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Abstract: Clostridium perfringens autolysin (CpAcp) is a peptidoglycan hydrolase associated with
cell separation, division, and growth. It consists of a signal peptide, ten SH3b domains, and a
catalytic domain. The structure and function mechanisms of the ten SH3bs related to cell wall
peptidoglycan binding remain unclear. Here, the structures of CpAcp SH3bs were studied through
NMR spectroscopy and structural simulation. The NMR structure of SH3b6 was determined at first,
which adopts a typical β-barrel fold and has three potential ligand-binding pockets. The largest
pocket containing eight conserved residues was suggested to bind with peptide ligand in a novel
model. The structures of the other nine SH3bs were subsequently predicted to have a fold similar to
SH3b6. Their ligand pockets are largely similar to those of SH3b6, although with varied size and
morphology, except that SH3b1/2 display a third pocket markedly different from those in other
SH3bs. Thus, it was supposed that SH3b3-10 possess similar ligand-binding ability, while SH3b1/2
have a different specificity and additional binding site for ligand. As an entirety, ten SH3bs confer a
capacity for alternatively binding to various peptidoglycan sites in the cell wall. This study presents
an initial insight into the structure and potential function of CpAcp SH3bs.

Keywords: Acp; SH3b; NMR structure; peptidoglycan hydrolase; cell wall

1. Introduction

Gram-positive bacteria develop a thick cell wall which is a mesh polymer of peptido-
glycans to protect the cells. Peptidoglycan consists of glycan chains that are cross-linked
with peptide side chains [1]. A variety of lytic enzymes can hydrolyze peptidoglycans of
the cell wall to regulate bacteria growth or infection [2]. These peptidoglycan hydrolases
usually have a cell-wall-binding (CWB) module recognizing the peptide side chains and
a catalytic domain cleaving specific type of linkage in peptidoglycan. According to the
cleaving sites, they can be divided into different classes such as glucosaminidase, murami-
dase, amidase, and endopeptidase [3]. Due to their role in degrading bacteria cell wall,
peptidoglycan hydrolases are increasingly engineered as alternatives to antibiotics against
bacteria [4,5].

Clostridium perfringens is a Gram-positive, rod-shaped, spore-forming, and anaerobic
bacterium that can be found on raw meat, in the intestines of animals, and in the environ-
ment. C. perfringens bacteria are one of the most common causes of foodborne illnesses
such as food poisoning [6]. C. perfringens autolysin (CpAcp, UniProt ID: Q8XL11) encoded
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by gene CPE1231 is a peptidoglycan hydrolase expressed at growth phase and sporophore
formative phase, and is associated with cell separation, division, and growth [2,7]. CpAcp
has 1129 amino-acid residues and consists of a signal peptide, a CWB module containing
ten tandem bacterial Src homology 3 (SH3b) domains, and a catalytic domain belonging
to the N-acetylglucosaminidase family (Figure 1) [7,8]. The crystal structure of CpAcp
catalytic domain has been determined to adopt a crescent-shaped fold with a deep groove
at the center for substrate binding [8]. However, the structures of the ten SH3b domains of
CpAcp have not been reported so far.

Figure 1. Architecture of CpAcp. Schematic domain structure of CpAcp with an analysis of structurally disordered
probability at bottom. SP, signal peptide; SH3b, bacterial Src homology 3. The regions showing a probability above 0.5
(marked with a gray dashed line) are considered to be disordered. SH3b6 is highlighted with asterisk and blue dashed line.

The SH3b domains in the CWB module of peptidoglycan hydrolases are considered
to be essential for cell wall recognition and binding [9–11]. Many SH3b structures from
various peptidoglycan hydrolases have been determined either in the isolated state or
along with the catalytic domain, such as lysostaphin from Staphylococcus simulans [12],
lysostaphin homolog ALE-1 from Staphylococcus capitis [10], Atl from Staphylococcus epi-
dermidis [13], LytB from Streptococcus pneumonia [14], etc. These SH3b structures share
a similar β-barrel fold consisting of 6~8 β-strands that can be roughly divided into two
sheets, which is comparable to the well-known eukaryotic SH3 domains that target proline-
rich peptides [15]. On the other hand, SH3bs show low sequence similarity to eukaryotic
SH3s, suggesting that their functions are different to some extent [16]. Consistent with this,
several studies have evidenced that SH3b domains of lysostaphin and ALE-1 recognize the
interpeptide pentaglycine cross bridge in peptidoglycan [10,12,17]. However, not only the
sequence of different SH3bs but also the number of tandem SH3bs in different peptidogly-
can hydrolases varied considerably, suggesting the diverse binding specificity of the CWB
modules of peptidoglycan hydrolases.

