male 59 (32) 42 (29) 17 (44)
Female 125 (68) 103 (71) 22 (56)

Race 0.4
Black 16 (9) 11 (8) 5 (13)
White 116 (63) 92 (63) 24 (62)
Asian 39 (21) 33 (23) 6 (15)
Not specified 13 (7) 9 (6) 4 (10)

Smoking status 0.002
Never smoker 133 (72) 110 (76) 23 (59)
<10 py 31 (17) 17 (12) 14 (36)
�10 py 19 (10) 17 (12) 2 (5)
Not specified 1 (1) 1 (1) 0 (0)

Stage, at diagnosis 0.6
I–III 52 (28) 43 (30) 9 (23)
IV 132 (72) 102 (70) 30 (77)

Tumor type 0.7
Adenocarcinoma 179 (97) 141 (97) 38 (97)
Squamous 1 (<1) 1 (1) 0 (0)
Adenosquamous 3 (2) 2 (1) 1 (3)
Not differentiated 1 (<1) 1 (1) 0 (0)

Brain metastases, at metastatic diagnosis 0.4
No 125 (68) 99 (68) 26 (67)
Yes 45 (25) 33 (23) 12 (31)
Not known 14 (8) 13 (9) 1 (3)

Note: The immunophenotypic cohort consisted of 145 patients who had sufficient tissue for PD-L1 (n ¼ 119) and/or TMB (n ¼ 77) testing. The treatment cohort
consisted of patients who were treated with either immune checkpoint inhibitor monotherapy or chemoimmunotherapy.
PD-L1, programmed death-ligand 1; py, pack-year; TMB, tumor mutational burden.
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Time-to-treatment discontinuation (TTD) for each
treatment cohort was estimated using Kaplan-Meier
methods with 95% log-log CIs and defined as the
interval between the date of treatment initiation and
the date of treatment discontinuation. Patients were
censored at their last known clinical follow-up if they
had continued treatment by the data lock on
September 1, 2020. We compared TTD between the
treatment cohorts using univariable Cox regression.
The association between categorized PD-L1 and TMB
with TTD was evaluated with the log-rank test, and
univariable Cox regression was used for continuous
PD-L1 and TMB. In those with available data, the
associations between TMB and PD-L1 with ROS1
status were evaluated with the Wilcoxon ranked sum
test for continuous/ordinal data and with Fisher’s
exact test for grouped data. Two-sided p values less
than 0.05 were considered statistically significant.
Analyses were performed using Statistical Analysis
System 9.4 TS1M6 (The SAS Institute, Cary, NC).
Results
Patient Characteristics

Between August 1, 2011, and September 1, 2020, a
total of 184 patients with ROS1-rearranged NSCLC were
identified (Memorial Sloan Kettering Cancer Center ¼
99, Massachusetts General Hospital ¼ 43, University of
Colorado ¼ 29, University of California Irvine ¼ 13).
Among all 184 patients, 52 patients (28%) were diag-
nosed with stage I to III diseases and 132 (72%) were
diagnosed in the metastatic setting (Table 1). A total of
45 patients (24%) had brain metastases at the time of
diagnosis of metastatic disease. Most patients (89%)
were never or light former smokers (<10 pack-years)
and had adenocarcinoma (97%), consistent with the
known clinical phenotype of ROS1-rearranged NSCLCs.11

The only statistically significant difference in baseline
characteristics between patient cohorts was smoking
status (p ¼ 0.002). A higher proportion of patients in the
treatment cohort had a light smoking history (<10 pack-



Table 2. Immunophenotypic Characteristics

Characteristics
All ROS1 Fusion Patients
N ¼ 184

Immunophenotypic
Cohort n ¼ 145 ICI Cohort n ¼ 28

Chemo-ICI
Cohort n ¼ 11

Tumor PD-L1 expression
# of patients 146 119 17 10

Median (range) 8 (0–100) 1 (0–100) 70 (0–90) 38 (0–90)
<1% 60 (41) 56 (47) 3 (18) 1 (10)
1%–49% 35 (24) 28 (24) 3 (18) 4 (40)
�50% 51 (35) 35 (29) 11 (65) 5 (50)

