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Abstract

Most of our understanding of the fundamental processes of mutation and recombination stems from a

handful of disparate model organisms and pedigree studies of mammals, with little known about other

vertebrates. To gain a broader comparative perspective, we focused on the zebra finch (Taeniopygia

castanotis), which, like other birds, differs from mammals in its karyotype (which includes many

micro-chromosomes), in the mechanism by which recombination is directed to the genome, and in

aspects of ontogenesis. We collected genome sequences from three generation pedigrees that provide

information about 80 meioses, inferring 202 single-point de novo mutations, 1,174 crossovers, and 275

non-crossovers. On that basis, we estimated a sex-averagedmutation rate of 5.0 × 10-9per base pair per

generation, on par with mammals that have a similar generation time. Also as in mammals, we found a

paternal germline mutation bias at later stages of gametogenesis (of 1.7 to 1) but no discernible

difference between sexes in early development. We also examined recombination patterns, and found

that the sex-averaged crossover rate on macro-chromosomes (1.05 cM/Mb) is again similar to values

observed in mammals, as is the spatial distribution of crossovers, with a pronounced enrichment near

telomeres. In contrast, non-crossover rates are more uniformly distributed. On micro-chromosomes,

sex-averaged crossover rates are substantially higher (4.21 cM/Mb), as expected from crossover

homeostasis, and both crossover and non-crossover events are more uniformly distributed. At a finer

scale, recombination events overlap CpG islands more often than expected by chance, as expected in

the absence of PRDM9. Despite differences in the mechanism by which recombination events are

specified and the presence of many micro-chromosomes, estimates of the degree of GC-biased gene

conversion (59%), the mean non-crossover conversion tract length (~23 bp), and the non-crossover to

crossover ratio (6.7:1) are all comparable to those reported in primates and mice. The conservation of

mutation and recombination properties from zebra finch to mammals suggest that these processes

have evolved under stabilizing selection.
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Introduction

Germline mutation and meiotic recombination are fundamental biological processes and the

sources of heritable variation. The rates at which they occur are key parameters in evolutionary models

and enable phylogenetic dating. Yet their properties have been studied in depth in only a handful of

model organisms–primarily yeast species, mice, Arabidopsis thaliana, and a couple of Drosophila

species (e.g., Lang & Murray, 2008; Mancera et al., 2008; Comeron et al., 2012; Drouaud et al., 2013;

Keightley et al., 2014; Li et al., 2019). More recently, such studies have been complemented by

sequencing pedigrees, primarily of mammals (e.g., Williams et al., 2015; Li et al., 2019; Wall et al., 2022;

Versoza et al., 2024; Porubsky et al., 2024), as well as by high-fidelity (HiFi) long-read sequencing of

male germ cells of humans and other primates (Charmouh et al., 2024; Porsborg et al., 2024; Schweiger

et al., 2024).

To date, few similar studies have been conducted in non-mammalian vertebrates. For example,

among ~11,000 species of birds, recombination events have only been called from genome sequencing

of pedigrees in the collared flycatcher (Smeds et al., 2016a) and the great weed warbler (Zhang et al.,

2024). Pedigree studies of germline mutation have been conducted in a somewhat larger number of

species, including the collared flycatcher (Smeds et al., 2016b), the great reed warbler (Zhang et al.,

2023), as well as 18 other species (Bergeron et al., 2023), but inferences were limited by the small

number of trios considered per species (from one to eight, with a median of one trio).

Intriguingly, comparisons among mammalian species indicate that mutation and

recombination parameters are relatively stable over time: for instance, the mutation rate per base pair

(bp) per generation in mice (0.5x10-8; Uchimura et al., 2015; Milholland et al., 2017; Lindsay et al., 2019)

is only around two times lower than that in humans (1.2 × 10-8, e.g., Kong et al., 2012; Rahbari et al.,

2015) despite their generation time being around 50 times shorter (Milholland et al., 2017), and the

sex-averaged recombination rate in dogs (0.8 cM/Mb) is intermediate between the rates in humans (1.2
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cM/Mb) and mice (0.5 cM/Mb), despite dogs having nearly twice as many chromosomes and a shorter

genome than that of humans (Dumont & Payseur, 2008; Williams et al., 2015; Campbell et al., 2016). In

the soma, in turn, the mutation burden in colonic crypts appears relatively constant across 16

mammalian species at their typical lifespan (i.e., on average, a mammalian epithelial cell carries around

3,000 de novomutations at the time of death) (Cagan et al., 2022). Such findings suggest that aspects of

mutation and recombination are evolving under stabilizing selection across mammals. It remains an

open question, however, whether this conservation extends to broader phylogenetic distances.

Birds offer an interesting comparison in this regard, as they diverged frommammals 320 million

years ago (Kumar et al., 2022) and differ in many potentially salient features. For one, most passerines

are seasonal breeders with spermatogenesis occurring during the breeding season, unlike many

mammals (e.g., mice and humans), which typically produce sperm continuously (Bentley et al., 2000;

Wikelski et al., 2003). Moreover, sex differences may appear earlier in bird ontogenesis, given that the

avian sexual phenotype is directly determined by the sex chromosome content of individual cells (Zhao

et al., 2010; Ioannidis et al., 2021), consistent with reported sex differences in primordial germ cell

phenotypes before gonadal development (Soler et al., 2021). These features may help explain the

weaker paternal bias in germline mutation in birds compared to mammals (de Manuel et al., 2022).

More generally, it is unclear if the mutational processes dominant in the mammalian germline, notably

those accounted for by COSMIC mutational signatures SBS1 and SBS5 (Rahbari et al., 2015; Sasani et

al., 2024; Spisak et al., 2024), are also active in birds.

Recombination dynamics may also differ between birds andmammals. Notably, avian genomes

often harbor a large number of micro-chromosomes, which have higher average crossover rates,

replicate earlier and have a higher repeat content (Srikulnath et al., 2021; Waters et al., 2021). Further,

birds lack the gene PRDM9, which encodes the protein directing recombination in several mammals

(e.g., Baudat et al., 2010; Myers et al., 2010; Parvanov et al., 2010) and other vertebrates (Schield et al.,
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2020; Hoge et al., 2024; Raynaud et al., 2024), but was lost in archosaurs (Baker et al., 2017). In rodent

knockouts for PRDM9 and dogs that carry a pseudogene for PRDM9, recombination preferentially

occurs at promoter-like features, in particular CpG islands (Brick et al., 2012; Auton et al., 2013; Mihola

et al., 2021). Analyses of patterns of linkage disequilibrium (LD) suggest that in birds as well, population

recombination rates are elevated near CpG islands (Smeds et al 2016a, Singhal et al., 2015; Kawakami et

al., 2017). However, LD patterns mostly reflect the effects of crossovers, and carry limited information

about non-crossover events (Hellenthal & Stephens, 2006). To our knowledge, there is only one study of

non-crossover events in birds, in collared flycatcher (Smeds et al., 2016a). On that basis, it remains

unclear if non-crossovers are also concentrated at promoter-like features. At a broad scale, the number

of double-strand breaks per meiosis and the ratio of crossover to non-crossover in birds is also

unknown.

In addition to crossover and non-crossover rates, other key parameters, such as the

non-crossover mean conversion tract length, appear to be conserved betweenmice and primates (<100

bp; Li et al., 2019; Wall et al., 2022; Charmouh et al., 2024; Porsborg et al., 2024). Yet this length is

substantially shorter than that in Drosophila melanogaster or in yeast (Saccharomyces cerevisiae),

estimated to be ~500 bps and 1.8 kb, respectively (Mancera et al., 2008; Comeron et al., 2012).

Therefore, it is unclear how far the similarity observed in mammals extends phylogenetically. In turn,

estimates of magnitude of the GC-biased gene conversion in mammals vary between 57% and 68%

(Williams et al., 2015; Li et al., 2019; Wall et al., 2022; Versoza et al., 2024). The extent of bias may

depend on nucleotide diversity levels, as a recent study reported that only non-crossovers with a single

mismatch in the gene conversion tract experience a transmission bias in mice and potentially humans

(Li et al., 2019). In collared flycatcher, in which heterozygosity is ~0.4% (Dutoit et al., 2017), the authors

reported a point estimate of 59% based on 229 non-crossover events (Smeds et al., 2016a). Whether

the same is true in a species with higher diversity remains to be tested.

5

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.05.611523doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611523
http://creativecommons.org/licenses/by-nd/4.0/


To explore whether fundamental mutation and recombination parameters are similar in birds,

we focused on the zebra finch, a well-studied passerine with a contiguous and high-quality genome

assembly (Rhie et al., 2021) and high levels of nucleotide diversity (~1%) (Balakrishnan & Edwards,

2009). To this end, we sequenced genomes of extended pedigrees to identify de novo point mutations

(DNMs), as well as infer crossovers and non-crossovers.