In this study, the solution structure of CpAcp SH3b6 was determined using NMR spec-
troscopy. Based on the structure, the function of SH3b6 was predicted through morphology
analysis of the potential ligand-binding pockets and structure similarity comparison with
the SH3b homologues having known ligands. Molecular docking implied a novel binding
model of SH3b6 for peptide ligand. Meanwhile, the structural models of SH3b1/2/3/10 of
CpAcp were built through homologous modeling, by which the overall cell-wall-binding
function of CpAcp was supposed. This study will facilitate the comprehensive under-
standing of the function mechanism of CpAcp, and will guide the further experimental
investigation on the binding of CpAcp SH3bs with peptide ligand from the cell wall
peptidoglycan, which is beyond the scope of this article.

2. Results and Discussion
2.1. Structural Architecture of CpAcp

C. perfringens Acp is a large protein divided into at least 12 domains with different
functions as aforementioned. To have an overall look into the structural architecture of
CpAcp, PrDOS [18] (http://prdos.hgc.jp/cgi-bin/top.cgi) was used to analyze the disor-

http://prdos.hgc.jp/cgi-bin/top.cgi
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dered/ordered probability of full-length CpAcp. The result showed that all previously
identified domains, including signal peptide, SH3bs, and catalytic domain, fell within
ordered regions (disordered probability < 0.5), while the interdomain linkers were most
disordered, except the short linker (5-residue long) between SH3b1 and SH3b2 (Figure 1).
The lengths of interdomain linkers of CpAcp are mostly within the scope of 15–21 residues,
whereas there are two linkers out of this range, which are the short SH3b1/2 linker men-
tioned above and the extremely long SH3b3/4 linker consisting of 41 residues. The long
disordered interdomain linkers over 15 residues can usually confer flexibility facilitating
the relatively independent motion of domains [19]. Thus, the SH3bs of CpAcp except
SH3b1/2 were expected to motion independently and function individually, although
interdomain regulation through interaction cannot be excluded. On the other hand, due to
the short linker, SH3b1/2 may function synergistically.

2.2. NMR Structure of CpAcp SH3b6

In order to perform a detailed investigation on the structure of CpAcp CWB module,
solution structure of SH3b6 (E469-V535) was determined using NMR spectroscopy at first
(Figure 2A). The RMSD values for backbone atoms and heavy atoms in the ordered regions
were 0.3 and 0.9 Å, respectively (Table 1, PDB ID: 2KT8). The overall structure adopted a β-
barrel fold consisting of 7 β-strands (β1, 470–474; β2, 480–483; β3, 492–496; β4, 501–508; β5,
511–516; β6, 519–524; β7, 528–532) (Figure 2B). The β2 and β3 strands formed a β-hairpin
that is exclusively found in SH3b but not in eukaryotic SH3 domains, while the other 5
β-strands are usually present in both SH3b and eukaryotic SH3 domains. The region of
CpAcp SH3b6 containing the β2 and β3 strands corresponded to the well-known RT loop
of eukaryotic SH3, which is usually engaged in binding to proline-rich peptides [15].

Figure 2. Solution NMR structure of CpAcp SH3b6. (A) Superposition of the backbone traces of 20 conformers of CpAcp
SH3b6 with lowest energy. The β-strands are colored in marine blue and the loops are in gray. (B) The cartoon representation
of CpAcp SH3b6 structure with β-strands labeled. CT, C-terminus; NT, N-terminus. (C) ConSurf analysis with the nine-color
conservation scores projected onto CpAcp SH3b6 structure with the lowest energy. Residues with conservation score over 7
are indicated. (D) Electrostatic surface potential diagrams of CpAcp SH3b6 colored by electrostatic potential.
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Table 1. Structural statistics for CpAcp SH3b6 1.