TMB (mut/Mb)
# of patients 100 77 16 7

Median (range) 3 (0–20) 3 (0–20) 3 (1–20) 2 (1–5)
<5 68 (68) 51 (66) 12 (75) 5 (71)
5–9 24 (24) 20 (26) 2 (13) 2 (29)
�10 8 (8) 6 (8) 2 (13) 0 (0)

Note: # of patients refers to the number of patients in which PD-L1 or TMB, respectively, was available.
Chemo-ICI, chemotherapy with immune checkpoint inhibitor; ICI, immune checkpoint inhibitor; mut/mb, mutations per megabase; PD-L1, programmed death-
ligand 1; TMB, tumor mutational burden.
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years) compared with patients in the full ROS1 cohort
and the immunophenotypic cohort (36% versus 17%
and 12%). ROS1 fusion was detected by NGS or fluo-
rescence in situ hybridization in 129 patients (70%) and
30 patients (16%), respectively. CD74 was the most
often identified fusion partner in 72 patients (39%).
Immunophenotype
PD-L1 expression data were available for 146 pa-

tients with ROS1-rearranged NSCLCs (n ¼ 27 treatment
cohort, n ¼ 119 immunophenotypic cohort). Tumor PD-
L1 expression was low (<1%), intermediate (1%–49%),
and high (�50%) in 60 (41%), 35 (24%), and 51 pa-
tients (35%), respectively (Table 2). PD-L1 expression
was compared with a cohort of 291 ROS1 wild-type lung
cancers that underwent consecutive PD-L1 testing dur-
ing the study period. There was no significant difference
in PD-L1 expression between the groups when examined
as a continuous variable (median: 7.5% in ROS1 fusion
versus 5.0% in ROS1 wild-type, p ¼ 0.81) or categorically
(33 versus 40%, p > 0.95, Fig. 1A).

TMB data were available for 100 patients with ROS1-
rearranged NSCLCs (n ¼ 23 treatment cohort, n ¼ 77
immunophenotypic cohort). A total of 92 patients had
tumors with less than 10 mut/mb (92%), and eight pa-
tients (8%) had greater than or equal to 10 mut/Mb. To
avoid comparing TMBs quantified from different NGS
panels, we restricted the comparative analysis to the
cohort of patients who had undergone NGS and TMB
determination by MSK-IMPACT, the most frequently
used panel. The median TMB of ROS1 fusion-positive
lung cancers (median ¼ 2.6 mut/Mb, n ¼ 97) was
significantly lower compared with tumors with EGFR
(median ¼ 3.5 mut/Mb, n ¼ 1250) or KRAS alterations
(median ¼ 7.0, n ¼ 1653) and compared with all other
ROS1 wild-type lung cancers (6.1 mut/Mb, p < 0.001;
Fig. 1B and C). A breakdown of TMB by molecular sub-
types of ROS1 wild-type lung cancers is illustrated in
Supplementary Table 1. Among 69 patients who had
both PD-L1 expression and TMB evaluated, only one
patient had both high levels of TMB and PD-L1 expres-
sion (Fig. 1D).
Activity of ICI monotherapy
A total of 28 patients with advanced ROS1-rearranged

NSCLCs were treated with ICI monotherapy
(Supplementary Table 2): nivolumab (n ¼ 13), pem-
brolizumab (n ¼ 12), investigational agent (n ¼ 2), and
atezolizumab (n ¼ 1). Time on therapy is illustrated in
Figure 2A. The median TTD was 2.1 months (95% CI:
1.0–4.2, n ¼ 28; Fig. 2B). Reasons for treatment
discontinuation were PD (n ¼ 23), toxicity (n ¼ 3), and
planned discontinuation (elective switch to ROS1 TKI
without evidence of progression, n ¼ 1); one patient
continued ICI at the time of data censoring.

Of the 28 patients, 16 had RECIST reads performed
retrospectively. Best response of complete response, PR,
stable disease, and PD was observed in zero, two (13%),
four (25%), and 10 patients (63%), respectively
(Supplementary Table 3). The ORR was 13% (95% CI:
2%–38%, Fig. 2C). Furthermore, 17% of patients (2 of
12) with baseline brain metastases had intracranial
progression on ICI and 14% of patients (2 of 14) without
baseline brain metastases had new intracranial metas-
tases on ICI. Two patients did not have pretreatment or
on-treatment central nervous system imaging
performed.