Results

Germline de novomutation

Identification of sex-specific de novomutations from pedigrees

We generated whole genome sequences from 74 zebra finch individuals in four

three-generation pedigrees and four trios, comprising 40 trios, on average at 25-fold coverage (Fig 1A

and S1 Table). After mapping the reads of each individual to the zebra finch reference genome (RefSeq

ID: GCF_003957565.2), we identified autosomal regions in the assembly to which short-read sequencing

data could be reliably mapped and where the three individuals in the focal trio had sufficient but not

unusually high depth of coverage (see Methods). This approach led us to retain an average of 502.8 Mb

per trio (min=475.3, max=511.1), or 52% of the autosomal genome. We then identified genomic

positions where the parents are homozygous for the same reference allele and the offspring

heterozygous, a Mendelian violation consistent with a DNM. We filtered these candidate DNMs using

current best practices, notably by checking that the non-reference allele is not present on the

sequencing reads in either parent (see Methods). In the end, we identified 202 putative DNMs in the 40

probands (Fig 1).
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Fig 1. Pedigree structure and mutation rate estimates in zebra finch. (A) Familial relationships

among the 74 sequenced zebra finch individuals. We identified DNMs in all families (blue and green),

and studied recombination events in the nuclear families with multiple siblings (green) (see Methods).

(B) Proportion of DNMs for the seven mutation types, in all autosomal sequences (gray),

macro-chromosomes (purple), and micro-chromosomes (gold). (C) Mutation rate estimates for the

seven mutation types and all mutations (top). Horizontal lines show the 95% CIs, assuming mutation

counts are Poisson-distributed. (D) The ratio of male-to-female mutations for events occurring in the

parental germlines or in early development of the proband. Horizontal lines show the binomial 95% CIs.

To determine the parental chromosome on which the DNMs occurred, we employed two

different strategies. For the 88 DNMs identified in the 18 probands with sequenced partners and
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offspring, we phased 91% of mutations based on their pattern of inheritance to the next generation (see

Methods). For the 114 DNMs identified in the 22 probands without sequenced offspring, we phased by

read tracing, i.e., by linking DNMs to phase informative heterozygous alleles found in the same

sequenced DNA fragment (see Methods). Given the high genetic diversity in zebra finches (𝝅 1%), we≈

were able to phase 81% of the 114 DNMs by this strategy. Applying both approaches to probands with

sequenced offspring, 94.3% of the DNMs are assigned to the same parental chromosome as inferred by

transmission, confirming the reliability of the phasing.

Inferences of developmental timing of germline mutations

Mutations that occurred in the early development of the probands can be mistaken for

mutations that occurred in the parental germlines. To distinguish among these two possibilities, we

looked for DNMs that showed “incomplete linkage” with neighboring heterozygous alleles, i.e., regions

in which the (diploid) proband carries three distinct haplotypes (see Methods and S1 Fig for a visual

example) (Harland et al., 2017). Among the 174 DNMs with informative variants nearby (~150 bps, the

length of our sequencing reads), 25 showed evidence of being post-zygotic, i.e., as having arisen after

fertilization of the proband (see Methods). The fraction of post-zygotic mutations in zebra finches

(~15%) is larger than that reported in humans (~5%) (p < 3 × 10-5 by a one-sided binomial test),

consistent with previous studies showing larger proportions in shorter lived organisms like mice

(Lindsay et al., 2019) and cattle (Harland et al., 2017). In addition, these post-zygotic mutations are at

lower than 50% frequency among the sequencing reads in the proband (p < 10-7 by one-tailedWilcoxon

signed-rank test; S2 Fig), and as expected for mosaic mutations, have a transmission rate to the next

generation significantly lower than 50% (21%, 95% CI: 7% - 47%). In contrast, the transmission rate for

the rest of DNMs is 45% (95% CI: 33% - 55%), not significantly different from the 50% expected for a

constitutive mutation. Moreover, the 25 putative post-zygotic mutations occur at a similar rate on both
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parental chromosomes: the ratio of paternally to maternally phased mutations is 1.14 (95% CI: 0.33 -

2.34), again as expected if they occurred after fertilization of the proband. Collectively, these lines of

evidence—under-transmission, lower allele frequency compared to constitutive heterozygous variants,

and equal occurrence in both parental chromosomes—indicate this set of mutations indeed arose

post-zygotically and are mosaic in the proband.

If a DNM occurs during or shortly after parental primordial germ cell specification, it may not be

present in parental somatic cells but could be carried by a significant proportion of their gametes,

increasing the likelihood of inheritance by multiple descendants. By analyzing the four multi-sibling

pedigrees, we found only one instance of DNMs shared between siblings (S2 Table). While there are

only a small number of siblings, finding only one such DNM suggests that the mutation rate during this

early developmental stage is relatively low in zebra finches.

Estimation of mutation rates

Given the total length of genome sequence that we analyzed across the 40 pedigrees (~40 Gbs)

and the number of DNMs identified (202) (see Methods), the point mutation rate is 5.0 × 10-9 (95% CI:

4.3 × 10-9 - 5.7 × 10-9; Fig 1C) per bp per generation. Dividing by the average parental age for both sexes

in our pedigrees (2.5 years; S1 Table) yields an estimatedmutation rate per year of 2.0 × 10-9 per bp. The

rate per generation is similar to what was previously inferred by pedigree sequencing in zebra finch (5.8

× 10-9, the average of rates in two trios; (Bergeron et al., 2023)), as well as in collared flycatcher (4.4 ×

10-9, based on seven trios; (Smeds et al., 2016b)), great reed warbler (7.1 × 10-9, based on eight trios;

(Zhang et al., 2023a)), and 14 trios from four passerine species (ranging from 5.1 × 10-9 to 6.9 × 10-9

(Bergeron et al., 2023)). Thus, the per generation mutation rate appears to be quite stable among these

passerines.
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An exact estimate of the mutation rate per generation would be based on a comparison of

zygotes to germ cells. Instead, existing estimates, including ours, are based on somatic tissue samples

from parents and offspring. This approach leads to the incorrect inclusion of DNMs that arose during

early development of the probands (Moorjani et al., 2016). In that respect, we note that if we only

consider the DNMs inferred to have occurred in the parental germlines, our estimate reduces to 4.4 ×

10-9 per bp per generation. This rate, in turn, may be a slight underestimate of the mutation rate from

zygote to germ cell, given that it does not account for early parental developmental mutations that are

present at detectable allele frequencies in the parental somatic tissues and thus were excluded by our

filtering steps (Moorjani et al., 2016) (see Methods).

The mutation rate is known to be influenced by the immediate sequence context, notably when

a CpG site is methylated. To determine if DNMs in zebra finch reflect these and other influences, we

classified all DNMs into seven single mutation types (Fig 1B-C). We found a transition-to-transversion

ratio of 1.73 (a ratio not significantly lower than the value in humans of ~2 (Durbin et al., 2010), p = 0.33

by a two-sided binomial test), and observed that the CpG>TpG mutation rate is more than an order of

magnitude higher than the rest of substitution types (Fig 1C), consistent with findings in vertebrates

and beyond (Bird, 1980). In addition, the proportions across the seven mutation types are highly similar

to those observed in 19 million low-frequency polymorphisms (at most three copies, see Methods)

segregating in a sample of 27 “unrelated” zebra finches (S3 Fig; p= 0.11 by a Chi-square goodness-of-fit

test with 6 degrees of freedom). Since rare (young) variants are expected to reflect the mutational

process, this close correspondence lends further support for the reliability of the DNM calls.

To explore if the mutation processes active in the mammalian germline also play a role in zebra

finches, we assigned mutations to COSMIC single-base mutational signatures (SBS), originally inferred

from patterns of genetic variation in human tumor samples (Nik-Zainal et al., 2012; Alexandrov et al.,

2013). In the mammalian germline, the so-called “clock-like” mutational signatures, SBS1 and SBS5,
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have been shown to account for most mutations (Rahbari et al., 2015; Sasani et al., 2024; Spisak et al.,

2024). Specifically, most mutations are assigned to SBS5, of unknown etiology, and a smaller

proportion to SBS1, which is thought to occur due to spontaneous deamination of methylated CpG

sites (Alexandrov et al., 2013). In birds, both of these signatures are also present. In the 19 million

relatively low frequency alleles, we found contributions from SBS5 (84% of mutations), SBS84 (14%),

and SBS1 (2%) (S3 Table). When analyzing the smaller sample of DNMs instead (202 mutations), we

observed contributions from SBS5 (59%), SBS19 (19%), SBS4 (15%), and SBS1 (6%) (S3 Table). These

results suggest that SBS5, to a lesser extent SBS1, and possibly other mutation processes, play a role in

the zebra finch germline, as reported for SBS5 based on polymorphism data in other taxa (Gelova et al.,

2022).