Conformationally Restricting Constraints 2

NOE-based distance constraints

Total 822
Intra-residue (i = j) 168

Sequential (|i − j| = 1) 222
Medium-range (1< |i − j| <5) 69

Long-range (|i − j| ≥ 5) 363

Hydrogen bond constraints

Long-range (|i − j| ≥ 5)/total 46/54

Dihedral angle constraints 50

Residue Constraint Violations 2

Average number of distance violations per structure

0.1–0.2 Å 3.05
0.2–0.5 Å 0.35

>0.5 Å 0
Average RMS distance violation/constraint (Å) 0.01

Maximum distance violation (Å) 0.36

Average number of dihedral angle violations per structure

1–10◦ 0.25
>10◦ 0

Average RMS dihedral angle
violation/constraint (degree) 0.12

Maximum dihedral angle violation (degree) 1.90

RMSD from average coordinates 2,3

Backbone/heavy atoms (Å) 0.3/0.9

Structure Quality Factors

Ramachandran plot statistics 2,3

Most favored/allowed regions (%) 98.0/2.0
Disallowed regions (%) 0.0

Global quality scores(raw/Z-score) 2

Verify3D 0.47/0.16
Prosall 0.31/−1.41

Procheck(phi-psi) 3 −0.36/−1.10
Procheck(all) 3 −0.13/−0.77

Molprobity clash 17.01/−1.39

RPF Scores 4

Recall/precision 0.999/0.943
F-measure/DP-score 0.971/0.875

1 Structural statistics were computed for the ensemble of 20 deposited structures. 2 Calculated using the PSVS
1.4 program. Residues (469–535) were analyzed. 3 Ordered residues ranges (with the sum of ϕ and ψ order
parameters > 1.8): 470–475, 480–484, 492–496, 498–508, 511–516, and 520–529. 4 RPF scores reflected the goodness-
of-fit of the final ensemble of structures, including disordered residues, to the NMR data.

ConSurf [20] analysis using 300 homologous sequences was performed for SH3b6
to identify evolutionarily conserved residues. As shown in Figure 2C, 17 residues with
conserved score over 7 were found, among which S487, T488, and Y527 were located in
loops, while the other 14 residues were located inβ-strands, especiallyβ2/5/6. Electrostatic
surface potential analysis did not uncover particular regions lumped with positively or
negatively charged residues (Figure 2D), implying that SH3b6 may not bind with highly
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charged ligand. Taken together, CpAcp SH3b6 forms a typical SH3b structure potential for
binding to cell wall peptidoglycan.

2.3. Potential Ligand-Binding Pocket of CpAcp SH3b6

Eukaryotic SH3 domains usually contain a cleft or 2~3 adjacent pockets for binding
to proline-rich peptide [15]. Correspondingly, SH3b domains such as those in lysostaphin
and ALE-1 have the cleft or pockets for binding to pentaglycine peptide [12,17]. Moreover,
there are also pockets in SH3b domains probably binding to small molecules as found
in several SH3b crystal structures [14,21–23]. Based on the CpAcp SH3b6 structure, the
potential ligand-binding pockets were identified using online software DoGSiteScorer [24]
(https://proteins.plus/#dogsite). The result uncovered three pockets with different sizes
of CpAcp SH3b6 (Figure 3 and Table 2), termed hereafter as P1, P2, and P3 from the
largest to the smallest. All three pockets contained almost equal ratios of nonpolar and
polar/charged residues, suggesting an amphipathic binding capacity. P1 was a long groove
with a volume of 317.38 Å3, formed by β1-β2 loop, β2, β2-β3 loop, β5, β6, and β6-β7 loop.
It is worth noting that eight highly conserved residues were involved in P1 (Figure 3A),
implying a conserved function of P1. P2 had a volume of 210.82 Å3, formed by β2, β3,
β3-β4 loop, β4, β5, and β6, while P3 had a volume of 125.25 Å3, formed by β1, β4, β5,
and β7. The residues in P2 and P3 were significantly less conserved than those in P1
(Figure 3B,C), suggesting that their functions may be variable among homologues.

Figure 3. Potential ligand-binding pockets of CpAcp SH3b6. (A–C) Three pockets identified using online software
DoGSiteScorer are shown with mesh and arranged according to their size in green, magenta, and orange color, respectively.
The residues with side chains involved in forming the respective pockets are shown as sticks in the images at bottom. The
residues labeled with red font are those with conserved score over 7 identified in ConSurf analysis.

Table 2. Parameters of ligand-binding pockets of CpAcp SH3b6.