The two patients treated with ICI therapy for more
than 12 months both had low-volume disease (Fig. 2A).
Patient 28 (TMB and PD-L1 unknown) was treated with
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atezolizumab in the fourth-line setting after progression
on two TKIs and chemotherapy and received radiation to
an unmeasurable left lung lesion during treatment; best
response was evaluated clinically as stable disease. Pa-
tient 21 (TMB ¼ 5.3 mut/mb, PD-L1 0%) received
nivolumab as second-line therapy after chemotherapy
and was on observation for nearly eight months after
mild disease progression on nivolumab before requiring
treatment with entrectinib.
Activity of Chemoimmunotherapy
A total of 11 patients were treated with chemo-ICI

combination. Most patients (10 of 11) were treated
with carboplatin, pemetrexed, and pembrolizumab
(Supplementary Table 4). Time on therapy is found in
Figure 2D. The median TTD was 10.0 months (95% CI:
4.7–14.1; Fig. 2E). Patients discontinued treatment for
PD (n ¼ 6) and planned discontinuation (treatment
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separate treatment cohorts; however, sample sizes
were too small for formal hypothesis testing. When
responders to chemo-ICI and ICI were combined,
there was no significant difference between PD-L1
expression levels (median 30 versus 70%, p ¼ 0.91,
obtained shortly after patient transitioned to crizotinib. Chem
immune checkpoint inhibitor; PD, progressive disease; PD-L1,
Response Evaluation Criteria in Solid Tumors; TKI, tyrosine ki
treatment discontinuation. Patient-level information correspon
Fig. 3A, Supplementary Fig. 1) or TMB (median 2
versus 3 mut/mb, p ¼ 0.83, Fig. 3B) between re-
sponders (best response PR) and nonresponders
(stable disease/PD). There was also no correlation
between maximum change in sum of target lesions
o-ICI, chemotherapy with immune checkpoint inhibitor; ICI,
programmed death-ligand 1; PR, partial response; RECIST,

nase inhibitor; TMB, tyrosine kinase inhibitor; TTD, time to
ding to patient IDs can be found in the Supplement.
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with PD-L1 expression (rho ¼ 0.16, 95% CI: �0.36–
0.61, p ¼ 0.55, Fig. 3C) or TMB (rho ¼ 0.03, 95%
CI: �0.46–0.50, p ¼ 0.92, Fig. 3D). Although we also
evaluated the association between TTD and PD-L1
and TMB for each treatment cohort individually,
sample sizes were again too small to obtain mean-
ingful Kaplan Meier estimates. Nevertheless, in total,
11 patients with PD-L1 expression greater than or
equal to 50% were treated with ICI, with a median
TTD of 2.4 months (95% CI: 0.7–11.4 mo). When the
cohorts were combined, by univariate Cox analyses,
neither TMB nor PD-L1 expression affected TTD
(hazard ratio ¼ 0.98, p ¼ 0.80 and 0.27,
Supplementary Fig. 2 and Supplementary Table 5).

Other putative genomic modifiers of immunotherapy
activity, such as alterations in STK11/LKB1, KEAP1, and
PBRM1,35-37 were explored. Of 112 ROS1-rearranged
lung cancers wherein information on these genes was
available, inactivating mutations were observed in a
minority of cases: 3 PBRM1, 1 KEAP1/PBRM1, 1 STK11/
PBRM1, and 1 KEAP1/STK11 (Supplementary Table 6).
One patient with concurrent PBRM1/STK11 mutations
received nivolumab (TTD 0.8 mo, RECIST radiological
response not assessed), and a second patient with a
PBRM1 Q1400* mutation received chemo-
immunotherapy (TTD 4.7 mo, PR).
Comparison With TKI Therapy
Time on ICI monotherapy or chemo-ICI was qualita-