In contrast to most mammalian karyotypes, the genome of zebra finches and other birds

contains a large number of micro-chromosomes (here defined as autosomes shorter than 40Mb), which

differ in GC content, replication timing, and other genomic features that could affect mutation rate

(Srikulnath et al., 2021; Waters et al., 2021). Nonetheless, as far as we can tell, mutation rates (both the

total and seven types) appear to be remarkably similar between both types of autosomes (Fig 1B-C).

Next, we compared the mutation rate between the sexes. For the subset of DNMs that occurred

in the parental germline after primordial germ cell specification, we inferred a male-to-female mutation

rate ratio of 1.72 (95%CI: 1.22 - 2.43) (Fig 1D). Notably, the parental ages in both sexes are similar in our

pedigrees (mothers are only ~1 month older on average, S1 Table). This mutation rate ratio is in good

agreement with previous reports of male-biased germline mutation in birds based on putatively neutral

substitution rates in sex chromosomes versus autosomes (de Manuel et al., 2022), as well as with direct

estimates by pedigree sequencing that pooled a small number of trios from four passerine species

(Bergeron et al., 2023). For the post-zygotic DNMs, we used the sex of the proband—instead of the sex

of the parental haplotype—to compare mutation rates between the sexes. After accounting for the
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different number of individuals for each sex among probands, the male-to-female ratio is 0.94 (95% CI:

0.43 - 2.02) (Fig 1D), consistent with there being no sex differences in the number of post-zygotic

mutations, as also reported in humans (Sasani et al., 2019), mice (Lindsay et al., 2019), and cattle

(Harland et al., 2017). Considering all mutations jointly, regardless of when they arose in development,

the estimated paternal bias is 1.6:1 (95% CI: 1.19 -2.27).

Meiotic recombination

Detection of crossover and non-crossover events

To detect autosomal crossover and non-crossover events, we used an approach based on the

patterns of inheritance of informative sites along the multi-sibling, three-generation pedigrees (Fig 1A).

In brief, we relied on the configuration of informative sites (i.e. sites heterozygous in one parent but not

in the other) to track changes of phase in parental haplotypes (following (Coop et al., 2008)). Crossovers

were detected by an odd number of changes of phase within a short genomic distance; events involving

more than one change of phase were classified as “complex” (see Methods). In turn, non-crossovers

were detected by two changes of phase within a short genomic distance (see Methods).

In the 54 zebra finch meioses (28 maternal and 26 paternal) in which recombination events can

be called (Fig 1A), we identified 1,174 autosomal crossovers. Their high genetic diversity allows us to

delimit recombination events to a median interval of 647 bps (mean = 52 kb) (S4 Fig). Of these events,

604 and 570 occurred in maternal and paternal meioses, respectively, an average of 21.6 and 21.9

crossovers per meiosis. This difference is not statistically significant (p=0.81 by a two tailed binomial

test) (S4 Table), in agreement with previous studies reporting an absence of heterochiasmy in zebra

finch (Stapley et al., 2008; Backström et al., 2010). Combining events in the two sexes, ~10% of

crossovers are complex events involving more than a single change of phase, in agreement with reports

in humans (Williams et al., 2015; Halldorsson et al., 2019), mice (Li et al., 2019), and baboons (Wall et al.,
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2022). There is no discernable difference in the rate of complex events between sexes in our data (p =

0.65 by a Chi-square test).

Considering the number of crossovers per chromosome per meiosis, the estimated crossover

rate is consistent with an obligatory crossover per tetrad (Page & Hawley, 2003; Massy, 2013) for 30 of

the 39 chromosomes (p<0.05; S5A Fig). Given that, in the absence of a back up mechanism for

achiasmatic tetrads, we would only expect a couple of chromosomes to fall below this p-value by

chance, this observation suggests that we are missing a few events, particularly on short and highly

repetitive chromosomes (S5B-C Fig). Indeed, a study of MLH1 foci in zebra finch reported an average of

46 autosomal foci, which would correspond to 23 transmitted crossovers (Calderón & Pigozzi, 2006).

This caveat notwithstanding, the sex-averaged genetic map length is estimated to be 2,174 cM

(2,157 cM and 2,192 cM for females and males, respectively), corresponding to a mean recombination

rate of 2.28 cM/Mb. Despite the fact that this map length is likely to be a slight under-estimate, it is

substantially higher than the two previous reports for zebra finch based on pedigrees: 1,068 cM (1.06

cM/MB) (Stapley et al., 2008) and 1,341 cM (1.50 cM/Mb) (Backström et al., 2010). Part of the

explanation likely lies in which chromosomes were included, as most of the micro-chromosomes, which

experience high recombination rates, were not included in these studies. Indeed, if we restrict our

estimate to the same set of autosomal chromosomes as Backström et al., 2010, our estimate (1.78

cM/Mb) is in better agreement with theirs. Moreover, previous estimates were based on few genetic

markers (~900 and ~2,000, respectively), so may have missed a number of crossover events, even on

larger chromosomes. The average rate for the six macro-chromosomes is 1.05 cM/MB–much more

similar to several estimates in placental mammals, who have only macro-chromosomes (Dumont &

Payseur, 2008). In contrast, the average rate for the 33 micro-chromosomes is 4.21 cM/Mb.

In parallel, we inferred a genetic map from patterns of LD by combining data from six of the

founders of the pedigrees and sequencing data that was previously generated for 19 unrelated zebra
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finches (Singhal et al., 2015) (see Methods). LD-based genetic maps provide estimates of the population

recombination ρ=4Ner, where Ne is the effective population size and r is the recombination rate per

generation. Estimates for micro-chromosomes are likely less reliable, given the high background

recombination rate (S6 Fig) (Singhal et al., 2015). For macro-chromosomes alone, the mean ρ in our

LD-based map is estimated to be 0.082 per bp. Given the observed diversity level in our sample

(Watterson estimator θw = 0.0159) and our estimate of the mutation rate, an estimate of the effective

population size of zebra finch is 792,000. If we use this estimated Ne value to estimate r from the

population recombination rate, then the mean recombination rate is 2.8 cM/Mb on

macro-chromosomes (S6 Fig). This estimate is of the same order as what we obtain directly from

pedigrees but two- to three-fold higher; this discrepancy is not surprising given the numerous

assumptions that come into play in estimating r from population data.

Next, we inferred non-crossover events by considering two phase changes among the parental

haplotypes (see Methods). Given the mean tract lengths estimated in other vertebrates and the

diversity levels in zebra finches, we expected such events to typically involve only a single informative

variant, and thus for their identification to be highly sensitive to sequencing and genotyping errors

(Williams et al., 2015; Li et al., 2019; Wall et al., 2022). In order to minimize the number of spurious

non-crossover calls, we excluded the nine shortest micro-chromosomes, which together account for

1.6% of the assembled autosomal genome, and which may be less reliably mapped (S7 Fig). We focused

on the second generation of three generation pedigrees, because there are several siblings, allowing us

to detect changes of phase. This subset of the data represents a total of 36 meioses (18 paternal and 18

maternal). The F1 individuals from these crosses all have sequenced offspring, in which we can verify

transmission of any putative non-crossover event.

To make non-crossover calls, we tried three variant callers (GATK, freebayes and bcftools) and

stringently filtered the results (see Methods). To estimate the reliability of the non-crossover calls, we
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quantified their transmission rate to the next generation (S5 Table), with the expectation that true

events should be transmitted ~50% of the time (assuming complete power to detect transmission). On

that basis, we determined that freebayes provides the most reliable set of non-crossover calls, with an

observed transmission rate of 0.47 (95% CI: [0.38 - 0.57]). Using this caller, we identified a total of 275

non-crossovers in the 36 meiosis. As expected, most (235) of the non-crossover events involve a single

informative site in the conversion tract (S8 Fig). As for crossovers, there is no detectable sex difference:

141 were maternal and 134 paternal (p = 0.72 by a two tailed binomial test) (S4 Table).

Distribution of recombination events along the genome

In many vertebrates, the crossover rates increase near telomeric regions, and this elevation is

typically higher in males than in females (Haenel et al., 2018; Sardell & Kirkpatrick, 2020). The

distribution of non-crossovers, however, remains poorly described, especially in non-mammalian

vertebrates and species with micro-chromosomes. Considering the distribution of crossover resolutions

in macro-chromosomes and micro-chromosomes separately, we found that rates are differentially

distributed (Kolmogorov-Smirnov test p< 2.2 × 10-16 ; Fig 2). Whereas in macro-chromosomes, crossover

rates are elevated towards the telomeres, in micro-chromosomes they are much more uniformly

distributed (Fig 2, S6 Table for all p-values). Similarly, LD-based recombination rates, which primarily

reflect crossovers, show an elevation near telomeres on macro-chromosomes, but not

micro-chromosomes (S9 Fig). A caveat, however, is that inferring recombination rates through

LD-based approaches is challenging when background recombination rates are high (Singhal et al.,

2015; Raynaud et al., 2023), as may be the case for micro-chromosomes. In principle, the difference

between macro- and micro-chromosomes could arise simply from a proportionally shorter effect of

telomeres on large chromosomes.
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In contrast to crossovers, the spatial distribution of non-crossovers does not differ between the

two sets of chromosomes (p=0.16, Fig 2, S6 Table). Accordingly, the distribution of crossovers along the

chromosomes is significantly different from that of non-crossovers on macro-chromosomes (p=4.8 ×

10-6), with less of a skew towards telomeres among non-crossovers; the same is not seen in

micro-chromosomes (p=0.36) (Fig 2 S6 Table). None of these patterns differ significantly between sexes

(S11 Fig).