No.
Volume

(Å3)
Surface

(Å2)
Hydrogen Bond

Donors/Acceptors
Hydrophobic
Interactions

Amino Acid Ratio

Nonpolar Polar Positive Negative

1 317.38 738.87 19/36 28 0.38 0.47 0.10 0.05
2 210.82 372.21 4/10 19 0.36 0.37 0.18 0.09
3 125.25 372.62 4/14 17 0.44 0.22 0.11 0.22

https://proteins.plus/#dogsite
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2.4. Structural Comparison of CpAcp SH3b6 with Other SH3b Proteins

Structure similarity analysis of CpAcp SH3b6 was carried out using Dali [25] server,
and 100 peptide chains with Z-scores over 6.0 were identified. Most of these homologues
showed sequence identity lower than 30% with CpAcp SH3b6. Those having been reported
by published papers are summarized in Table 3 and partly shown in parallel with CpAcp
SH3b6 in Figure 4. The listed 14 structures belong to 11 SH3b-containing peptidoglycan hy-
drolases. The structures 5LEO, 5NMY, 6RK4, and 6RJE belonging to S. simulans lysostaphin
exhibit the same fold as SH3b. The sequence identities of these 11 SH3bs compared to
CpAcp SH3b6 range from 27% to 10%. Overall structures of CpAcp SH3b6 and the 11 SH3b
homologues share a similar β-barrel fold, but local conformations are diverse to various
extents. The structures 4KRT, 3PVQ, 3NPF, 6BIQ, 4Q2W, 6BIM, 6ILU, and 3H41 are largely
similar to CpAcp SH3b6, although modest differences can be found individually. β4-β5
loop of 4KRT is very long and adopts a short helix. β7 of 6BIQ turns out to be a rigid
loop. β4 of 4Q2W is short. β4 of 6ILU adopts two short separated strands and β5 and
β6 are shorter. β2-β3 loop of 3H41 adopts an inverse conformation compared to CpAcp
SH3b6. Nevertheless, remarkable differences of 1R77, 5LEO, and 2MK5 with the above nine
structures can be found as long β1 and a sequence insertion in the region corresponding to
β6-β7 loop of CpAcp SH3b6. The inserted sequence adopts a loop in 1R77, a β-strand in
5LEO, and two β-strands in 2MK5, respectively.

Table 3. Structure similarity analysis of CpAcp SH3b6 using Dali server. The proteins are ranked according to the structural
similarity score (Z-score).

PDB Uniprot Z-Score RMSD Ident% Organism Description Ref.

4KRT Q0SPG7 8.6 1.8 27 Clostridium phage
phiSM101 Endolysin, Psm [21]

3PVQ Q8A860 8.3 2.1 19 Bacteroides
thetaiotaomicron NlpC/P60 family, YkfC [26]

3NPF A7LS31 8.2 2.8 17 Bacteroides ovatus NlpC/P60 family, YkfC [26]

6BIQ A2DC48 8.0 2.8 11 Trichomonas
vaginalis NlpC/P60 family, NlpC_A2 [27]

4Q2W P59205 8.0 3.5 16 Streptococcus
pneumoniae

N-acetylglucosaminidase,
LytB [14]

6BIM A2D7D7 7.7 3.8 11 Trichomonas
vaginalis NlpC/P60 family, NlpC_A1 [27]

1R77 O05156 7.5 1.6 15 Staphylococcus
capitis Lysostaphin, ALE-1 [10]

5LEO P10547 7.5 1.5 15 Staphylococcus
simulans Lysostaphin [12]

6RK4 P10547 7.5 1.5 15 Staphylococcus
simulans Lysostaphin [17]

6ILU A0A218KCJ1 7.4 1.9 15 Bacillus phage PBC5 Endolysin, LysPBC5 [23]

6RJE P10547 7.4 1.5 15 Staphylococcus
simulans Lysostaphin [17]

5NMY P10547 7.2 1.6 15 Staphylococcus
simulans Lysostaphin [28]

2MK5 D6QY02 6.9 1.9 10 Staphylococcus
phage G15 Endolysin, LysGH15 [29]

3H41 Q736M3 6.7 5.0 13 Bacillus cereus NlpC/P60 family, YkfC [22]
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Figure 4. Structure similarity of CpAcp SH3b6 with its SH3b homologues. The structures of CpAcp
SH3b6 (2KT8) and its homologues with structural similarity identified using Dali server are shown
with cartoon representations in different colors, and the respective PDB IDs of the structures are
indicated at bottom. The secondary structure elements of CpAcp SH3b6 are labeled for comparison.