tively compared with time on ROS1 TKI therapy in pa-
tients who received both during their disease course. For
this exploratory analysis, we focused on patients who
remained on ICI treatment for at least six months (n ¼ 8)
and all 11 patients who received chemo-ICI. Patients
were treated with crizotinib (n ¼ 17), entrectinib (n ¼ 9),
lorlatinib (n ¼ 8), repotrectinib (n ¼ 6), cabozantinib
(n ¼ 4), ceritinib (n ¼ 1), and alectinib (n ¼ 1). Swim-
mer’s plot of time on ICI or chemo-ICI versus total time
on one or more ROS1 TKIs is found in Figure 4A and B.
For patients treated with ICI, median cumulative time on
all ROS1 TKIs exceeded median time on ICI (median 18.1
versus 2.1 mo); the same was true for patients treated
with chemo-ICI (median 17.2 versus 8.7 mo, Fig. 4C,
Supplementary Table 7). Patients in both groups spent
their longest time on their first ROS1 TKI (median 10 mo
for ICI cohort and 13.3 mo for chemo-ICI cohort).

Discussion
This multi-institutional study represents the largest

series to date of ROS1-rearranged lung cancers that de-
scribes the immunophenotype and the activity of ICI and
chemo-ICI in these tumors. Recognizing the limitations of
this article and cross-trial comparisons, these data
establish real-world historical benchmarks against
which ongoing or future trials of systemic therapy for
patients with ROS1 fusion-positive NSCLC can be evalu-
ated. In patients with ROS1-rearranged lung cancers,
late-phase trials randomizing patients to an
immunotherapy-inclusive standard-of-care control arm
will be challenging to execute.

PD-L1 expression was below 50%, and TMB was less
than 10 mut/Mb in most patients with ROS1-rearranged
NSCLCs. The median TMB was significantly less that of
other lung cancers, including EGFR-driven lung cancers,
cancers that similarly arise in patients largely without a
smoking history. Low TMB has similarly been reported
in other oncogene-driven lung cancers.38-40 As expected,
TMB was significantly higher in patients with KRAS al-
terations, which are more often found in patients with
smoking histories. Given this immunophenotype, it is
unsurprising that single-agent immunotherapy achieved
a low response rate (ORR ¼ 13%) and short time on
therapy (median TTD ¼ 2 mo). Furthermore, although
the sample size is small, 11 patients with high PD-L1
tumor expression had a short median TTD of 2.4
months and most had primary disease progression. We
further found no association between PD-L1 expression,
TMB, and objective response or TTD.

Our findings of suboptimal response to ICIs among
ROS1-rearranged lung cancers are consistent with the
modest benefit from ICIs in other oncogene-driven lung
cancers, such as those with sensitizing EGFR muta-
tions.41-43 In one series, median PFS for EGFR-mutant
NSCLC treated with ICI was 1.8 months.41 In the
IMMUNOTARGET registry26 that evaluated the activity of
single-agent immunotherapy in ALK, ROS1, and RET
fusion-positive NSCLCs, primary PD was the most com-
mon outcome. Given these poor results, the National
Comprehensive Cancer Network guidelines discourage
later-line use of ICI in patients with EGFR or ALK alter-
ations.20 In a separate series, the response to single-
agent immunotherapy in BRAF V600E-mutant,44

ERBB2-mutant,26 and MET exon 14-altered45 NSCLCs
was 25%, 7%, and 17%, respectively, and the median
PFS was 3.7, 2.5, and 1.9 months, respectively.

In contrast, acknowledging the limited sample size
of this population, the activity of chemo-
immunotherapy was more encouraging. All response-
assessable cases had disease regression with most
patients achieving a PR (ORR ¼ 83%). The median TTD
was 10 months. For reference, in KEYNOTE-189, which
established combination chemoimmunotherapy as a
standard of care for treatment-naive patients with
metastatic NSCLC, the ORR was 48% and the median
PFS was 9 months.46 Pending further confirmation, this
suggests that combination chemoimmunotherapy
might represent a preferred approach compared with