Fig 2. Cumulative distribution of recombination events along both types of chromosomes. The

cumulative distribution of crossovers (in red) and non-crossovers (in blue) on the autosomes, for

macro-chromosomes (left) and micro-chromosomes (right). Macro-chromosomes are defined as

autosomes longer than 40 Mb. The position of the events is normalized by the length of the

chromosome (see Method). The black dashed lines represent the uniform distribution. S10 Fig shows

similar results, separating micro-chromosomes above and below 20 Mb in length. S6 Table reports

p-values from Kolmogorov-Smirnov tests for various comparisons (crossover versus non-crossover,

macro versus microchromosomes).

16

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.05.611523doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611523
http://creativecommons.org/licenses/by-nd/4.0/


Overlap with genomic features

Zebra finch, like other birds, lacks a functional copy of PRDM9 (Oliver et al., 2009; Baker et al.,

2017). Consistent with findings in mammals without PRDM9, meiotic recombination is enriched in

promoter-like features (Singhal et al., 2015; Campbell et al., 2016; Kawakami et al., 2017). Specifically,

analyses of LD suggest that increase in recombination rates appears to be mainly attributable to CpG

islands, with no further increase explained by TSSs (Singhal et al., 2015). To test this hypothesis more

directly, we first improved the annotation of CpG islands in zebra finch. To this end, we relied on the

fact that CpG islands are usually hypomethylated in vertebrates (Deaton & Bird, 2011) and quantified

DNA methylation levels in the testes of two males using bisulfite sequencing (see Methods). We then

considered both DNA methylation levels and local sequence composition in order to identify 46,205

CpG islands, on par with numbers reported for other vertebrate species (Antequera & Bird, 1993; Hoge

et al., 2024).

Using this annotation, we asked whether the recombination events identified in pedigrees are

enriched at CpG islands. As expected, significantly more recombination events occur close to a CpG

island than expected by chance: 23.6% of crossovers occur within 100 bps of a CpG island when only

17.3% are expected to do so by chance on average (a 1.36-fold enrichment), and 17.8% of

non-crossovers when 11.5% are expected to do so by chance (a 1.54-fold enrichment) (Fig 3). The fact

that we expect (and observe) more overlap between crossovers and CpG islands than we do for

non-crossovers likely reflects a difference in the genomic distribution of the two types of recombination

events: crossovers are relatively more likely to occur in in telomeric regions and micro-chromosomes

(Fig 2), which have increased CpG island densities (S12 Fig) (Han et al., 2008).
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Fig 3. Overlap of both types of recombination events with CpG islands. Fractions of crossovers (top)

and non-crossovers (bottom) detected within 100 bps of a CpG island. The vertical lines show the

observed overlap. The distribution for the overlap expected by chance are shown as a histogram,

obtained by randomly shuffling all the events within a 2.5 Mb window on each side of their original

location, matching for the GC content and ensuring a similar mappability (see Methods for details).

As previously reported on the basis of LD patterns, recombination events were not enriched at

TSSs conditional on the presence of a CpG island nearby (whereas they were enriched at CpG islands
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irrespective of the presence of a TSS) (S13 and S14 Figs). The analogous analysis had not been

conducted in the collared flycatcher. To do so, we used the 443 recombination events called in (Smeds

et al., 2016a) and identified CpG islands in collared flycatcher genome with cpgplot (default parameters,

(Madeira et al., 2022)). As shown in S15 Fig, the enrichment of recombination events at CpG islands, and

not at TSSs, is very similar to what we obtained in zebra finch. Therefore, in birds as in rodents lacking

PRDM9 (Brick et al., 2012; Mihola et al., 2021), proximity to a CpG island is predictive of both crossover

and non-crossover events. A rough calculation suggests that the degree of overlap is consistent with all

recombination hotspots occurring at CpG islands: if each CpG island is assigned the mean heat inferred

for hotspots in our LD-based map (9.93), then given that CpG islands (+/- 100 bps) cover 3.48% of the

autosomes, we would expect 26.4% of crossovers to overlap CpG islands.

Large-scale analyses in humans have reported that meiotic recombination is mutagenic, with

1/200 mutations arising from a double strand break (Halldorsson et al., 2019; Hinch et al., 2023). Given

the relatively small number of de novo mutations identified in our study, we should have very limited

power to detect an effect in birds of a similar magnitude. Accordingly, we did not find evidence for the

co-occurrence of de novomutations and crossover events in zebra finch (S16 Fig).

Estimation of fundamental parameters of gene conversion

To the best of our knowledge, GC-biased gene conversion (hereafter gBGC) has only been

examined directly in one bird species, the collared flycatcher (Smeds et al., 2016a), for which the

authors estimated that 59% of events that include a AT/GC polymorphism are resolved towards GC

rather than AT (CI: [52 - 65]; Smeds et al., 2016a). This point estimate is on par with that has been

reported for mice and primates (57%-68%; Williams et al., 2015; Halldorsson et al., 2016; Li et al., 2019;

Versoza et al., 2024; Porsborg et al., 2024; Schweiger et al., 2024).

A challenge in estimating gBGC is that even a small fraction of false positive calls can bias the
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estimate downwards (i.e., towards 50%). To minimize the problem, we only used the events detected in

the three pedigrees with five siblings, which appear to be the most reliable (S7 Tables). This approach

led to the identification of 191 non-crossovers. We also considered the subset of non-crossover events

that occur less than 100 bps from a CpG island, reasoning that such events are more likely to be true

positives (Singhal et al., 2015) (Fig 3).

Considering the 177 cases of AT/GC variants within all the non-crossover events, the gBGC bias

in zebra finch is estimated to be 59% (95% CIs: [52 - 66]), the same point estimate as reported in

flycatchers. Moreover, we can reject a null model of no GC-biased gene conversion for zebra finch

(p=0.008, by a one-tailed binomial test). When focusing on the 18 cases when the non-crossover event

is close to a CpG island, the point estimate is higher but with large uncertainty (72%; 95% CIs: [47 - 90]).

A recent study reported that the gBGC depends on the number of heterozygous sites present in

the conversion tract: specifically, a bias was only seen for conversion events with a single such site both

in mice and, more tentatively, in humans (Li et al., 2019). Two recent studies, one focusing on humans

and the other on humans, chimpanzee and gorilla found no evidence for this claim (Porsborg et al.,

2024; Schweiger et al., 2024). To examine this question in zebra finch, we separated the non-crossovers

into those with one heterozygous site versus more than one (see Methods section Phasing NCOs for

detail). We also find no evidence supporting the hypothesis that gBGC depends on the number of

heterozygous sites in the conversion tract, but the data are insufficient to reach a firm conclusion (Fig

4A).
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Fig 4. GC-biased gene conversion and conversion tract length distribution estimates (A) Point

estimates of the GC-biased gene conversion (gBGC) for different sets of non-crossovers. The 95% CI

were obtained from an exact binomial test (see Methods). The black dots are the point estimates for

the set of all non-crossovers and the blue dots are the estimates for non-crossovers within 100 bps of a

CpG island. For each set of non-crossovers, we looked either at (i) all the events, (ii) the event with only

one heterozygous site in the conversion tract, (iii) the events with more than one heterozygous site. (B)

Estimated distribution of the conversion tract lengths. The mean is 23 bps, indicated with a vertical red

dashed line.

Next, we estimated the mean conversion tract length, following Li et al., 2019. Specifically, we

relied on the distances between co-converted and non co-converted informative sites and assumed a

single exponential distribution of tract lengths (see Methods). While the assumption of an exponential

distribution is not valid, previous results in mammals suggest that it is a reasonable approximation for

the vast majority of non-crossover events and it allows us to compare our findings to those previously

reported (Li et al., 2019; Wall et al., 2022; Charmouh et al., 2024; Schweiger et al., 2024). In baboons and

21

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.05.611523doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611523
http://creativecommons.org/licenses/by-nd/4.0/


humans, it appears that a tiny fraction of events (<2%) are many kilobases in length and likely arise

from a distinct process (Wall et al., 2022; Schweiger et al., 2024). While the small number of

non-crossover events prevent us from exploring that possibility in depth, there are a couple of cases

where the minimum tract length is likely kilobases in length: for example, among the tracts that include

more than one informative site, the distance between sites is 642 bp in one case, and 4169 in another.