Among the listed structures, 5LEO [12] and 6RK4/6RJE [17] represent S. simulans
lysostaphin SH3b complexed with pentaglycine cross-bridge peptide (G5) and a tetrapep-
tide stem with the pentaglycine cross bridge as a lateral chain (AγQK[GGGGG]A; P4–G5;
K5T), respectively. The CpAcp SH3b6 structure was superimposed with 5LEO and 6RJE
to compare the ligand-binding pockets (Figure 5A). In both 5LEO and 6RJE, lysostaphin
SH3b utilizes a binding site for G5 that was not detected in CpAcp SH3b6, indicating
that CpAcp SH3b6 has a different binding model for G5. On the other hand, in 6RJE,
lysostaphin SH3b utilizes a second binding site for the tetrapeptide stem (AγQKA), which
is partly overlapped with the P1 pocket of CpAcp SH3b6. In particular, the pocket residues
of lysostaphin SH3b for tetrapeptide stem show similar conformation and nonpolar/polar
property with the P1 pocket residues of CpAcp SH3b6 (Figure 5B), supporting the peptide-
binding potential of P1. In addition, a (4S)-2-methyl-2,4-pentanediol (MPD) molecule was
found to bind to a third site of lysostaphin SH3b corresponding to the P3 pocket of CpAcp
SH3b6. However, the structures for this region between lysostaphin SH3b and CpAcp
SH3b6 are quite different, implying that CpAcp SH3b6 P3 may bind to a different small
molecule. Taken together, the P1 pocket of CpAcp SH3b6 can be expected to serve as a
binding pocket for peptide ligand.
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Figure 5. Structure comparison of CpAcp SH3b6 with lysostaphin SH3b. (A) Superposition of the structure of CpAcp
SH3b6 (marine) with those of lysostaphin SH3b bound by different ligands with PDB IDs of 5LEO (wheat) and 4RJE (dark
salmon). The bound ligands are shown as sticks and labeled with green font. MPD, (4S)-2-methyl-2,4-pentanediol; G5,
pentaglycine; P4–G5 and P4–G5*, AγQK[GGGGG]A peptide. The positions for P1 and P3 pockets of CpAcp SH3b6 are
marked with dashed arrows. (B) The residues in the binding site of lysostaphin SH3b for P4–G5* and the corresponding
residues of CpAcp SH3b6 P1 are shown as sticks and colored in dark salmon and marine, respectively.

2.5. Docking of CpAcp SH3b6 with P4-G5 Peptide

In order to support the speculation that P1 pocket of CpAcp SH3b6 can bind with pep-
tide ligand, the peptide P4-G5 (K5T) that represents a repeat unit in cell wall peptidoglycan
was used to dock with CpAcp SH3b6 structure. The result showed that the G1–G5, K3,
and A4 residues of P4-G5 were docked to the P1 pocket of SH3b6, while A1 and Q2 were
bound to a region next to P1 (Figure 6A). P4-G5 adopted an arc conformation extending
along the surface of SH3b6, with A4 inserting in a cavity (Figure 6B). Twelve residues of
SH3b6 were involved in interaction with P4-G5 (Figure 6C).

Figure 6. Binding model of CpAcp SH3b6 with P4-G5 (K5T) peptide. (A) Complex model of CpAcp
SH3b6 bound by P4-G5 with SH3b6 shown in cartoon (marine) and P4-G5 peptide in stick representation.
Secondary elements of SH3b6 are marked. (B) Complex model of CpAcp SH3b6 bound by P4-G5 with
SH3b6 in surface (marine) representation. Amino-acid units of P4-G5 are marked. (C) The residues of
SH3b6 involved in interaction with P4-G5 are shown as sticks. (D–F) Three interacting sites between
SH3b6 and P4-G5 are shown with carbon colored in cyan and green, respectively. The interacting
residues are indicated. Hydrogen bonds are shown as orange dashed lines.
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The interaction interface can be generally divided into three regions: G1–G3 residues
were bound by A486, S487, T488, and F511 (Figure 6D); G5, K3, and A4 were bound by S479,
L480, N481, and Y527 (Figure 6E); A1 and Q2 were bound by R483, S489, S490, and V492
(Figure 6F). L480, T488, V492, F511, and Y527 conferred hydrophobic interactions with
the peptide backbone. Six hydrogen bonds were found between residue pairs including
G1-A486, G5-Y527, A4-Y527, A4-N481, Q2-R483, and A1-S489. Importantly, side-chains
of R483 and Y527 were involved in forming hydrogen bonds, suggesting that the two
residues may be related to recognition specificity. The docking result strongly supports
the hypothesis that the P1-pocket-involved region of SH3b6 can function in peptide ligand
binding, and implies a novel binding model different from the known model of lysostaphin
SH3b (Figure 5A).