*Treatment ongoing PD Toxicity No TKI Elective treatment d/c

40

30

20

10

0

50

0 10 20 30 40 50 60

17

20

15

10

22

21

28

26

Months on Treatment

Pa
tie

nt
 ID

ICI
1st TKI
2nd TKI
3rd TKI

*

0 10 20 30 40 50 60

38

36

37

34

39

31

33

32

30

29

35

Months on Treatment

Pa
tie

nt
 ID

Chemo-ICI
1st TKI
2nd TKI
3rd TKI
4th TKI

*
*
*
*

g

8.7 (0.7–27.0)
2.1 (0.4–19.8)

17.2 (13.7–47.0)
18.1 (0.5–32.2)

13.3 (3.0–21.5)
10.0 (0.5–25.8)

5.2 (3.4–14.0)
6.4 (0.9–12.4)

4.0 (1.0–18.1)
3.5 (1.9–4.0)

1.0 (1.0–1.0)
1.4 (1.4–1.4)

M
on

th
s 

on
 T

re
at

m
en

t

Chemo-ICI/ICI Total TKI 1st TKI 2nd TKI 3rd TKI 4th TKI
Chemo-ICI Cohort ICI Cohort

A

B

C

Treatment ongoing PD Toxicity Elective treatment change *No TKI

Figure 4. Time on ICI or chemo-ICI compared with ROS1 TKIs. (A) Swimmer’s plot comparing time on ICI to ROS1 TKIs for
patients who remained on ICI for at least six months (n ¼ 8). (B) Swimmer’s plot comparing time on chemo-ICI versus ROS1
TKIs for all patients treated with chemo-ICI (n ¼ 11). Asterisks indicate that patient was not treated with ROS1 TKI. (C) Box
and whisker plot revealing median time on each respective treatment. Median time on therapy with range displayed above
each treatment category. Chemo-ICI, chemotherapy with immune checkpoint inhibitor; ICI, immune checkpoint inhibitor; ID,
identification; PD, progressive disease; TKI, tyrosine kinase inhibitor.

10 Choudhury et al JTO Clinical and Research Reports Vol. 2 No. 7



July 2021 ICI Therapy in ROS1-Rearranged Lung Cancers 11
ICI monotherapy in patients with ROS1-rearranged
NSCLCs. This does not mean that providers should select
chemo-ICI over ROS1 TKI therapy in treatment-naive
patients when the presence of a ROS1 fusion is known.
ROS1 TKI remains the therapy of choice in current
guidelines on the basis of prospective trials which
reveal that ROS1 TKI therapy achieves prolonged overall
disease control (median PFS ¼ 19–21 mo).

Other important considerations are whether pa-
tients should be treated with chemo-ICI versus
chemotherapy alone or chemotherapy with continued
TKI, questions these data were not poised to answer. It
is possible that the benefit patients received from
chemo-ICI was primarily a benefit from receiving plat-
inum chemotherapy. Although we did not evaluate
outcomes on chemotherapy, other studies reported
response rates of 45% to 60% and a median PFS of 5 to
23 months with various chemotherapy regimens.21-23

Furthermore, no prospective data yet support the
continuation of ROS1 TKI therapy postprogression with
chemotherapy or chemo-ICI. In EGFR-mutant lung can-
cers, the continuation of gefitinib with chemotherapy
after progression on gefitinib did not prolong PFS.47

Importantly, the possibility for increased adverse
events when immune checkpoint inhibition and TKI
therapy are administered in proximity should always be
taken into account as this is an established phenome-
non in EGFR-mutant48 and ALK fusion-positive lung
cancers.49 In patients previously treated with TKI
therapy, the subsequent use of immunotherapy-
inclusive regimens may have safety implications that
have not been prospectively evaluated.

Our study has several notable limitations. This
included a sample size that limited our ability to detect
meaningful differences in activity by immune biomarker,
potential sampling bias from the participating in-
stitutions, the lack of defined scanning intervals, and the
receipt of immunotherapy at varying points during pa-
tients’ disease course. From a pathologic perspective,
multiple PD-L1 antibodies and NGS panels were used
and PD-L1/TMB were not routinely evaluated in
treatment-naive samples.

In conclusion, the immunophenotype of ROS1-rear-
ranged NSCLCs is characterized by low or no PD-L1
expression and low TMB in most patients. Although the
activity of single-agent immunotherapy was modest, the
activity of chemoimmunotherapy was more encouraging.
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