We excluded the event that is minimally 4 kb in length in what follows. By this approach, we estimated

the mean conversion tract length of non-crossovers in zebra finch to be 23 bps on average (central

95%-tile: 15 - 35 bps; see Methods). If we add back the one longer event, the estimate of the mean

shifts to 35 bps. These results are similar to mammalian species, for which estimates range from 24 to

50 bps (Li et al., 2019; Wall et al., 2022; Charmouh et al., 2024; Porsborg et al., 2024; Schweiger et al.,

2024).

Total number of non-crossovers per meiosis and non-crossover to crossover ratio

Given the mean conversion tract length and the density of informative sites, we can infer the

expected number of non-crossovers per meiosis. This inference relies on our power to detect a

non-crossover, i.e., on the probability that a gene conversion event overlaps an informative site, which

in turn depends on the mean conversion tract length and the density of informative sites (see Methods).

We inferred 191 non-crossovers in 30 meiosis or 6.37 events per meiosis (considering only families of five

siblings; S7 Table). For a mean gene conversion tract length of 23 bps, we should detect an estimated

5.4% of non-crossover events in the genome, averaged over all founders. In other words, the total

number of non-crossover events per genome (i.e., chromatid) is ~18.5-fold higher than observed.

Taking into account differences in power among founders, our prediction is that there are 123.1

non-crossover events per genome per meiosis on average; given the uncertainty in the conversion tract

length estimate, between 85.2 and 180.0 non-crossover events (Table 1).
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Table 1. Estimates of number of non-crossovers per chromatid

Tract length estimate Observed number of

crossovers

Predicted number of

non-crossovers

NCO:CO per chromatid

15 18.5 180.0 9.7

23 18.5 123.1 6.7

35 18.5 85.2 4.6

Predicted number of non-crossovers and estimated non-crossover to crossover ratio for different

estimates of the mean conversion tract length. We report the ratio per chromatid (i.e., the number of

predicted non-crossovers divided by the number of observed crossovers).

In turn, our estimates of the number of non-crossovers suggest that the non-crossover:

crossover ratio per genome is 6.7 (between 4.6 and 9.7, given the tract length uncertainty). We note

that this ratio is provided per chromatid and not per tetrad, as sometimes done (Cole et al., 2012). Our

estimate falls between values in mice and humans, for which reported ratios are 5 and 10, respectively

(Cole et al., 2012; Halldorsson et al., 2019; Hinch et al., 2023).

The densities of crossovers and non-crossovers both decrease with chromosome length (Fig

5A). If we ignore the subset of events repaired off of the sister chromatid, which leave no discernable

mark, or through mechanisms other than homologous recombination (Massy, 2013), and consider the

number of DSBs to be given by the sum of crossovers and non-crossovers, it follows that the same is

true of DSBs (Fig 5B). Thus, either larger chromosomes have a lower density of DSBs or a larger fraction

of DSBs are resolved non-canonically (i.e., as neither a crossover nor a non-crossover). While the
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density of DSBs appears to decrease with chromosome length, the estimated number of DSBs

increases (Fig 5C).

Fig 5. (A)Density of crossovers (blue) and non-crossovers (red) as a function of chromosome size for the

30 autosomes that passed mapping quality and coverage thresholds (see Methods). We note that the

x-axis is on a log scale. (B) The estimated density of double-strand breaks (DSBs) as a function of the

chromosome size, for the same set of chromosomes. (C) The estimated number of DSBs as a function

of the chromosome size.
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Discussion

To date, meiotic recombination events and DNMs have only been directly identified in a handful

of non-mammalian vertebrate species, based on a small number of trios. There is therefore little

comparative information about properties of mutation and recombination, beyond average rates in the

genome per generation. In this study, we collected whole genome sequences from 74 zebra finches.

The genomic data provided information about 80 meioses, and allowed us to infer key mutation and

recombination parameters.

As we had previously reported on comparisons of substitution rates on the Z chromosome and

autosomes for passerines, we found that the paternal bias in germline mutation is lower in zebra

finches (1.6:1, S2 Table) than in most mammals (about 3:1, de Manuel et al., 2022). This difference could

arise from lower rates of endogenous DNA damage in avian males or from a greater proportion of

DNMs occurring during early developmental stages, when both sexes have similar mutation rates (Fig

1D). We note that our estimate is substantially lower than the ratio of ~7.5:1 (95% CI: ~4.5:1 - ~13.5:1)

reported for passerines in a recent study, which pooled phased germline mutations across four different

species (including zebra finch) (Bergeron et al., 2023). Other studies in passerines based on pedigree

sequencing have reported lower paternal biases, in better agreement with our estimate: ~1.5:1 in

collared flycatcher (Smeds et al., 2016b) and ~3:1 in the great reed warbler (Zhang et al., 2023). In

principle, variation among estimates could reflect, at least in part, differences in the parental ages of

the sequenced pedigrees. Regardless, sex-averaged per year and per generation mutation rates in zebra

finch and other passerines are similar to what is seen in mammals with the same generation time

(Bergeron et al., 2023) (S17 Fig).

Recombination patterns also conform to expectations based on mammals: as seen in dogs as

well as in mouse and rat knockouts for PRDM9, recombination events are enriched near CpG islands

(Brick et al., 2012; Auton et al., 2013; Mihola et al., 2021). At a broader scale, the constraint of an
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obligate crossover per chromosome leads to higher rates of recombination on micro-chromosomes

than typically seen in mammals (outside of the pseudo-autosomal region), but rates on

macro-chromosomes are highly comparable (S6 Fig). Moreover, other recombination

parameters–including the mean gene conversion tract length, the degree of GC-biased gene

conversion, and the ratio of crossovers to non-crossovers–are all very similar to what has been reported

in mice and humans (Fig 4, Table 1). The conservation of all these parameters frommammals to zebra

finch suggests that a number of mutation and recombination properties evolve under stabilizing

selection in vertebrates.

The increasing availability of genome sequences should make it possible to test this hypothesis

more systematically, and to identify which aspects of mutagenesis andmeiotic recombination are most

strongly conserved. As this study demonstrates, many of these parameters can now be estimated in

non-model species by sequencing a relatively modest number of large three-generation pedigrees.

Recent advancements in long-read sequencing offer further possibilities: in particular, high-fidelity (HiFi)

long-read sequencing of germ cells will enable the detection of a large number of mutation and

recombination events (Liu et al., 2024; Charmouh et al., 2024; Porsborg et al., 2024; Schweiger et al.,

2024; Porubsky et al., 2024). Application of such approaches across the tree of life will help address

long-standing questions about the selective pressures that shape the evolution of mutation and

recombination (Otto & Lenormand, 2002; Coop & Przeworski, 2007; Lynch, 2010; Dapper & Payseur,

2019; Johnston, 2024).
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Materials and Methods

The command lines used for each of the following subsections can be found in the Supplementary

Section “Command lines”.

Pedigree breeding and sequencing

The ancestors of the zebra finch individuals sequenced here were taken from the wild at

Fowlers Gap (New South Wales in southeastern Australia), under NSW Scientific license SL100378.

Wild-derived zebra finches were held and bred at Macquarie University (Sydney, Australia), under

Animal Ethics Approval 2018/027. Zebra finch pairs were bred in one of 20 outdoor aviaries

(4.1×1.85x2.24 m) with a single pair per aviary, with access to ad libitumwater, finch seedmix (Avigrain

Finch Blue, Berkeley Vale, Australia), and a ‘greens’ mix (blended spinach and frozen vegetables, as well

as micro- and macronutrient supplements from Naturally For Birds, Pullenvale, Australia). Each aviary

had three nest boxes and nesting material (‘November’ grass and emu feathers). Blood was collected

from F0, F1 and some F2 individuals via venipuncture of the brachial vein and stored in 99% ethanol.

Tissue samples for the remaining F2 individuals were collected from terminated embryos between day

5-10 of incubation (euthanised via decapitation). Legs and wings of the embryos were stored in 99%

ethanol before DNA extraction.

Whole blood (n = 53) and whole tissue (n = 21) samples were shipped to Genewiz (Azenta Life

Sciences, South Plainfield, NJ, USA) for DNA extraction, library preparation, and whole genome

sequencing. To reduce the possibility of false positives due to amplification errors, the 150 bp

paired-end DNA libraries were prepared using a PCR-free protocol. The libraries were sequenced on an

Illumina Hiseq X with a target of ~350 million reads per lane. Genotype calling errors in the parental

generation can greatly increase the false positive rate during mutation calling, as true heterozygous

sites that have been incorrectly genotyped as homozygous will appear to be a DNM. To guard against
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this possibility, we targeted the parental generation for higher coverage sequencing relative to the

other individuals in the pedigree.