2.6. Structure Simulation of CpAcp SH3b1/2/3/10

The determination of CpAcp SH3b6 domain structure encouraged us to predict the
structures of the other nine SH3b domains. Before doing this, sequence identity and
similarity of the 10 SH3b domains were analyzed (Figure 7A). The result showed that the
sequences of SH3b4/5/7/8/9 are highly similar (over 95%) to SH3b6. SH3b3/10 show
moderate similarity (64.1% and 62.5%), while SH3b1/2 display low similarity (35.9% and
37.5%) to SH3b6. SH3b1/2 have moderate sequence identity and similarity of 20.3% and
53.1% to each other.

Subsequently, the structures of the nine CpAcp SH3bs were simulated with the I-
TASSER [30] server. The resulted structures of SH3b4/5/7/8/9 were identical to the SH3b6
structure, and thus are not shown. The predicted SH3b1/2/3/10 structures were also
very similar to SH3b6 structure (Figure 7B). Differences in secondary structure element
were mainly found for β4 and β7. β4 is longer in SH3b3/10 compared to SH3b6, while is
separated into two strands in SH3b1/2. β7 is shorter in SH3b1/2/3 than SH3b6. Generally,
the 10 SH3b structures of CpAcp are very similar.

Figure 7. Sequence and structure of CpAcp SH3bs. (A) Sequence alignment of 10 SH3bs of CpAcp rendered using
ESPript [31] with default settings for similarity calculations. Identical (white letters filled with red color) and similar (red
letters with blue box) amino acids are denoted. Secondary structural elements of SH3b6 are indicated above the amino acid
sequence. The identity and similarity of SH3b sequences compared to SH3b6 are shown in the green box. (B) Structure
models of SH3b1/2/3/10 and NMR structure of SH3b6 are shown in the cartoon with individual color.

Based on the structure models, the potential pockets of SH3b1/2/3/10 were analyzed.
Similar location of P1 and P2 pockets to SH3b6 were found for all four SH3bs, although
the size and morphology varied a lot (Figure 8A and Table 4). SH3b3/10 showed a similar
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P3 pocket location to SH3b6. However, SH3b1/2 did not have a similar P3 pocket with
SH3b6. Instead, they showed a pocket at the location similar to that found in lysostaphin
SH3b for binding with G5. Four pockets were identified for lysostaphin SH3b (Pa-Pd),
previously [12]. Pa (volume 273.0 Å3) is for binding to pentaglycine, Pb (194.1 Å3) for
MPD, and Pc (158.3 Å3) for tetrapeptide stem. P1 of CpAcp SH3b1/2 corresponds to Pc
of lysostaphin SH3b in location, while P3 corresponds to Pa. However, the sizes of these
pockets are not consistent. In particular, the secondary elements and residues involved
in CpAcp SH3b1/2 P3 formation vary a lot compared to lysostaphin SH3b Pa. Thus, the
function of P3 of SH3b1/2 remains ambiguous.

Figure 8. Potential ligand-binding pockets of CpAcp SH3b1/2/3/10. (A) Three pockets were identified for respective
structure models of SH3b1/2/3/10 and are shown with mesh. The pockets are numbered according to those of SH3b6
and respectively colored with green, magenta, and orange. (B) Sequence alignment of SH3b1/2/3/6/10 with the residues
involved in forming individual pockets colored in the same manner in (A). Secondary structural elements of SH3b6 are
indicated above the amino acid sequence. Conserved pocket residues among the five SH3bs are marked with asterisks.

Table 4. Comparison of pocket size of SH3b1/2/3/6/10 of CpAcp.

No.
SH3b6 SH3b1 SH3b2 SH3b3 SH3b10

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Volume
(Å3) 317.4 210.8 125.3 204.7 102.5 166.1 147.6 121.9 167.9 208.6 142.1 116.2 160.5 180.7 135.2

Surface
(Å2) 738.9 372.2 372.6 387.6 231.6 296.2 322.6 309.9 440.5 376.5 312.4 362.3 321.3 361.9 320.9

The differently engaged residues of the pockets of SH3b1/2/3/6/10 should contribute
to the varied location and morphology of the pockets (Figure 8B). In common, the residues
in β1-β2 loop, β2, β2-β3 loop, β6, and β6-β7 loop formed P1 pockets, while those in β3,
β3-β4 loop, β4, and β5 formed P2 pockets for all five structures. Eight conserved residues
were found to be involved in forming P1 and P2 pockets for all five structures (Figure 8B,
asterisk labeled). Therein, the five residues in P1 have been highlighted in comparison
with lysostaphin SH3b in Figure 5B (underlined), and showed contacts with P4-G5 peptide
in the complex model (Figure 6). However, residues in β3 were also involved in P1 of
SH3b1/2, instead of the residue in β5 of SH3b3/6/10 P1, suggesting a slight difference.
Moreover, the residues in β1, β4, and β7 formed P3 of SH3b3/6/10, and those in β2-β3
loop, β3, β4, β5, and β6 formed P3 of SH3b1/2, indicating a significantly different P3
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composition. Taken together, SH3b3-10 should have a similar ligand-binding capacity,
while SH3b1/2 may have a different specificity and additional binding site for ligand.
As an entirety, 10 SH3bs of CpAcp were expected to cooperatively target complex cell
wall compositions and achieve binding ability to extensive sites. Meanwhile, considering
the similar ligand-binding ability of SH3b3-10 and the disordered/flexible interdomain
linkers, we hypothesize that through dynamically alternating the SH3bs bound with the
peptide bridge or stem, CpAcp can rapidly shift along peptidoglycan network surface like
a “wiggling worm” for substrate cleaving.

3. Materials and Methods
3.1. Protein Expression and Purification

The coding gene of CpAcp/CPE1231 SH3b6 domain (E469-V535) was cloned into
an NESG-modified pET21 expression vector including a C-terminal 6×His-tag (LEHHH-
HHH). The recombinant plasmid was transformed into Escherichia coli BL21 (DE3) cells for
protein expression. U-13C, 15N (NC), and U-15N, 5% biosynthetically directed 13C (NC5)
samples of SH3b6 were expressed and purified following a standard protocol described
previously [32]. Briefly, the E. coli cells containing the above plasmid were grown in MJ
minimal medium at 37 ◦C until induction with a final concentration of 0.5 mM isopropyl-
β-D-thiogalactopyranoside (IPTG) at an OD600 of ~0.7, followed by culturing overnight at
20 ◦C for 16 h. The cells were harvested by centrifugation and lysed by sonication. The
lysate was clarified by centrifugation at 20,000 rpm for 30 min and filtration. The super-
natant was purified using the ÄKTAxpressTM chromatography system (GE Healthcare)
with a Ni-affinity column (HisTrap IMAC HPTM column, 5 mL) followed by a gel filtration
column (HiLoad 26/60 Superdex 75pg). The purified protein was concentrated to a final
concentration of 1.0 mM for study in the NMR buffer containing 20 mM NH4OAc, 100 mM
NaCl, 5 mM CaCl2, 10 mM DTT, 0.02% NaN3, and 90% H2O/10% D2O (v/v) at pH = 4.5.

3.2. Chemical Shift Assignments

All NMR experiments were carried out at 298 K on a Varian Inova 600 MHz spectrom-
eter equipped with a 5 mm HCN cryogenic probe and a Bruker Avance III 850 MHz spec-
trometer equipped with a 5 mm HCN conventional room temperature probe. The collected
NMR data included: 2D 1H-15N HSQC, 1H-13C HSQC, 3D HNCO, HN(CA)CO, HNCA,
HN(CO)CA, HNCACB, CBCA(CO)NH, HBHA(CO)NH, H(CCO)NH, and C(CO)NH for
backbone assignments, and 2D 1H-13C HSQC (aliphatic and aromatic), 3D H(C)CH-TOCSY,
H(C)CH-COSY, (H)CCH-TOCSY, and 4D CC NOESY for side chain assignments. The
stereospecific assignments of isopropyl methyl groups of Val and Leu residues were deter-
mined from 2D constant-time 1H-13C HSQC spectrum for the NC5 sample [33]. The data
were processed using the NMRPipe [34] and analyzed with the Sparky program [35]. The
backbone and side-chain resonances were automatically assigned using the PINE server
from NMRFAM [36], and subsequently validated and corrected manually. All assignments
were further confirmed from NOESY spectra, including 3D 15N-edited NOESY-HSQC
and 13C-edited NOESY-HSQC. Chemical shift assignments have been deposited in the
BioMagResBank (BMRB accession number 16688).