Whole genome sequencing alignment

We combined the whole genome sequences that we generated from the pedigrees (S1 Table)

with previously generated genome sequences for 19 “unrelated” individuals sampled from an Australian

population located in the same area as the eight founders of the pedigrees (Singhal et al., 2015). After

removing adapters from all sequencing reads using cutadapt, we mapped them to the zebra finch

reference genome sequence bTaeGut1.4 (NCBI RefSeq ID: GCF_003957565.2) using the Nextflow

pipeline sarek (v 2.7.1) with default parameters (Rhie et al., 2021; Garcia et al., 2024). The familiar

relationship among individuals, along with the mapping coverage for each sample, are presented in S1

Table. Given that the sex chromosomes have a lower depth of coverage in the heterogametic sex,

making it harder to reliably detect DNMs and recombination events, we focused our analyses on

autosomal sequences, as had been done in previous studies (e.g., Smeds et al., 2016a; Besenbacher et

al., 2019; Bergeron et al., 2023).

Variant calling

We called variants using GATK (McKenna et al., 2010). First, HaplotypeCaller was used to

generate per sample GVCF files for each assembled chromosome (McKenna et al., 2010), including

non-variant sites and setting the heterozygosity parameter to 0.01 (version 4.2.6.1; McKenna et al.,

2010). We then combined GVCFs from each sample using GenomicsDBImport and called a final set of

genotypes using GenotypeVCFs, setting again the heterozygosity to 0.01. With this approach, we

identified a total of 101 million single-nucleotide polymorphisms (SNPs) and 17 million indels.
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Mappability

To restrict our analyses to locations where short read sequences can be confidently mapped, we

built a mappability mask for the zebra finch genome assembly following the SNPable pipeline, with a

read length of 150 bps and stringency parameter of 1 (version 0.2.4;

https://lh3lh3.users.sourceforge.net/snpable.shtml). We then used the script makeMappabilityMask.py

from msmc-tools to generate a final BED file of mappable genomic regions (Schiffels & Durbin, 2014).

The mappability mask excludes 33.4% of the genome assembly. We removed all single nucleotide

variants closer than 5 bps of an indel. In mappable regions, we called a total of 45.6 million SNPs of

which we retained the 43.5 million that are biallelic.

Detection of single-point de novomutations

To detect DNMs, we analyzed the genomes of the 40 parents-offspring trios in the seven

pedigrees (Fig 1A and S1 Table), looking for mutations in the proband and not found in their parents.

For each trio, we examined which positions fulfilled all the following requirements using bedtools

intersect (Quinlan & Hall, 2010a): (i) all individuals in the trio had a depth of coverage of at least eight

reads and at most two times their autosomal average coverage, (ii) the position was at least 5 bps away

from an indel called in any individual in the trio, (iii) it was not found within repetitive regions annotated

in the reference assembly, and (iv) it was within the mappable section of the genome (see Mappability

section). By this approach, we retained an average of 502.8 autosomal Mb per trio (min=475.3,

max=511.1), which represents 52% of the autosomal genome.

For each trio, we then identified positions with a putative DNM as those that were

heterozygous in the proband, homozygous for the reference allele in both the parents, and not

polymorphic in all genotyped individuals outside that nuclear family. We only considered biallelic sites
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and required the genotype quality to be at least 30 in all individuals in the trio. A potential source of

false positives are inherited variants that were erroneously called as homozygous in the parents. To

minimize this problem, we discarded any candidate mutation if GATK reported the presence of a

read-based assembled haplotype supporting the non-reference allele in either parent, regardless of

their called genotype. We noticed that the local reassembly of reads performed by GATK to improve

variant calling sometimes “erases” the presence of rare reads carrying the non-reference allele; we

therefore verified the absence of reads carrying the DNM in the parents using bcftools mpileup (Danecek

et al., 2021).

Another potential source of error is when a homozygous reference allele is miscalled as

heterozygous in the proband. To mitigate this issue, we required at least two reads carrying the

non-reference allele in the proband, and discarded sets of putative DNMs within 10 bps of each other.

While a tiny fraction of germline mutations in humans have been shown to occur in close proximity

(Harris & Nielsen, 2014; Francioli et al., 2015), this filter allows to discard false positives resulting from

alignment to collapsed paralogous regions in the reference assembly (Wu et al., 2020). Following this

pipeline, we detected 226 candidate DNMs (S2 Table).

Assignment of parent of origin of de novomutations

To determine the parent of origin for each DNM detected in the 18 probands with sequenced

partners and descendants, we phased alleles by transmission. Specifically, we searched for informative

sites within 200 kb of each DNM. An informative site was defined as position where an allele is carried

by only one of the two parents (either as in a heterozygous or homozygous state); present in the

proband (who is therefore heterozygous); not carried by the partner; and carried by the descendant. We

then assigned a parental origin to the DNM when at least 75% of all informative alleles came from a
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single parent: if the DNM was transmitted to the descendant, it was assigned to that parent, and if not,

it was assigned to the other parent.

Additionally, we phased DNMs detected in the 22 probands without sequenced descendants

using ‘read tracing’ (Goldmann et al., 2016; Jónsson et al., 2017). Briefly, for each DNM, we first

searched for informative sites nearby (± 300 bps), i.e., positions where an allele inherited by the

proband is carried by only one of the parents. If the DNM was carried on the same read pair as the

inherited allele, we assigned the DNM as having occurred in the germline of the parent carrying the

informative allele. In turn, if the DNM was not on the same read as the informative allele, we inferred

that the DNM occurred in the other parental germline.

Distinction of mutations by their developmental timing

Mutations that occurred in the early development of the offspring can bemistakenly identified

as mutations that occurred in the cell lineage leading to the parental germlines. To distinguish these

events, we looked for candidate DNMs that showed “incomplete linkage” with informative

heterozygous alleles nearby. In particular, we identified all heterozygous sites within ± 300 bps from a

DNM in an offspring. In 37 of the mutation events, there were no neighboring heterozygous positions

within this distance. For the rest of mutations, we searched for indications of three distinct haplotypes

in the offspring by assessing the linkage of the mutation and nearby heterozygous alleles (S18 Fig). By

this approach, we discovered that 25 of the apparent parental germline DNMs exhibited evidence of

being post-zygotic mutations that arose after the fertilization of the proband (see main text).

We also detected 32 DNMs in which reads assembled into more than two haplotypes in the

parents (S18 Fig), violating the expectation for diploid individuals, and suggesting genotyping errors.

We discarded such events.
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Estimation of mutation rate per generation

We calculated an autosomal point mutation rate per site per generation by dividing the number

of DNMs by two times the length of the autosomal genome considered (see “Detection of single-point

de novo mutations”). To calculate mutation rates for specific mutation types (e.g., C>T), we divided by

two times the number of mutational opportunities of that type in the subset of the genome considered

(e.g., C). The 95% confidence intervals for the mutation rates were calculated assuming a Poisson

distribution, based on the number of observedmutations and the total sequence length.

Mutational spectrum in low frequency polymorphisms

To analyze mutation types in polymorphism data, we considered low frequency SNPs in a

sample of 27 non-closely related zebra finch individuals (i.e., polymorphic sites where the alternative

allele is found at most in three chromosomes), using the --max-maf parameter in VCFtools. We then

classified these mutations in seven distinct substitution types (see Fig 1), assuming the ancestral allele is

the major allele, and using the flanking nucleotides in the reference assembly to distinguish C>T

mutations that occurred in CpG context.

Inference of mutational signature activity

We inferred COSMIC mutational signatures (Alexandrov et al., 2013) from low frequency

polymorphisms and DNMs identified by pedigree sequencing. To this end, we classified mutations into

96 substitution types depending on their trinucleotide context in the zebra finch reference assembly,

and generated mutation matrices with the number of events for each type. To infer signature activity,

we used the cosmic_fit function in SigProfilerAssignment (Díaz-Gay et al., 2023), which assumes the

genome-wide frequencies of the 32 trinucleotide contexts are consistent with those observed in
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humans. To account for the differences between human and zebra finch genomes, we adjusted the

mutation counts by scaling them according to the ratio of genome-wide trinucleotide frequencies.

Specifically, for each mutation type, we multiplied the observed count by the ratio of the trinucleotide

frequency in zebra finches to that in humans.

Co-localization between recombination andmutation events

We calculated the distance between each phased DNM and the closest crossover or

non-crossover recombination event, discarding five mutations that were phased both by read-tracing

and transmission but were assigned to a different parent (see Methods). We took this approach for

events that occurred in the germline of the same parent and were detected in the same proband

(“within”), as well as for events that occurred in different parents and probands (“between”). For cases

where no recombination event occurs on the same chromosome as a DNM, we set the distance to 200

Mb, i.e., longer than the largest chromosome in the zebra finch assembly. To determine whether

mutation and recombination events co-localize more than expected by chance, we compared the

distribution of “within” and “between” distances by a Kolmogorov-Smirnov test.

Individuals used to estimate diversity levels and infer an LD-based genetic map

Using the biallelic SNPs in mappable regions, we obtained the Weir and Cockerham’s Fst

estimator between the individuals sequenced by (Singhal et al., 2015) and the founders in our pedigrees

with VCFtools (Weir & Cockerham, 1984; Danecek et al., 2011). We calculated Fst in 10 kb windows; the

average Fst was 0.009. Given the low levels of genetic differentiation, we combined the two sets of

samples for analysis, for a total of 27 zebra finches.