3.3. NMR Structure Calculation

NOE-based interproton distance constraints were determined automatically for CpAcp
SH3b6 using CYANA 3.0 [37]. Chemical shift assignments, NOESY peak lists from four
NOESY spectra with peak intensities, and the constraints for backbone phi (φ) and psi (ψ)
torsion angle derived from chemical shifts of backbone atoms using the TALOS+ software
program [38] were used as input for CYANA 3.0. Manual and iterative refinement of the
NOESY peak selection list was performed using RPF NMR quality assessment to calculate
the “fit” between the structure and the NOESY peak list [39]. During the iterations near the
end of the structure calculations, hydrogen bonding constraints on NH and CO distances
were introduced based on the proximity of potential donors and acceptors identified in
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the initial structure. Through the explicit hydrodynamic fields of CNS 1.2 and PARAM19,
20 of the 100 structures calculated in CYANA 3.0 were refined with minimal energy using
NOE-derived final distance constraints, hydrogen bond constraints, and TALOS-derived
dihedral angle constraints. The final NMR ensemble of 20 structures and all restraints used
in the structure calculations have been deposited in the Protein Data Bank (PDB ID 2KT8).
Structural statistics and overall structural quality factors were calculated using PSVS [40]
version 1.4 (Table 1).

3.4. Structure Modeling

The structure models of SH3b1/2/3/4/5/7/8/9/10 were built through de novo
homology modeling using I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/)
that first identifies structural templates from the PDB by the multiple threading approach,
LOMETS, with atomic models constructed by iterative template-based fragment assembly
simulations. The sequence of individual SH3b was entered into I-TASSER as input and
then I-TASSER was run to simulate the structures. The details and descriptions can be
referred to the manual. The first model (with the highest score) from resulting models for
each input SH3b was chosen for further analysis.

The complex model of P4-G5 (K5T) and CpAcp SH3b6 was simulated by HDOCK [41],
a protein-protein docking based on a hybrid algorithm of template-based modeling and
ab initio free docking (http://hdock.phys.hust.edu.cn/). The PDB file of K5T (download
from PDB database) and PDB ID of SH3b6 (2KT8) were respectively used as receptor and
ligand and inputted into the HDOCK server guided by the manual. The resulting docking
model of K5T and SH3b6 with the highest score (the top model) was chosen as the complex
to be analyzed in this study.

4. Conclusions

Through NMR structure determination, molecular docking, homologous modeling,
and a series of bioinformatic analysis, the structure and function of CpAcp CWB module
consisting of 10 SH3bs were investigated preliminarily in this study. The NMR structure of
CpAcp SH3b6 was determined to adopt a β-barrel fold with seven β-strands, similar to
its SH3b homologues. Potential ligand-binding pocket analysis identified three pockets of
CpAcp SH3b6, among which P1 with the largest size and eight conserved residues may
function in binding to P4-G5 peptide in a novel model, while P2 and P3 with much smaller
size and variable residues may bind with small molecules. In the CWB module, SH3b3-10
have similar structures and therefore similar potential ligand-binding pockets like SH3b6,
while SH3b1/2 have similar structures but different P3 pockets from SH3b6, which is
surprisingly comparable to the pocket of lysostaphin SH3b for pentaglycine cross bridge.
Thus, SH3b3-10 should have similar ligand-binding ability, while SH3b1/2 may have
different specificity and an additional binding site for ligand. Facilitated by the flexible
interdomain linkers, the 10 SH3bs can together anchor CpAcp to the cell wall network,
and provide an extensive binding specificity for different cell wall sites and structurally
dynamic binding to move along the peptidoglycan network for target searching. This study
presents a first insight into the structure and potential function of CpAcp SH3bs, will guide
the further experimental investigation on the binding of CpAcp to cell wall compositions,
and thereby facilitate the comprehensive understanding of the function mechanism of
CpAcp and even peptidoglycan hydrolases, which will help to develop new antibiotics for
combating multidrug-resistant bacteria.
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