We estimated the population mutation rate θ=4Neμ, where Ne is the effective population size

and μ the mutation rate per generation, using Watterson’s estimator θw for the 27 finches (Watterson,
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1975). We used bedtools coverage to count the number of biallelic segregating sites in regions within

autosomal mappable regions, then divided this count by the total length of these regions (v2.30.0;

Quinlan & Hall, 2010b). With this approach, we estimated θw=0.0159; given a mutation rate estimate of

5.02 × 10-9 (see main text), this yields an estimatedNe of ~792,000.

Because LDhelmet can take as input a maximum of 50 haplotypes, we based the inference of

LD-based recombination rates on a subset of 25 individuals. To remove two from the 27, we used the

relatedness2 option in VCFtools on the same set of biallelic SNPs as in the Fst analysis (see S19 Fig for

distribution of pairwise relatedness). We choose the two (both founders of the pedigree) so as to

decrease the highest pairwise relatedness between the individuals used in the LD-based recombination

rate; after excluding them, the maximal value of the kinship coefficient decreased from 0.09 to 0.032.

Ancestral alleles andmutation transition matrix

To infer the ancestral allele state at biallelic sites, we tested if the frequency of the major allele

among the 27 non-closely related individuals significantly exceeded 0.5 (exact binomial test, one-sided).

In cases where the major allele frequency was significantly greater than 0.5 (96.5% of the SNPs), we

assigned to the major allele a probability of 0.91 of being the ancestral allele, and a probability of 0.03

to each of the three remaining alleles. For SNPs where the major allele frequency did not significantly

exceed 0.5, we assigned a probability of 0.47 to the two observed alleles, and a probability of 0.03 to

two other alleles. These polarized SNPs were then used to compute the mutation transition matrix

following the method described in Chan et al, (2012) (Chan et al., 2012).

Variant phasing

We phased variants using information from sequencing reads that span multiple heterozygous

sites (called “phase informative variants”, PIRs) and the patterns of haplotype inheritance across the
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pedigrees. The PIRs were extracted with the SHAPEIT suite and a file with the familial relationships in

the pedigrees was formatted using plink2. Variants were then phased using the assemble tool in

SHAPEIT, and the outputs were converted into the LDhelmet VCF format (v2.r904; Delaneau et al.,

2012).

Implementation of LDhelmet

We used the estimate of θw and of the effective population size to run LDhelmet (version 1.9; Chan et

al., 2012). Apart from the set of p values (see code for p values), we used the recommended parameters

for all the steps of LDhelmet. For the Markov chain Monte Carlo analysis, we used three block penalties

(10, 20 and 50), a burn in of 100,000 steps and a total of one million steps.

To identify LD-hotspots, we computed the mean recombination rate in windows of 1 kb, and

assessed the relative recombination rate of each window compared to the mean recombination rate of

the 20 kb each side, with a buffer a of 2 kb between the focal window and the surrounding region (Hoge

et al., 2024). Windows with a relative recombination rate greater than five were kept, and merged if

adjacent. We identified 5,241 hotspots, on par with previous results in finches (Singhal et al., 2015).

These LD-based hotspots are highly enriched at CpG islands (S20 fig), as expected from previous

LD-based maps and from our findings for crossovers and non-crossovers (Fig 3) (Auton et al., 2013;

Singhal et al., 2015).

Previous simulations indicate that there is limited power to detect hotspots in zebra finch

where the population recombination rate is high (Singhal et al., 2015). One implication is that we expect

to detect many fewer hotspots in telomeric regions of macro-chromosomes, as well as on

micro-chromosomes. Perhaps for that reason, there is only a weak overlap of crossovers and

non-crossover events with LD-based hotspots (S21 Fig). As this observation makes clear, although
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LD-based inferences have been transformative to our understanding of recombination (e.g., Johnston,

2024), it remains useful to complement themwith the direct identification of recombination events.

Identification of CpG islands

We quantified the methylation status of CpG sites with bisulfite sequencing. To this end, we

used testis samples from two male zebra finches. Samples were kindly provided by Sarah London

(University of Chicago). All procedures were conducted in accordance with the NIH Guidelines for the

Care and Use of Animals and were approved by the University of Chicago Institutional Animal Care and

Use Committee (ACUP #72220). Birds were bred in the London laboratory flight aviaries, and housed on

a 14:10 h light:dark cycle. Food and water were provided ad libitum. Testis samples were dissected and

flash-frozen in liquid nitrogen. Sequencing was performed by Azenta Life Sciences (Indianapolis) on a

Illumina NovaSeq 6000 (PE150 technology) to generate ~50 Gb per sample. We processed and analyzed

the bisulfite sequencing with the Nextflow pipelinemethylseq (v 11.0.13) with default parameters (Ewels

et al., 2020).

CpG islands are regions in the genome that contain a large number of hypomethylated CpG

dinucleotide repeats and often serve as sites of transcription initiation (Deaton & Bird, 2011). We

initially used the cpgplot (Madeira et al., 2022) tool in EMBOSS:6.6.0.0 to detect regions where, over an

average of ten windows of 100 bases and a minimum of 250 consecutive bases, the GC content is more

than 50% and the calculated observed-to-expected ratio of the number of CpG sites is >0.6. To expand

on the set identified by cpgplot, we combined this information with the DNA methylation data from

bisulfite sequencing. To this end, we defined hypomethylated CpG sites as positions where <50% of the

reads support a methylated cytosine. We then implemented a hidden Markov model with six emission

probabilities, corresponding to the four ’standard’ nucleotides, as well as a hypomethylated C and a

hypomethylated G—cytosine in the complementary strand—and eight hidden states (corresponding to
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an ’island’ and ’non-island’ state for each ’standard’ nucleotide). Since we do not have a gold standard

set of CpG islands in zebra finch, to set the transition and emission probabilities, we based ourselves on

the CpG islands identified by cpgplot. We then used the function MultinomialHMM in the Python

package hmmlearn to identify positions in the zebra finch genome supporting the ’island’ states

(Rabiner, 1989), merging those <50 bps away from each other, and keeping merged stretches longer

than 150 bps and shorter than 2 kb. By this approach, the CpG islands identified contain the vast

majority of those identified by cpgplot plus some islands that were presumably too short or missed for

other reasons.

Detection of crossover events

To identify autosomal crossover events in the zebra finch pedigrees, we analyzed a total of 54

meiosis across the four multi-sibling pedigrees (Fig 1A), and implemented a previously described

algorithm to call crossovers (Coop et al., 2008). The algorithm uses the transmission of "informative

sites" (i.e., positions that are heterozygous in one parent but not in the other) to phase the haplotypes

inherited by the offspring and identify crossover events in the germline of the parents. We focused on

polymorphic positions where all individuals in the focal pedigree had a depth of coverage of at least

eight reads, none of the individuals had an indel within 10 bps, and masked heterozygous genotypes

with evidence of allelic imbalance (based on the p-value of a two-sided exact binomial test > 0.01).

Briefly, for each F0 parent with multiple sequenced offspring, we considered each offspring in

turn as the "template" individual. The alleles in the non-template offspring are re-coded to “1” if they

match the parental allele transmitted to the template, “2” if they match the untransmitted allele, or "0"

if they have a missing genotype. After this re-coding, positions at which a non-template offspring

changes from copying one allele to the other are defined as a “switch” (e.g., sequences such as “..1 1 2

2..”). We called putative crossovers in the template individual as having occurred within intervals in
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which the majority (in practice, usually all) of the non-template individuals with genotype calls showed

a switch. In turn, for F1 individuals with sequenced offspring, we re-coded informative sites as “1” and

“2” states in the offspring depending on the F0 individual they were inherited from. We then called

putative crossovers as transitions from one state to another.

This procedure is susceptible to genotyping errors, e.g., missed heterozygotes in the focal

individual, which generate changes of phase in close physical succession. To address this issue, we

grouped putative crossovers within ten informative sites of each other in each of the template

individuals, and kept only those clusters with an odd number of changes of phase, classifying events

with more than a single phase change as “complex”. In addition, we removed crossovers within ten

informative markers of the edges of the chromosomes.

Finally, to enhance the resolution of putative crossover locations, we relaxed the filtering

criteria for polymorphic positions. Specifically, we identified previously masked informative sites within

each putative crossover interval by reducing the minimum depth of coverage to 5X and the distance to

indels to 5 bps. We redefined the crossover interval if a single phase switch occurred in the same

template individual as the original crossover location. This approach improved the resolution of 439

crossovers, reducing the median interval length from 849 to 647 bps.

Detection of non-crossover events

While crossover events manifest as a single change of phase among the parental haplotypes,

non-crossovers are indicated by two changes of phase within a relatively short genomic distance. In

most of the cases, non-crossovers involve a single SNP, making it challenging to distinguish genuine

non-crossover events from sequencing and genotyping errors. To keep the number of false positives at

a minimum, we compared non-crossover calls obtained from GATK with those based on two extra

variant callers (bcftools and freebayes).
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We called variants with freebayes, using a minimum mapping quality of 30, a minimum base

quality of 30, and limited the analysis to the best four alternative alleles per site (v1.3.6; Garrison &

Marth, 2012). To standardize the output format of variants occurring in phase and close to each other,

which are represented as haplotypes in freebayes, we used vcfallelicprimitives from vcflib suite (version

1.0.10; https://github.com/vcflib/vcflib).

We used bcftools mpileup to generate a pileup format of sequencing reads with a minimum base

quality of 30 and a minimum mapping quality of 30, restricting the depth to a maximum of 150 reads

(version 1.9; Li, 2011). We then used bcftools call to identify variants, and bcftools filter to exclude

low-quality variants with a quality score below 20.

To minimize false positives, we implemented extra stringent filtering criteria. Specifically, we

restricted the detection of non-crossover events to the 30 autosomes with an average mapping

coverage above 20 and an average mapping quality above 40 across all individuals (S7 Fig). Moreover,

we only considered genotypes meeting all of these criteria: (i) the site(s) in the putative conversion tract

are consistent with the rules of Mendelian segregation, (ii) the depth of coverage is above half and

below twice the average for that chromosome in that individual, and (iii) there is no evidence of allelic

imbalance in heterozygous calls of the parents or any of the siblings (based on the p-value of a

two-sided exact binomial test > 0.05).

To identify non-crossovers, we followed a similar approach as for crossovers, but focused on

genomic segments that included two changes of phase in the samemeiosis. To minimize assembly and

mapping problems, and given the small number of meiosis considered, we further required no change

of phase within the same region in another meiosis. To further avoid the challenge of calling events at

repetitive loci that are collapsed in the reference assembly, we only included pairs of phase changes

surrounded by at least 10 congruent informative sites on each side (i.e., informative sites that do not

change phase in any individual). With these criteria, we identified 158, 398 and 384 instances with two
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changes of phase (i.e., putative non-crossovers) withGATK, Bcftools and freebayes, respectively.

We removed non-crossover events located within 1 kb from any other. To estimate the impact

of repetitive regions that are challenging to analyze with short-read sequencing, we analyzed

transmission rates to the next generation as a function of the mappability around putative

non-crossover events. Specifically, for each non-crossover event, we computed the fraction of

mappable bps (see Mappability section) found within the two closest non-converted informative sites.

Based on this analysis, we kept events in which at least 50% of bps are mappable (S22 Fig). This

approach led us to detect 121, 288 and 278 non-crossovers with GATK, Bcftools and freebayes,

respectively.

Finally, we calculated the transmission rate of non-crossovers identified by each caller,

expecting that for true calls it should be approximately 50% (assuming complete power to detect

transmission). Based on this criterion, we decided to base ourselves on the non-crossovers called from

freebayes for the rest of the analyses (S5 Table).

Of the 275 events identified using freebayes, three are very poorly resolved: the distance

between the single polymorphic site in the putative conversion tract and the closest non-converted

informative site is >10 kb and in two cases close to 1 Mb. In all three cases, heterozygosity is extremely

low in these regions. We therefore excluded them from consideration and focused our analyses on the

other 280 events.

Overlap between recombination events and CpG islands

To compare the two types of recombination events, we restricted our attention to crossovers

that occurred on the 30 chromosomes used to call non-crossovers. Crossovers that could not be

resolved in an interval of <10 kb were filtered out, leaving 933 crossovers. We used bedtools closest to
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measure the distance between a recombination event and a genomic feature, and counted the number

of crossovers or non-crossovers within 100 bps from a CpG island.

To estimate the overlap expected by chance, for each recombination event defined within an

interval, we generated all the locations to which the same length interval could be randomly assigned.

Specifically, we kept all the windows fulfilling the following criteria: (i) within 2.5 Mb from the edge of

the original interval (ii) a GC content within 2.5% the GC content of the 100 kb surrounding the original

event (iii) a fraction of mappable bps within 20% of the original interval and (v) no overlap with the the

original interval. We randomly sampled 5,000 such windows for each recombination event. For each of

the 2000 sets of shuffled distribution, we counted the number of shuffled windows within 100 bps from

a CpG island.

GC-biased gene conversion (gBGC)

To call non-crossovers, we relied on informative sites and applied stringent filters, potentially

leading us to miss additional SNPs in conversion tracts. To examine the number of SNPs in the

conversion tract, we reconstructed the haplotypes of each individual in the pedigree. Specifically, for

each non-crossover, we extracted all SNPs present between the two flanking non-converted

informative sites from the VCF file that had not passed our filtering (see section ‘Detection of

non-crossover events’). In order to identify which of the additional SNPs were co-converted with the

informative site(s) and thus likely in the conversion tract, we phased the biallelic SNPs usingwhatshap

(v2.1) (Martin et al., 2016). Out of the 275 non-crossovers, we successfully reconstructed the haplotypes

of all individuals across the pedigree for 103 events.

Given that the non-crossovers identified in the pedigree with three siblings show suspiciously

many pairs of changes of phase per meiosis (S7 Table), suggesting that inferences of non-crossovers in

small families is less reliable, we excluded that family from this analysis.
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Among the 103 non-crossovers for which we reconstructed the haplotypes, 75 did not include

any other SNPs in the conversion tract. To these cases, we added those for which the phasing did not

succeed but where there was no other SNP than the informative site in the unfiltered VCF (n = 13),

totaling 88 events with only 1 SNP. Among the events where more SNPs were added to a conversion

tract, some of those might be false positives; we therefore kept only those SNPS that passed the same

stringent filters applied to identify informative sites. Together with the unphased events with more

than one informative site, we identified 39 multi-SNPs events, including a total of 101 SNPs. We lacked

support to determine if there is a single or multiple SNPs for 146 events, which remain unclassified.

The degree of gBGC was then computed for three sets of non-crossovers: (i) all the

non-crossovers, (ii) the non-crossovers for which the phasing analysis confirmed the presence of a

single heterozygous position in the conversion tract, and (iii) the non-crossovers with more than one

heterozygous position in the conversion tract. For each set, we analyzed the informative heterozygous

sites used for the detection of phase changes, which pass all filtering criteria (see “VCF extra filtering

step” subsection). To estimate the magnitude of gBGC, we selected all the positions carrying a Strong

(G or C) and a Weak (A or T) allele, and quantified the proportion of times the Strong allele was

transmitted over theWeak one:

𝑔𝐵𝐺𝐶 =  𝑊→𝑆 / (𝑊→𝑆 + 𝑆→𝑊)

Conversion tract length estimation

To estimate the mean length of the gene conversion tracts, we followed the approach in Li et al,

2019 (Li et al., 2019). This method assumes that the conversion tract length follows an exponential

distribution, such that the probability of co-conversion of two informative sites d sites apart is given by

e-λd (An informative site here is defined as in the section “Detection of crossover events”). For each

informative site inferred to be in a conversion event, we recorded its distance to the other informative
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sites in a window of 5000 bps, each side, as well as whether the sites were co-converted with the focal

informative site. We estimated the mean conversion tract length (i.e., 1/λ) by maximum likelihood over

a grid of 1 bp ranging between 1 to 1000. In this approach, each converted site is treated as

independent, even when they may not be; the resulting likelihood is therefore a composite likelihood.

To estimate uncertainty, we bootstrapped the set of informative sites 1000 times; the central 950 values

were used to estimate the 95% confidence interval. We repeated this procedure using a window of 2000

bps instead of 5000, and the estimatedmean tract length was identical and the confidence interval very

similar.

Estimating the number of non-crossovers in a meiosis

The total number of non-crossovers can be estimated from the number of observed events,

given an estimate of the power to detect non-crossovers. The power depends on the probability of

having at least one informative site within the conversion tract. This probability hinges on the density of

informative sites and the mean conversion tract length.

To estimate our power, we considered each chromosome in each focal individual (a founder of

the pedigree) separately. As for the gBGC estimates, we excluded the family with three siblings for this

analysis. We took 1M draws from an exponential distribution with parameter 1/L, where L is the mean

conversion length, and placed the intervals along the chromosome at random, recording the fraction

that overlapped at least one informative site. We used three values of L: our estimate of the mean

conversion tract length (23 bps) and the lower and upper bounds on the 95% confidence intervals for L

(15 and 35 bps). We considered the fraction of intervals that overlapped an informative site as our

estimate of the probability of detecting a non-crossover event on that chromosome in that founder.

We then estimated the total number of non-crossovers on a chromosome by dividing the

observed number of events by the estimate of the power. We computed the average number across
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founders to produce estimates per chromosome and considered the sum for the estimates per

chromatid (Fig 5).
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